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Problem

The Problem - Variational Form

Convection-Diffusion Equations{
div

(
−a(x)∇u + ~β(x)u

)
= f , x ∈ Ω,

u|∂Ω = 0.

Variational form find u ∈ H1
0 (Ω) such that∫

Ω

(
a∇u · ∇ϕ− ~β · ∇ϕ u

)
=

∫
Ω

f ϕ for all ϕ ∈ H1
0 (Ω).

Regularity Assumptions
a ∈ C2(Ω), with a(x) ≥ a0 > 0,
~β ∈ C1(Ω), with div(~β) ≥ 0 pointwise in Ω,
f ∈ L2(Ω).
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Problem

The Problem - FE Approximation - I

Let
Th = {K} finite element partition of Ω, polygonal
domain, into triangles,
hK = diam(K ),
h = maxK hK .

We consider the space of linear finite elements
Vh ={ϕh : Ω → R s.t. ϕh is continuous, ϕh|K is linear, and ϕh|∂Ω = 0}⊂H1

0 (Ω)

with basis

ϕi ∈ Vh s.t. ϕi (node j) = δi,j , i , j = 1, . . . , n(h),

n(h) = dim(Vh) = number of the internal nodes of Th.
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Problem

The Problem - FE Approximation - II

The variational equation becomes

An(a, ~β)u = b

Th = {K}
with

An(a, ~β) =
∑
K∈Th

AK
n (a, ~β) = Θn(a) + Ψn(~β) ∈ Rn×n, n = n(h),

(Θn(a))i,j =
∑
K∈Th

∫
K

a ∇ϕj · ∇ϕi diffusive term,

(Ψn(~β))i,j = −
∑
K∈Th

∫
K

(~β · ∇ϕi ) ϕj convective term,

and with suitable quadrature formulas in the case of non constant a and ~β.
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Motivations

Motivations

Motivations

A good mesh generator will locally produce a partitioning, which is
“asymptotically” similar to a partitioning into equilateral triangles, away from the
boundary.

Aim:
To study the effectiveness of the proposed preconditioning strategy applied to FE
approximations of Convection-Diffusion Eqns. both from the theoretical and
numerical point of view.
We prove the PCG optimality and we give additional results about PGMRES
convergence.
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Mesh role

Mesh role - Equilateral elements - I

Due to the very special choice of the domain Ω, we have

Θn(1) = Π TN(f̃ ) ΠT
with
TN(f̃ ) Toeplitz matrix related to a parallelogram shaped domain ΩN ⊇ Ω generated by

f̃ (s1, s2) =
√

3(6− 2 cos(s1)− 2 cos(s2)− 2 cos(s1 + s2))/3, (s1, s2) ∈ D = (−π, π]2,

and Π ∈ Rn×N , n ≤ N projection matrix.

By considering a smaller parallelogram shaped domain ΩÑ ⊆ Ω, we have also

TÑ(f̃ ) = Π̃ Θn(1) Π̃T .

Thus
λmin(TN(f̃ )) ≤ λmin(Θn(1)) ≤ λmin(TÑ(f̃ )).
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Mesh role

Mesh role - Equilateral elements - II

Now, let f (s1, s2) = 4− 2 cos(s1)− 2 cos(s2) be the Toeplitz generating function
in the case of FE approximations on a square Ω = (0, 1)2 with Friedrichs-Keller
meshes, or standard FD discretizations.

Since these two functions are equivalent, i.e.,

√
3

3
f ≤ f̃ ≤

√
3 f on D = (−π, π]2,

by virtue of LPO properties, the corresponding Toeplitz matrix sequences are
spectrally equivalent, i.e.,

√
3

3
Tn(f ) ≤ Tn(f̃ ) ≤

√
3 Tn(f ) for any n.

Remark: f̃ is the most natural function from the FE point of view, since no
contribution is lost owing to the gradient orthogonality.
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Mesh role

Mesh role - Equilateral elements - III

Relationships between the functions f and f̃ can be fully exploited in performing
the spectral analysis. More precisely, we have that

λmin(Θn(1)) ≥ λmin(TN(f̃ )) ≥
√

3

3
λmin(TN(f )) ≥ c1h

2
N ,

λmin(Θn(1)) ≤ λmin(TÑ(f̃ )) ≤
√

3 λmin(TÑ(f )) ≤ c2h
2
Ñ

In addition, the same matrix Π can also be considered in the more general setting,
i.e.

{An(a)} = {Π AN(a) ΠT}

since the key point is that each internal node in Ω is a vertex of the some
constant number of triangles.

By referring to projection arguments, the spectral analysis can be equivalently
performed both on the matrix sequence {An(a)} and {AN(a)}.
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Preconditioning Strategy

The Preconditioning Strategy - Definition

Let {An(a, ~β)}, n = n(h) be the matrix sequence associated to a family {Th},
with decreasing parameter h.

The considered preconditioning matrix sequence, proposed in [1], is defined as

{Pn(a)}, Pn(a) = D
1
2
n (a)Θn(1)D

1
2
n (a)

where Dn(a) = diag(Θn(a))diag−1(Θn(1)), i.e., the suitable scaled main diagonal
of Θn(a), where Θn(a) equals An(a, 0).

Remark: the preconditioner is tuned only with respect to the diffusion matrix
Θn(a) since we are assuming that the convection phenomenon is not dominant,
and no stabilization is required in order to avoid spurious oscillations into the
solution.

[1] Serra-Capizzano, Numer. Math., 1999.
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Spectral Analysis

Spectral Analysis - I

We analyze the spectral properties of the preconditioned matrix sequences

{P−1
n (a)Θn(a)} wrt PCG

{P−1
n (a)Re(An(a, ~β))}, {P−1

n (a)Im(An(a, ~β))}, {P−1
n (a)An(a, ~β)} wrt PGMRES

in the special case of structured uniform mesh sequences on the hexagonal and on
the square domain.

Aim:

to quantify the difficulty of the linear system resolution vs the accuracy
of the approximation scheme;

to prove the effectiveness/optimality of the preconditioned iterative method.
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Spectral Analysis

Spectral Analysis - II
In the case of the considered FE approximation of Convection-Diffusion Eqns,
the Hermitian/skew-Hermitian splitting is given by

Re(An(a, ~β)) =
∑
K∈Th

Re(AK
n (a, ~β)) = Θn(a) + Re(Ψn(~β)) spd,

i Im(An(a, ~β)) = i
∑
K∈Th

Im(AK
n (a, ~β)) = i Im(Ψn(~β)),

and can be performed on any single elementary matrix related to Th.
Notice that Re(Ψn(~β)) = 0 if div(~β) = 0.

Lemma
Let {En(~β)}, En(~β) := Re(Ψn(~β)).

Under the regularity assumptions, then it holds

‖En(~β)‖2 ≤ ‖En(~β)‖∞ ≤ Ch2,

with C absolute constant only depending on ~β(x) and Ω.
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Spectral Analysis

Spectral Analysis - Diffusion Eqns

Theorem

Let {Θn(a)} and {Pn(a)} be the Hermitian positive definite matrix sequences
previously defined.
Under the regularity assumptions, the sequence {P−1

n (a)Θn(a)} is properly
clustered at 1.
Moreover, for any n all the eigenvalues of P−1

n (a)Θn(a) belong to an interval
[d ,D] well separated from zero (Spectral equivalence property).

The previous results prove the optimality of the PCG method.

The proof technique refers to a previously analyzed FD case [1] and makes use of
the equivalence of the Toeplitz generating functions.

[1] Serra-Capizzano, TP, ETNA, 2000; SIMAX 2003.
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Spectral Analysis

Spectral Analysis - Convection-Diffusion Eqns - I

Theorem

Let {Re(An(a, ~β))} and {Pn(a)} be the Hermitian positive definite matrix
sequences previously defined.
Under the regularity assumptions, the sequence {P−1

n (a)Re(An(a, ~β))} is properly
clustered at 1.
Moreover, for any n all the eigenvalues of P−1

n (a)Re(An(a, ~β)) belong to an
interval [d ,D] well separated from zero (Spectral equivalence property).

The proof technique refers to a previously analyzed FD case [1].

It is extended for dealing with the contribution given by En(~β) and makes use of
the equivalence of the Toeplitz generating functions.

[1] Serra-Capizzano, TP, ETNA, 2000; SIMAX 2003.
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Spectral Analysis

Spectral Analysis - Convection-Diffusion Eqns - II

Theorem

Let {Im(An(a, ~β))} and {Pn(a)} be the Hermitian matrix sequences previously
defined.
Under the regularity assumptions, the sequence {P−1

n (a)Im(An(a, ~β))} is
spectrally bounded and properly clustered at 0 with respect to the eigenvalues.

The proof technique refers to the spectral Toeplitz theory and to the standard
FE assembling procedure, according to a more natural local domain analysis
approach [1].

[1] Beckermann, Serra-Capizzano, SINUM, 2007.
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Spectral Analysis
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Spectral Analysis

Spectral Analysis - Convection-Diffusion Eqns - III

On the basis of these two splitted spectral results, we can easily obtain the spectral
description of the whole preconditioned matrix sequence {P−1

n (a)An(a, ~β)}.

Theorem

Let {(An(a, ~β))} and {Pn(a)} be the matrix sequences previously defined. Under

the regularity assumptions, the sequence {P−1
n (a)An(a, ~β)} is properly clustered at

1 ∈ C+ with respect to the eigenvalues. In addition, these eigenvalues all belong
to a uniformly bounded rectangle with positive real part, well separated from zero.

The proof technique refers to an analogous result in the case of FD discretizations
of Convection-Diffusion Eqns [1] by making use of the field of values properties
and of the results claimed in the last two theorems.

[1] Bertaccini, Golub, Serra-Capizzano, SIMAX, 2007.

C. Tablino-Possio (Università di Milano-Bicocca) The mesh role in preconditioning FE matrix sequences GALN 2009 16 / 27



Spectral Analysis

Spectral Analysis - Convection-Diffusion Eqns - III

On the basis of these two splitted spectral results, we can easily obtain the spectral
description of the whole preconditioned matrix sequence {P−1

n (a)An(a, ~β)}.

Theorem

Let {(An(a, ~β))} and {Pn(a)} be the matrix sequences previously defined. Under

the regularity assumptions, the sequence {P−1
n (a)An(a, ~β)} is properly clustered at

1 ∈ C+ with respect to the eigenvalues. In addition, these eigenvalues all belong
to a uniformly bounded rectangle with positive real part, well separated from zero.

The proof technique refers to an analogous result in the case of FD discretizations
of Convection-Diffusion Eqns [1] by making use of the field of values properties
and of the results claimed in the last two theorems.

[1] Bertaccini, Golub, Serra-Capizzano, SIMAX, 2007.
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Spectral Analysis

Spectral Analysis - Remarks

Remark

The previous Lemma and Theorems hold both in the case in which
the matrix elements are evaluated exactly and whenever a quadrature formula
with error O(h2) is considered to approximate the involved integrals.
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Numerical Tests

Numerical Tests

All the reported numerical experiments are performed in Matlab.

The iterative solvers starts with zero initial guess.

The stopping criterion is ||rk ||2 ≤ 10−7||r0||2.
The PGMRES is applied without restart.

The numerical tests analyze the effectiveness of the preconditioning strategy in
the case of the following diffusion coefficient functions:

Test I: a(x , y) = a1(x , y) = exp(x + y)

Test II: a(x , y) = a2(x , y) = exp(x + |y − 1/2|3/2)

Test III: a(x , y) = a3(x , y) = exp(x + |y − 1/2|)

The convection coefficient is ~β(x , y) = [x y ]T (diffusion dominated problem).
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Numerical Tests

Numerical Tests - PCG
Structured/unstructured meshes on the hexagonal domain

n a1(x, y) a2(x, y) a3(x, y)
37 3 4 5
169 3 4 5
721 3 4 4
2977 3 4 4
12095 3 4 4
48769 3 4 4

n a1(x, y) a2(x, y) a3(x, y)
28 5 5 5
73 4 4 5
265 4 4 5
1175 4 4 5
4732 4 4 5
19288 4 4 5

# of iterations in the case of structured meshes # of iterations in the case of unstructured meshes
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Numerical Tests

Numerical Tests - PGMRES
Structured/unstructured meshes on the hexagonal domain

~β(x, y) = [x y ]T convection coefficient.

n a1(x, y) a2(x, y) a3(x, y)
37 4 5 5
169 4 5 5
721 4 5 5
2977 4 5 5
12095 4 5 5
48769 4 5 5

n a1(x, y) a2(x, y) a3(x, y)
28 4 5 5
73 4 5 5
265 4 5 5
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Numerical Tests

Numerical Tests - PCG
Structured/unstructured meshes on the square domain

n a1(x, y) a2(x, y) a3(x, y)
81 3 4 4
3611 3 4 5
1521 3 4 5
6241 3 4 5
25281 3 4 5

n a1(x, y) a2(x, y) a3(x, y)
142 4 5 5
725 4 5 5
1538 4 5 5
7510 4 5 5
15690 4 5 5

# of iterations in the case of structured meshes # of iterations in the case of unstructured meshes
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Numerical Tests

Numerical Tests - PGMRES
Structured/unstructured meshes on the square domain

~β(x, y) = [x y ]T convection coefficient.

n a1(x, y) a2(x, y) a3(x, y)
81 4 5 5
3611 5 5 6
1521 5 6 6
6241 5 6 6
25281 5 6 6

n a1(x, y) a2(x, y) a3(x, y)
142 4 5 5
725 5 5 6
1538 5 6 6
7510 5 6 6
15690 5 6 7

# of iterations in the case of structured meshes # of iterations in the case of unstructured meshes
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Numerical Tests

Numerical Tests

PCG

n P P̃
37 4 9
169 4 10
721 4 11
2977 4 12
12095 4 12

PGMRES

n P P̃
37 4 8
169 4 8
721 4 9
2977 4 11
12095 4 11

Pn(a) = D
1
2
n (a)An(1, 0)D

1
2
n (a)

P̃n(a) = D
1
2
n (a)T̃nD

1
2
n (a),

T̃n = ΠTmΠ,
Tm = Tm(6− 2 cos(s)− 2 cos(t)− 2 cos(s + t))

Number of PCG and PGMRES iterations - structured and unstructured meshes, a1(x, y), ~β(x, y) = [x y ]T .
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Numerical Tests

Numerical Tests
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Complexity Issues

Complexity Issues - I

Definition (Axelsson, Neytcheva, 1994)

Let {Amxm = bm} be a given sequence of linear systems of increasing dimensions.
An iterative method is optimal if

the arithmetic cost of each iteration is at most proportional to the complexity
of a matrix-vector product with matrix Am,

the number of iterations for reaching the solution within a fixed accuracy can
be bounded from above by a constant independent of m.

Since
Pn(a) = D1/2

n (a)Θn(1)D1/2
n (a),

the solution of FE linear system with matrix An(a, ~β) is reduced to computations
involving diagonals and the matrix Θn(1).
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Complexity Issues

Complexity Issues - II

The latter task can be efficiently performed by means of fast Poisson solvers (e.g.
cyclic reduction idea [1]) or several specialized algebraic multigrid methods [2] or
geometric multigrid methods [3].

Therefore, for structured uniform meshes and under the regularity assumptions,
the optimality of the PCG method is theoretically proved.
Favorable convergence properties are expected for the PGMRES method.

The numerical performances do not worsen in the case of unstructured meshes.

[1] Buzbee, Dorr, George, Golub, SINUM, 1971.
[2] Serra-Capizzano, Numer. Math., 2002.
[3] Trottenberg, Oosterlee, Schüller, Academic Press, 2001.
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Open Problems & Conclusions

Open Problems & Conclusions

It is self-evident that the problem at hand is just an academic example.
However, it is a fact that a good mesh generator will locally produce a
partitioning, which is “asymptotically” similar to the considered one.
The latter fact has a practical important counterpart since the academic
preconditioner P̃n(a) is optimal for the real case with nonconstant coefficients and
with the unstructured partitioning.
A theoretical ground supporting these observation is still missing and would be
worth in our opinion to be studied and developed.

Moreover, taking into account all these results, it will be interesting to devise
suitable preconditioning strategies for

piecewise constant diffusion coefficient problems,

anisotropic problems,

convection dominated problem stabilized by streamline artificial diffusion.
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