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Introduction AB∼1∼2 CONCLUSION

INTERVAL TEMPORAL LOGICS
Interval temporal logics: an alternative approach to point-based temporal
representation and reasoning.

Truth of formulas is defined over
intervals rather than points.

ψ

¬ψ

¬ψ

¬ψ

I Interval temporal logics are very expressive (compared to point-based temporal
logics).

I Formulas of interval logics express properties of pairs of time points rather than
of single time points, and are evaluated as sets of such pairs, i.e., as binary
relations.

I Apart from very special (easy) cases, there is no reduction of the
satisfiability/validity in interval logics to monadic second-order logic, and
therefore Rabin’s theorem is not applicable here.
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Introduction AB∼1∼2 CONCLUSION

THE GENERAL PICTURE

I Halpern and Shoham’s modal logic of intervals (HS)
I HS features 12 modalilities, one for each possible ordering of a pair of

intervals (the so-called Allen’s relations);
I decidability and expressiveness of HS fragments (restrictions to subsets of

HS modalities) have been systematically studied in the last decade.

I Decidability and expressiveness depend on two crucial factors: the selected set
of modalities and the class of linear orders on which they are interpreted.

I In the present work, we address the satisfiability problem for the logic AB of
Allen’s relation meets and begun by extended with two equivalence relations
(AB∼1∼2 for short), interpreted over the class of finite linear orders.
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2. AB∼1∼2

Syntax and Semantics
Expressiveness
Previous results
Undecidability of AB∼1∼2

Counter machines
Encoding
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SYNTAX AND SEMANTICS

The formulas of the logic AB, from Allen’s relations meets and begun by, are
recursively defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | 〈B〉ϕ

ϕϕ

I AB∼
I We extend the language of AB with a special proposition letter ∼

interpreted as an equivalence relation over the points of the
domain.

I An interval [x, y] satisfies ∼ if and only if x and y belong to the
same equivalence class.

I AB∼1∼2 is obtained from AB by adding two equivalence relations
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EXPRESSIVENESS

Examples of properties captured by AB:

I To constrain the lenght of an interval to be equal to k (k ∈ N):

〈B〉k> ∧ [B]k+1 ⊥

I To constrain an interval to contain exactly one point (endpoints excluded)
labeled with q:

ψ∃!q ≡ 〈B〉(¬π ∧ 〈A〉(π ∧ q)) ∧
(
[B](¬π ∧ 〈A〉(π ∧ q)→ [B]〈A〉(π ∧ ¬q))

)
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EXPRESSIVENESS (CONT’D)

I The effects/benefits of the addition of one or more equivalence relations to a
logic have been already studied in various settings, including (fragments of)
first-order logic, linear temporal logic, metric temporal logic, and interval
temporal logic.

The increase in expressive power obtained from the extension of AB, interpreted
over finite linear orders and N, with an equivalence relation ∼makes it possible
to establish an original connection between interval temporal logics and
extended regular languages of finite and infinite words (extended ω-regular
languages).
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PREVIOUS RESULTS

The satisfiability problem for:
I AB is EXPSPACE-complete on the class of finite linear orders (and on N);

A. Montanari, G, Puppis, P. Sala, and G. Sciavicco. Decidability of the Interval
Temporal Logic ABB̄ over the Natural Numbers. Proc. of the 27th STACS, 2010.

I AB∼ is decidable (but non-primitive recursive hard) on the class of finite linear
orders (and undecidable on N).

A. Montanari, and P. Sala. Adding an Equivalence Relation to the Interval Logic
ABB̄: Complexity and Expressiveness. Proc. of the 28th LICS, 2013.
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Introduction AB∼1∼2 CONCLUSION

UNDECIDABILITY OF AB∼1∼2

The results given in the paper complete the study of the extensions of AB with
equivalence relations.

Teorema
The satisfiability problem for AB∼1∼2, interpreted on the class of finite linear orders, is
undecidable.

The proof relies on a reduction from the 0-0 reachability problem for counter machines
(with two counters) to the satisfiability problem of AB∼1∼2 over finite linear orders.
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COUNTER MACHINES

Definizione
A counter machine is a triple of the form M = (Q, k, δ), where Q is a finite set of states,
k is the number of counters, which assume values in N, and δ is a function that maps
q ∈ Q in a transition rule of the following form:

1. value(h)← value(h) + 1; goto q′, for some 1 ≤ h ≤ k and q′ ∈ Q;

2. if value(h) = 0 then goto q′ else value(h)← value(h)− 1; goto q′′, for some
1 ≤ h ≤ k and q′, q′′ ∈ Q.

q0 q1 q2
c1 == 0 c1 −−

c0 == 0

c0 + + c1 + +
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0-0 REACHABILITY AND ψ0−0
M

Definizione
The 0-0 reachability problem for a counter machine M consists of determining, given
two states q0, qf ∈ Q, if there exists a computation of M from the configuration
(q0, 0, 0) to the configuration (qf , 0, 0).

Teorema (Minsky, 1967)

The problem of 0-0 reachability for counter machines with at least two counters is undecidable.

Given a counter machine M (with two counters), we build a formula ψ0−0
M such that

ψ0−0
M is satisfiable iff there exists a computation from (q0, 0, 0) to (qf , 0, 0) in M.
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ENCODING
OUR MODEL OF COMPUTATION

I points (=point-intervals) are partitioned into two sets: state-points (points with
label in Q) and counter-points (points with labels in {c1, c2}).

I A configuration (q, v1, v2) is represented by a sequence of consecutive points:

I the first point is a state-point q;
I the following points are counter-points (v1 of them with label c1 and v2 of

them with label c2, in a random order).

. . . . . .

q c1 c2 c2 c1
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ENCODING (CONT’D)
OUR MODEL OF COMPUTATION

. . . . . .
q c1 c2

−
q′ c1 c2

del
q′′ c1 c2

del
c1

+

(q, 1, 1)→ (q′, 1, 0)→ (q′′, 2, 0)

I A computation (from q0 to qf ) is given by a sequence of consecutive
configurations.

I Counter-points with labels + and − respectively denote
I points that are introduced in a configuration when a counter is increased;
I points that are deleted from the next configuration when a counter is

decreased

(increments and decrements must be consistent with state-points and transitions
of M).

I Deleted points are not removed from the configuration, but labeled with del.
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ENCODING (CONT’D)
FORMULA ψ0−0

M

We build a formula ψ0−0
M as the conjunction of the following formulas:

I ψ0 and ψf constrain the structure of the first ((q0, 0, 0)) and the last ( (qf , 0, 0))
configuration, respectively;

I ψpoints forces the conditions on points;
I ψδ ensures the consistency between state-points and +/− labelings in the

transitions of the machine M;
I ψ∼ guarantees the consistency between counter-points and transitions in each

configuration.

Formulas ψ0, ψf , ψpoints, and ψδ can be expressed in the basic fragment AB (devoid of
equivalence relations).

The most difficult condition to enforce is ψ∼: the number of points in a configuration
is constrained by the number of points in the previous one and it depends on the fired
transition.
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ENCODING (CONT’D)
CONSTRAINS IMPOSED BY THE FORMULA ψ∼

1. Counter-points belonging to a configuration form a chain of unit-length
intervals that alternates ∼1 and ∼2 labeled intervals.

2. Inside a configuration, any interval of length greater than 1 makes neither
∼1 nor ∼2 true, and any interval of length equal to 1 makes either ∼1 or
∼2 true.

3. Each counter-point belonging to a non-final configuration begins an interval
labeled with both ∼1 and ∼2, which crosses exactly one state-point and ends
at another counter-point. Moreover, we constrain the two endpoints of such
an interval to be labeled with the same label (we say that the two
counter-points are linked). Finally, we impose that the first point in a
configuration is linked to the first point in the next configuration.

. . .
q c1 c2 c1 q′

p1 p2 p3 p4 p5

∼1 ∼2

∼1∼2

c1

p6

∼1∼2∼1∼2 ∼1∼2

∼1∼2

c1

∼1∼2

c2

∼1

∼1

∼1∼2

∼1∼2

c2 c1

p7 p8

∼1 ∼2
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2. Inside a configuration, any interval of length greater than 1 makes neither
∼1 nor ∼2 true, and any interval of length equal to 1 makes either ∼1 or
∼2 true.

3. Each counter-point belonging to a non-final configuration begins an interval
labeled with both ∼1 and ∼2, which crosses exactly one state-point and ends
at another counter-point. Moreover, we constrain the two endpoints of such
an interval to be labeled with the same label (we say that the two
counter-points are linked). Finally, we impose that the first point in a
configuration is linked to the first point in the next configuration.
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CONCLUSION (AND FUTURE WORK)

Logic Complexity (over finite linear orders)

AB EXPSPACE-complete
AB∼ non-primitive recursive hard
AB∼1∼2 Undecidable
PNL(= AĀ) NEXPTIME-complete
PNL∼ NEXPTIME-complete
PNL∼1∼2 ?
MPNL∼ Decidable (VASS-reachability)
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The End

Thank you!!
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