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Terms representing undefinedness.

A natural problem arising in A-calculus is what terms should be
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Terms representing undefinedness.

A natural problem arising in A-calculus is what terms should be
considered as representative of undefined programs.

Q = (Ax.xx)(Ax.xx) is the simplest term that embodies this
intuitive idea.
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Unsolvable terms.

Every A-term has one of the following form:

> A1 ... Xm.yM1 ... M,

> AXq .. Xm(AZ.M)My ... M,
If a term (-reduces to a term of the first kind, we say it has a head
normal form.
Definition
A term is called unsolvable if it does not have an head normal
form.

Unsolvables can be considered as the terms representing the
undefined (Barendregt, Wadsworth).
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M-theories and unsolvable terms.

Definition
A A-theory is a theory of equations between A-terms that contains

AB.

Theorem (Berarducci-Intrigila)

There exists a closed unsolvable t such that
VM s.t. M #5 1, A3+ {t = M} is a consistent theory,
while

VM s.t. M =g 1, A3+ {t = M} is not consistent.
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Easy terms.

A closed unsolvable term t is called easy if for any closed term M
the theory
A+ {t =M}

is consistent.
Example
> Q
> Q3l, where Q3 = (Ax.xxx)(Ax.xxx)

Q3 is unsolvable but not easy.
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Easy sets.

Definition
A set A of closed unsolvable terms is an easy set if for any closed
M the theory

A3+ {t=M]|te A}

is consistent.

Example
{Q()\Xl ... Xk+1.Xk+1) | k € w}

Theorem
The set of easy terms is not an easy set.
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Mute terms.

Berarducci, “Infinite A-calculus and non-sensible models” .

Definition
A term M is a zero term if it does not reduce to an abstraction.

Definition
A zero term is mute if it does not reduce to a variable or to a term
of the form

(Zero term) - Term
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Example

> Q

» BB, where B = Ax.x(Ay.xy)



Q>
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Properties of the mute terms.

» The set of mute terms is an easy set.

» The set of mute terms is not recursively enumerable, as well
as the set of easy sets.

Problem
Is YQ3, where Y = M\f.(Ax.f(xx))(Ax.f(xx)), easy?



Regular mute terms
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Hereditarily n-ary terms.

Definition

Let n > 0 and X = xy,...x, be distinct variables. The set of
hereditarily n-ary A-terms over X, H,[x], is the smallest set of
terms such that:

» Forall i=1,... k
X,'EH,,[)?]

» For all fresh distinct variables y = y1,..., v,

t1 € Hol[X, 7], ..., ta € Hp[X, Y]
AV1.. AYnyiti ... th € Hn[)_<]
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Examples of hereditarily terms.

> \x.xx € Hp = Hi]
> \y.yx € Hi[x]

Ax.xxx is not an hereditarily n-ary term.
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A hierarchy of sets based on hereditarily terms.

Definition

Let X = x1,...xx and ¥ = y1,..., yn be distinct variables.
> HplX] = Halx]
» H™[x] = {s[u/y] : s € HT[x,¥],0 = w1, ..., u, € H[X]}
> Snlx] = U, H'[X].
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A new class of mute terms.

Theorem
Given sy, ...,S, € S, the term s. .. s, is mute.

Proof.
Sketch: the key point of the proof is that every reduction path can
be seen as starting from a term of this form:

()\yl...)\yn.y,'tl...tn)Ml...Mn

n abstractions n terms n terms

with t;, M; € S,
This means that at each step the whole term has a shape among

those who are allowed for mute terms.
]
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Definition
Terms of the form sy...s, € S, where s; belongs to S, are called
Regular mute terms.

M, is the set of regular mute terms of the form sg. .. s.

M is the set of all regular mute.

Example

» Q¢ M1
> (Axx(Ay.yx))(Ax.xx) € My
> AAA € My, where A := Axy.x(Azt.tzx)y.

BB, where B := Ax.x(\y.xy), is a mute term that is not regular.



Regular mute
and
graph models



Semantic of A\-calculus.

Definition
A model of A-calculus is a reflexive object in a cartesian closed
cathegory.



Semantic of A\-calculus.

Definition
A model of A-calculus is a reflexive object in a cartesian closed
cathegory.

Problem

Graph easiness of M:
is it possible to find, for every closed term M, a graph
models that equates M to every t € M ?
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This is part of a general problem, the analysis of the expressive
power of A-models:

given a class of A\-models, which theories can they
express?

Graph easiness proves that graph models can express the theory
AB+ {t= M|t e M}

for all closed M.
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Graph models.

Definition
A graph model is a pair (D, p), where D is an infinite set and
p: Psin(D) x D — D is an injective total function.

Using such pair (D, p) it is possible to define a A-model whose
universe is P(D).

Interpretation of terms is defined as follows:
> |x|B = p(x), where p : Var — P(D) evaluates free variables.
> [tulp ={a: (BaC |ulp) p(a )€ |tlp}

> Mxtp={a—aiac|th .}



Main theorem.



Main theorem.

Theorem

Let M be a closed term. Then, for every e Cg, N\ O there exists a
graph model (D, ) such that

(D,1) =Et=M forall t € Me,

where Me = J,,c. Mn, the set of n-regular mute terms for n € e.
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the abbreviation g IF o € M means that for all total injections

p 2 g we have that (D, p) = o € |[M|P.



Forcing.

Definition

(Forcing) For a closed term M, a partial pair (D, q) and o € D,
the abbreviation g IF o € M means that for all total injections
p 2 g we have that (D, p) E a € |[M|P.

Lemma
For every closed term M, the function Fpy : (D) — P(D) defined
by Fu(q) ={a € D:ql-a e M} is weakly continuous, and we
have

Fm(p) = |M|P for each total p.



Main lemma on mute terms and graph models.

Lemma
Let F : Z(D) — P(D) be a weakly continuous function and let
e Can N\ 0. Then there exists a total | : Pfn(D) x D — D such
that

(D,1) =t = F(I) for all terms t € M.



Proof.

» Given a closed M, using the forcing lemma we get a weakly
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Proof.

» Given a closed M, using the forcing lemma we get a weakly
continuous function F.

» Using F in the other theorem, we get a total / such that

(D, 1) | t = F()

for all t € M.
» By the forcing lemma, F(p) = |[M|P for all total p. So

(D,NEt=M
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Ultraproducts

A-models are first order structures, so we can use the theory of
ultraproducts to prove graph easiness of regular mute.

» to0s$ theorem

» (Bucciarelli,Carraro,Salibra)
Let (D;, pj)jcs be a family of total pairs, A = (A; :j € J) be
the corresponding family of graph A-models, where
A; = (P(Dj),-,k,s), and let F be an ultrafilter on J. Then
there exists a graph model (E, g) such that the ultraproduct
(MjcsA;j)/F can be embedded into the graph A-model
determined by (E, q).



Final theorem.

Theorem

Let M be a closed term and M = .o M, be the set of all

regular mute A-terms. Then there exists a graph model (E, q) such
that

(E,q) =M=t foreveryte M.



Final comments.

Our result is a first step on the investigation of subclasses of mute
terms.
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Open questions.

» Are regular mute terms easy with respect to other kind of
models?

> Is the set of regular mute a maximal graph easy class?
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