A graph easy class of mute terms

A. Bucciarelli, A.Carraro, G.Favro, A.Salibra

ICTCS 2014, Perugia

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Terms representing undefinedness.

A natural problem arising in λ -calculus is what terms should be considered as representative of undefined programs.

・ロト・日本・モート モー うへで

Terms representing undefinedness.

A natural problem arising in λ -calculus is what terms should be considered as representative of undefined programs.

 $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$ is the simplest term that embodies this intuitive idea.

Every $\lambda\text{-term}$ has one of the following form:

 $\triangleright \lambda x_1 \dots x_m . y M_1 \dots M_n$

Every $\lambda\text{-term}$ has one of the following form:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$\lambda x_1 \dots x_m . y M_1 \dots M_n$$
$$\lambda x_1 \dots x_m . (\lambda z . M) M_1 \dots M_n$$

Every $\lambda\text{-term}$ has one of the following form:

$$\triangleright \lambda x_1 \dots x_m . y M_1 \dots M_n$$

$$\lambda x_1 \dots x_m . (\lambda z.M) M_1 \dots M_n$$

If a term β -reduces to a term of the first kind, we say it has a *head normal form*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Every $\lambda\text{-term}$ has one of the following form:

$$\triangleright \lambda x_1 \dots x_m . y M_1 \dots M_n$$

$$\lambda x_1 \dots x_m . (\lambda z.M) M_1 \dots M_n$$

If a term $\beta\text{-reduces}$ to a term of the first kind, we say it has a head normal form.

Definition

A term is called **unsolvable** if it does not have an head normal form.

Every λ -term has one of the following form:

$$\triangleright \lambda x_1 \dots x_m . y M_1 \dots M_n$$

$$\lambda x_1 \dots x_m . (\lambda z.M) M_1 \dots M_n$$

If a term $\beta\text{-reduces}$ to a term of the first kind, we say it has a head normal form.

Definition

A term is called **unsolvable** if it does not have an head normal form.

Unsolvables can be considered as the terms representing the undefined (Barendregt, Wadsworth).

 $\lambda\text{-theories}$ and unsolvable terms.

Definition

A λ -theory is a theory of equations between λ -terms that contains $\lambda\beta$.

(ロ)、(型)、(E)、(E)、 E) の(の)

λ -theories and unsolvable terms.

Definition

A λ -theory is a theory of equations between λ -terms that contains $\lambda\beta$.

Theorem (Berarducci-Intrigila)

There exists a closed unsolvable t such that

$$\forall M \text{ s.t. } M \neq_{\beta} I, \ \lambda\beta + \{t = M\}$$
 is a consistent theory,

while

$$\forall M \text{ s.t. } M =_{\beta} I, \ \lambda\beta + \{t = M\} \text{ is not consistent.}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A closed unsolvable term t is called ${\bf easy}$ if for any closed term ${\cal M}$ the theory

$$\lambda\beta + \{t = M\}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

is consistent.

A closed unsolvable term t is called ${\bf easy}$ if for any closed term ${\cal M}$ the theory

$$\lambda\beta + \{t = M\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is consistent.

Example

Ν

A closed unsolvable term t is called **easy** if for any closed term M the theory

$$\lambda\beta + \{t = M\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is consistent.

Example

Ν Ω

• $\Omega_3 \mathbf{I}$, where $\Omega_3 \equiv (\lambda x.xxx)(\lambda x.xxx)$

A closed unsolvable term t is called **easy** if for any closed term M the theory

$$\lambda\beta + \{t = M\}$$

is consistent.

Example

• Ω

• $\Omega_3 \mathbf{I}$, where $\Omega_3 \equiv (\lambda x.xxx)(\lambda x.xxx)$

 Ω_3 is unsolvable but not easy.

Easy sets.

Definition

A set A of closed unsolvable terms is an **easy set** if for any closed M the theory

$$\lambda\beta + \{t = M \mid t \in A\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is consistent.

Easy sets.

Definition

A set A of closed unsolvable terms is an **easy set** if for any closed M the theory

$$\lambda\beta + \{t = M \mid t \in A\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is consistent.

Example

 $\{\Omega(\lambda x_1 \dots x_{k+1}, x_{k+1}) \mid k \in \omega\}$

Easy sets.

Definition

A set A of closed unsolvable terms is an **easy set** if for any closed M the theory

$$\lambda\beta + \{t = M \mid t \in A\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is consistent.

Example $\{\Omega(\lambda x_1 \dots x_{k+1}, x_{k+1}) \mid k \in \omega\}$

Theorem

The set of easy terms is not an easy set.

Mute terms.

Berarducci, "Infinite λ -calculus and non-sensible models".

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Mute terms.

Berarducci, "Infinite λ -calculus and non-sensible models".

Definition

A term M is a **zero term** if it does not reduce to an abstraction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mute terms.

Berarducci, "Infinite λ -calculus and non-sensible models".

Definition

A term M is a **zero term** if it does not reduce to an abstraction.

Definition

A zero term is **mute** if it does not reduce to a variable or to a term of the form

(Zero term) · Term

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples and properties of Mute terms.

Example

Examples and properties of Mute terms.

Example

• *BB*, where $B \equiv \lambda x.x(\lambda y.xy)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

·

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Properties of the mute terms.

▶ The set of mute terms is an easy set.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Properties of the mute terms.

- The set of mute terms is an easy set.
- The set of mute terms is not recursively enumerable, as well as the set of easy sets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Properties of the mute terms.

- The set of mute terms is an easy set.
- The set of mute terms is not recursively enumerable, as well as the set of easy sets.

Problem

Is $Y\Omega_3$, where $Y \equiv \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$, easy?

Regular mute terms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Hereditarily *n*-ary terms.

Definition

Let n > 0 and $\bar{x} \equiv x_1, \dots x_k$ be distinct variables. The set of *hereditarily n-ary* λ *-terms over* \bar{x} , $H_n[\bar{x}]$, is the smallest set of terms such that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hereditarily *n*-ary terms.

Definition

Let n > 0 and $\bar{x} \equiv x_1, \dots x_k$ be distinct variables. The set of *hereditarily n-ary* λ *-terms over* \bar{x} , $H_n[\bar{x}]$, is the smallest set of terms such that:

▶ For all
$$i = 1, ..., k$$

 $\overline{x_i \in H_n[\bar{x}]}$

Hereditarily *n*-ary terms.

Definition

Let n > 0 and $\bar{x} \equiv x_1, \dots x_k$ be distinct variables. The set of *hereditarily n-ary* λ *-terms over* \bar{x} , $H_n[\bar{x}]$, is the smallest set of terms such that:

▶ For all
$$i = 1, ..., k$$

 $\overline{x_i \in H_n[\bar{x}]}$

• For all fresh distinct variables $\bar{y} \equiv y_1, \ldots, y_n$,

$$\frac{t_1 \in H_n[\bar{x}, \bar{y}], \dots, t_n \in H_n[\bar{x}, \bar{y}]}{\lambda y_1 \dots \lambda y_n . y_i t_1 \dots t_n \in H_n[\bar{x}]}$$

Examples of hereditarily terms.

►
$$\lambda x.xx \in H_1 = H_1[]$$

<□ > < @ > < E > < E > E のQ @

Examples of hereditarily terms.

Examples of hereditarily terms.

►
$$\lambda x.xx \in H_1 = H_1[]$$

►
$$\lambda y.yx \in H_1[x]$$

 $\lambda x.xxx$ is not an hereditarily *n*-ary term.

A hierarchy of sets based on hereditarily terms.

Definition Let $\bar{x} \equiv x_1, \dots x_k$ and $\bar{y} \equiv y_1, \dots, y_n$ be distinct variables. $\vdash H_n^0[\bar{x}] = H_n[\bar{x}]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A hierarchy of sets based on hereditarily terms.

Definition

Let $\bar{x} \equiv x_1, \ldots x_k$ and $\bar{y} \equiv y_1, \ldots, y_n$ be distinct variables.

$$H_n^0[\bar{x}] = H_n[\bar{x}]$$

$$H_n^{m+1}[\bar{x}] = \{ s[\overline{u}/\overline{y}] : s \in H_n^m[\bar{x}, \bar{y}], \bar{u} \equiv u_1, \dots, u_n \in H_n^m[\bar{x}] \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
A hierarchy of sets based on hereditarily terms.

Definition

Let $\bar{x} \equiv x_1, \ldots x_k$ and $\bar{y} \equiv y_1, \ldots, y_n$ be distinct variables.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A new class of mute terms.

Theorem Given $s_0, \ldots, s_n \in S_n$, the term $s_0 \ldots s_n$ is mute.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A new class of mute terms.

Theorem

Given $s_0, \ldots, s_n \in S_n$, the term $s_0 \ldots s_n$ is mute.

Proof.

Sketch: the key point of the proof is that every reduction path can be seen as starting from a term of this form:

$$\underbrace{(\lambda y_1 \dots \lambda y_n . y_i}_{n \text{ abstractions}} . y_i \underbrace{t_1 \dots t_n}_{n \text{ terms}} \underbrace{M_1 \dots M_n}_{n \text{ terms}}$$

with $t_j, M_j \in S_n$

A new class of mute terms.

Theorem

Given $s_0, \ldots, s_n \in S_n$, the term $s_0 \ldots s_n$ is mute.

Proof.

Sketch: the key point of the proof is that every reduction path can be seen as starting from a term of this form:

$$\left(\underbrace{\lambda y_1 \dots \lambda y_n}_{n \text{ abstractions}}, y_i, \underbrace{t_1 \dots t_n}_{n \text{ terms}}\right) \underbrace{M_1 \dots M_n}_{n \text{ terms}}$$

with $t_j, M_j \in S_n$

This means that at each step the whole term has a shape among those who are allowed for mute terms.

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 $\ensuremath{\mathcal{M}}$ is the set of all regular mute.

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 $\ensuremath{\mathcal{M}}$ is the set of all regular mute.

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 $\ensuremath{\mathcal{M}}$ is the set of all regular mute.

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 ${\mathcal M}$ is the set of all regular mute.

- $\blacktriangleright \ \Omega \in \mathcal{M}_1$
- $(\lambda x.x(\lambda y.yx))(\lambda x.xx) \in \mathcal{M}_1$

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 ${\mathcal M}$ is the set of all regular mute.

- $\blacktriangleright \ \Omega \in \mathcal{M}_1$
- $(\lambda x.x(\lambda y.yx))(\lambda x.xx) \in \mathcal{M}_1$

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 ${\mathcal M}$ is the set of all regular mute.

- ► $\Omega \in \mathcal{M}_1$
- $(\lambda x.x(\lambda y.yx))(\lambda x.xx) \in \mathcal{M}_1$
- $AAA \in \mathcal{M}_2$, where $A := \lambda xy.x(\lambda zt.tzx)y$.

Terms of the form $s_0 \dots s_n \in S_n$ where s_i belongs to S_n , are called **Regular mute terms.**

 \mathcal{M}_n is the set of regular mute terms of the form $s_0 \dots s_n$.

 ${\mathcal M}$ is the set of all regular mute.

Example

- ► $\Omega \in \mathcal{M}_1$
- $(\lambda x.x(\lambda y.yx))(\lambda x.xx) \in \mathcal{M}_1$
- $AAA \in \mathcal{M}_2$, where $A := \lambda xy.x(\lambda zt.tzx)y$.

BB, where $B := \lambda x.x(\lambda y.xy)$, is a mute term that is not regular.

Regular mute and graph models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Semantic of λ -calculus.

Definition

A model of $\lambda\text{-calculus}$ is a reflexive object in a cartesian closed cathegory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semantic of λ -calculus.

Definition

A model of $\lambda\text{-calculus}$ is a reflexive object in a cartesian closed cathegory.

Problem

Graph easiness of \mathcal{M} :

is it possible to find, for every closed term M, a graph models that equates M to every $t \in M$?

This is part of a general problem, the analysis of the expressive power of $\lambda\text{-models:}$

This is part of a general problem, the analysis of the expressive power of $\lambda\text{-models:}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

given a class of λ -models, which theories can they express?

This is part of a general problem, the analysis of the expressive power of $\lambda\text{-models:}$

given a class of λ -models, which theories can they express?

Graph easiness proves that graph models can express the theory

$$\lambda\beta + \{t = M | t \in \mathcal{M}\}$$

for all closed M.

Graph models.

Definition

A graph model is a pair (D, p), where D is an infinite set and $p: \mathcal{P}_{fin}(D) \times D \to D$ is an injective total function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Graph models.

Definition

A graph model is a pair (D, p), where D is an infinite set and $p: \mathcal{P}_{fin}(D) \times D \to D$ is an injective total function.

Using such pair (D, p) it is possible to define a λ -model whose universe is $\mathcal{P}(D)$.

Graph models.

Definition

A graph model is a pair (D, p), where D is an infinite set and $p : \mathcal{P}_{fin}(D) \times D \to D$ is an injective total function.

Using such pair (D, p) it is possible to define a λ -model whose universe is $\mathcal{P}(D)$.

Interpretation of terms is defined as follows:

▶ $|x|_{\rho}^{p} = \rho(x)$, where $\rho: Var \to \mathcal{P}(D)$ evaluates free variables.

- $\blacktriangleright |tu|_{\rho}^{p} = \{ \alpha : (\exists a \subseteq |u|_{\rho}^{p}) \ p(a, \alpha) \in |t|_{\rho}^{p} \}$
- $\triangleright \ |\lambda x.t|_{\rho}^{p} = \{ a \to \alpha : \alpha \in |t|_{\rho[x:=a]}^{p} \}$

Main theorem.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Main theorem.

Theorem

Let M be a closed term. Then, for every $e \subseteq_{fin} \mathbb{N} \setminus 0$ there exists a graph model (D, I) such that

$$(D, I) \models t = M$$
 for all $t \in \mathcal{M}_e$,

where $\mathcal{M}_e = \bigcup_{n \in e} \mathcal{M}_n$, the set of n-regular mute terms for $n \in e$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Forcing.

Definition

(Forcing) For a closed term M, a partial pair (D, q) and $\alpha \in D$, the abbreviation $q \Vdash \alpha \in M$ means that for all total injections $p \supseteq q$ we have that $(D, p) \models \alpha \in |M|^p$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Forcing.

Definition

(Forcing) For a closed term M, a partial pair (D, q) and $\alpha \in D$, the abbreviation $q \Vdash \alpha \in M$ means that for all total injections $p \supseteq q$ we have that $(D, p) \models \alpha \in |M|^p$.

Lemma

For every closed term M, the function $F_M : \mathcal{I}(D) \to \mathcal{P}(D)$ defined by $F_M(q) = \{ \alpha \in D : q \Vdash \alpha \in M \}$ is weakly continuous, and we have

$$F_M(p) = |M|^p$$
 for each total p.

Main lemma on mute terms and graph models.

Lemma

Let $F : \mathcal{I}(D) \to \mathcal{P}(D)$ be a weakly continuous function and let $e \subseteq_{\text{fin}} \mathbb{N} \setminus 0$. Then there exists a total $I : \mathcal{P}_{\text{fin}}(D) \times D \to D$ such that

$$(D, I) \models t = F(I)$$
 for all terms $t \in \mathcal{M}_e$.

Proof.

► Given a closed *M*, using the forcing lemma we get a weakly continuous function *F*.

Proof.

- ► Given a closed *M*, using the forcing lemma we get a weakly continuous function *F*.
- Using F in the other theorem, we get a total I such that

$$(D,I) \models t = F(I)$$

for all $t \in \mathcal{M}_e$.

Proof.

- Given a closed *M*, using the forcing lemma we get a weakly continuous function *F*.
- Using F in the other theorem, we get a total I such that

$$(D,I) \models t = F(I)$$

for all $t \in \mathcal{M}_e$.

• By the forcing lemma, $F(p) = |M|^p$ for all total p. So

$$(D, I) \models t = M$$

Ultraproducts

 $\lambda\text{-models}$ are first order structures, so we can use the theory of ultraproducts to prove graph easiness of regular mute.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ultraproducts

 $\lambda\text{-models}$ are first order structures, so we can use the theory of ultraproducts to prove graph easiness of regular mute.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Łoś theorem

Ultraproducts

 $\lambda\text{-models}$ are first order structures, so we can use the theory of ultraproducts to prove graph easiness of regular mute.

- Łoś theorem
- (Bucciarelli, Carraro, Salibra) Let (D_j, p_j)_{j∈J} be a family of total pairs, A = (A_j : j ∈ J) be the corresponding family of graph λ-models, where A_j = (P(D_j), ., k, s), and let F be an ultrafilter on J. Then there exists a graph model (E, q) such that the ultraproduct (Π_{j∈J}A_j)/F can be embedded into the graph λ-model determined by (E, q).

Final theorem.

Theorem

Let *M* be a closed term and $\mathcal{M} = \bigcup_{n>0} \mathcal{M}_n$ be the set of all regular mute λ -terms. Then there exists a graph model (*E*, *q*) such that

$$(E,q)\models M=t$$
 for every $t\in\mathcal{M}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Final comments.

Our result is a first step on the investigation of subclasses of mute terms.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Open questions.

Are regular mute terms easy with respect to other kind of models?
Open questions.

Are regular mute terms easy with respect to other kind of models?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is the set of regular mute a maximal graph easy class?