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Ensembles and their Programming

Ensembles are software-intensive systems featuring

I massive numbers of components

I complex interactions among components, and other systems

I operating in open and non-deterministic environments

I dynamically adapting to new requirements, technologies and
environmental conditions

Challenges for software development for ensembles

I the dimension of the systems

I the need to adapt to changing environments and requirements

I the emergent behaviour resulting from complex interactions

I the uncertainty during design-time and run-time

The Autonomic Computing paradigm is in our view a possible
approach to facing the challenges posed by ensembles
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Autonomic Computing
To master the complexity of massively complex systems inspiration
has come from the human body and its autonomic nervous system
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The IBM MAPE-K loop

Systems can manage themselves by continuously

I monitoring their behaviour (self-awareness) and their working
environment (context-awareness)

I analysing the acquired knowledge to identify changes

I planning reconfigurations

I executing plan actions

Knowledge
Monitor

Analyze Plan

Execute
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Autonomic Systems: examples
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The ASCENS Projects

The ASCENS (Autonomic Service-Component Ensembles) project
aims at finding ways to build ensembles that combine

I traditional software engineering approaches
I techniques from the areas of autonomic, adaptive,

knowledge-based and self-aware systems
I formal methods to guarantee systems properties
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AS as ensembles

Systems are structured as Autonomic Components (AC)
dynamically forming interacting AC ensembles

I Autonomic Components have an interface exposing
component attributes

I AC ensembles are not rigid networks but highly flexible
structures where components linkages are dynamically
established

I Interaction between ACs is based on attributes and predicates
over AC attributes dynamically specify ACE as targets of
communication actions
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Ensemble Formation
  

19 

Autonomic systems as Ensembles 

Ensembles are determined by components attributes and by
predicates validated by each component.
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A formal approach to engineering
AS

Basic ingredients of the approach:

1. Specification language

I equipped with a formal semantics
I the semantics associates mathematical models to

language terms

2. Verification techniques

I built on top of the models
I logics used to express properties of interest for the

considered application domain

3. Software support

I runtime environment
I programming framework
I verification tools for (qualitative and quantitative)

analysis
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Our approach to engineering AS

Basic ingredients of the approach:

1. Specification language

I SCEL - A Service Component Ensemble Language

2. Verification techniques

I Model checking with Spin
I Translation into BIP
I Simulation and statistical model checking

3. Software support

I jRESP - http://jresp.sourceforge.net/ - the runtime
environment for the SCEL paradigm provides

I an API permitting using SCEL constructs in Java
programs

I a simulation module permitting to simulate SCEL
programs and collect relevant data for analysis
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Importance of languages

Languages play a key role in the engineering of AS.

I Systems must be specified as naturally as possible

I distinctive aspects of the domain need to be first-class citizens
to guarantee intuitive/concise specifications and avoid
encodings

I high-level abstract models guarantee feasible analysis

I the analysis of results is based on system features, not on
their low-level representation to better exploit feedbacks

The big challenge for language designers is to devise appropriate
abstractions and linguistic primitives to deal with the specificities
of the systems under consideration
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A Language for Ensembles

We aim at at developing linguistic supports for modelling (and
programming) the service components and their ensembles, their
interactions, their sensitivity and adaptivity to the environment

SCEL

We aim at designing a specific language with
I programming abstractions necessary for

I directly representing Knowledge, Behaviors and
Aggregations according to specific Policies

I naturally programming interaction, adaptation and self-
and context- awareness

I linguistic primitives with solid semantic grounds
I To develop logics, tools and methodologies for formal

reasoning on systems behavior
I to establish qualitative and quantitative properties of

both the individual components and the ensembles
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Key Notions

We need to enable programmers to model and describe the
behavior of service components ensembles, their interactions, and
their sensitivity and adaptivity to the environment.

Notions to model

1. The behaviors of components and their interactions

2. The topology of the network needed for interaction, taking
into account resources, locations, visibility, reachability issues

3. The environment where components operate and
resource-negotiation takes place, taking into account open
ended-ness and adaptation

4. The global knowledge of the systems and of its components

5. The tasks to be accomplished, the properties to guarantee and
the constraints to respect.
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Programming abstractions for AS

The Service-Component Ensemble Language (SCEL) currently
provides primitives and constructs for dealing with 4 programming
abstractions.

1. Knowledge: to describe how data, information and (local and
global) knowledge is managed

2. Behaviours: to describe how systems of components progress

3. Aggregations: to describe how different entities are brought
together to form components, systems and, possibly,
ensembles

4. Policies: to model and enforce the wanted evolutions of
computations.
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1. Knowledge

SCEL is parametric wrt the means of managing knowledge that
would depend on the specific class of application domains.

Knowledge representation

I Tuples, Records

I Horn Clause Clauses,

I Concurrent Constraints,

I . . .

Knowledge handling mechanisms

I Pattern-matching, Reactive Tuple Spaces

I Data Bases Querying

I Resolution

I Constraint Solving

I . . .
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1. Knowledge (and Adaptation)

Application and Control Data

No definite stand is taken about the kind of knowledge that might
depend on the application domain. To guarantee adaptivity, we,
however, require there be some specific components.

I Application data: used for the progress of the computation.

I Control data: which provide information about the
environment in which a component is running (e.g. data from
sensors) and about its current status (e.g. its position or its
battery level).

Knowledge handling mechanisms

I Add information to a knowledge repository

I Retrieve information from a knowledge repository

I Withdraw information from a knowledge repository
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2. Behaviors
Components behaviors are modeled as terms of process calculi

I Adaptation is obtained by retrieving from knowledge
repositories

I information about the changing environment and the
component status

I the code to execute for reacting to these changes - local
adaptation.

I Interaction is obtained by allowing processes to access
knowledge repositories, (also) of other components and is
exploited to guarantee system adaptation

Processes

P ::= nil
∣∣ a.P

∣∣ P1+P2

∣∣ P1[P2 ]
∣∣ X

∣∣ A(p̄) (A(f̄ ) , P)

The operators have the expected semantics. P1[P2 ] (Controlled
Composition) can be seen as a generalization of “parallel
compositions” of process calculi. For the meaning of a.−, see next.
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2. Behaviours (and Actions)

Actions operate on knowledge repository c and use T as a pattern
to select knowledge items:

I manage knowledge repositories by

I withdrawing information - get(T )@c ,
I retrieving information - qry(T )@c
I adding information - put(t)@c

I create new names or new components I[K,Π,P] -
new(I,K,Π,P)

Actions
a ::=

get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π,P)

Action Targets

c ::= n
∣∣ x

∣∣ self
∣∣ ensemble(?)
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3. Aggregations

Aggregations describe how different entities are brought together
to form ensembles and

I Model resource allocation and distribution

I Reflect the idea of administrative domains, i.e. the authority
controlling a given set of resources and computing agents.

I are modelled by resorting to the notions of system,
component and ensemble.

Systems

S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

I Single component C

I Parallel composition ‖
I Name restriction νn (to delimit the scope of name n), thus in

S1 ‖ (νn)S2, name n is invisible from within S1
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3. Aggregations (Components)
Components consist of:

I An interface I containing information about the component
itself. In particular, each component C has attributes:

I id : the name of the component C

I A knowledge manager K providing control data (i.e. the local
and (part of the) global knowledge) and application data;
together with a specific knowledge handling mechanism

I A set of policies Π regulating inter-component and
intra-component interactions

I A process term P that performs the local computation,
coordinates their interaction with the knowledge repository
and deals with adaptation and reconfiguration

Components

C ::= I[K,Π,P]
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4. Policies

Policies deal with the way properties of computations are
represented and enforced

I Interaction policies: interaction predicates, for modeling
interleaving, monitoring, . . .

I Authorization policies: accounting, leasing, trust, reputation
. . .

I Policies for access control, resource usage, adaptation, . . .

SCEL is parametric wrt the actual language used to express
policies. Currently we use FACPL.

I simple and unambiguous syntax (declarative style)

I industry basis (OASIS standard XACML)

I formal semantics

I Java implementation (http://rap.dsi.unifi.it/facpl/)
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Components and Systems

Aggregations describe how different entities are brought togheter
and controlled:

I Components:

Knowledge
K

Processes

P

I Interface

Π
Policies

I Systems:

Knowledge
K

Processes

P

I Interface

Π
Policies

Knowledge
K
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I Interface

Π
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A reasoning SCEL component

Knowledge

K
Processes

P

I Interface

Π
Policies

Normal flow

Reasoner
Integrator

RI
Reasoner
R

Reasoning request

Providing Reasoning Capabilities

SCEL programs to take decisions may resort to external reasoners
that can have a fuller view of the environment in which single
components are operating.
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SCEL: Syntax (in one slide)

Systems: S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

Components:C ::= I[K,Π,P]

Knowledge: K ::= . . . currently, just tuple spaces

Policies: Π ::= . . . currently, interaction and FACPL policies

Processes: P ::= nil
∣∣ a.P ∣∣ P1 + P2

∣∣ P1[P2 ]
∣∣ X ∣∣ A(p̄) (A(f̄ ) , P)

Actions: a ::= get(T )@c
∣∣qry(T )@c

∣∣put(t)@c
∣∣fresh(n)

∣∣new(I,K,Π,P)

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

Items: t ::= . . . currently, tuples

Templates: T ::= . . . currently, tuples with variables
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An ensemble
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Where are ensembles in SCEL?

I SCEL syntax does not have specific syntactic constructs for
building ensembles.

I Components Interfaces specify (possibly dynamic) attributes
(features) and functionalities (services provided).

I Predicate-based communication tests attributes to select the
communication targets among those enjoying specific
properties.

Communication targets are predicates!!

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

By sending to, or retrieving and getting from predicate P one
components interacts with all the components that satisfy the
same predicate.
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Predicate-based ensembles

I Ensembles are determined by the predicates validated by each
component.

I There is no coordinator, hence no bottleneck or critical point
of failure

I A component might be part of more than one ensemble
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Example Predicates

I id ∈ {n,m, p}
I active = yes ∧ battery level > 30%

I rangemax >
√

(this.x − x)2 + (this.y − y)2

I true

I trust level > medium

I . . .

I trousers = red

I shirt = green
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Alternative characterization of ensembles

Apart for using predicates as targets of interaction actions (send,
retrieve and get) to identify those components that form an
ensemble and guarantee general communication between members
of the same ensemble we have experimented with two additional
alternatives:

I Adding a specific syntactic category for ensembles that would
define static ensembles

I Enriching interfaces of components with special attributes,
ensemble and membership, to single out groups of
components forming an ensemble; each ensemble would then
have an initiator but would be more dynamic.
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Static ensembles

Adding a specific syntactic category

We explicitly declare the component that represents an ensemble,
and whenever the target of an operation contains the name e of an
ensemble it will impact on all its components.

Ensembles: E ::= e[S ]

S ::= E
∣∣ C

∣∣ S1

∣∣∣∣S2

Ensembles may have a hierarchical structure

This is the approach taken in process algebras with explicit
localities or in programming language with distributed tuple space
(e.g. Klaim).
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Static ensembles

Drawback
I The structure of the aggregated components is static, defined

once and for all.

I a component can be part of just one ensemble.
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Dynamic ensembles

Ensembles are dynamically formed by exploiting components
interfaces and distinguished attributes

I ensemble: a predicate on interfaces used to determine the
actual components of the ensemble created and coordinated
by C , e.g. id ∈ {n,m, p} or true.

I membership: a predicate on the interfaces used to determine
the ensembles which C is willing to be member of, e.g.
trust level > medium or false.

Allowing ensemble as targets

By sending to, or retrieving and getting from super one
components interacts with all the components of the same
ensemble it is in.

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ super
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Dynamic ensemble

Drawback

An ensemble dissolves if its coordinator disappears: single point of
failure.

Programming abstractions for AS R. De Nicola - IMT Lucca 33/51



Dynamic ensemble

Drawback

An ensemble dissolves if its coordinator disappears: single point of
failure.

Programming abstractions for AS R. De Nicola - IMT Lucca 33/51



SCEL: Operational Semantics
Structural operational semantics relies on the notion of Labelled
Transition System (LTS)

LTS: a triple 〈S,L, −→ 〉
I A set of states S
I A set of transition labels L
I A labelled transition relation −→ ⊆ S × L× S modelling the

actions that can be performed from each state and the new
state reached after each such transition

Semantics is structured in two layers:

1. Processes semantics specifies process commitments, i.e. the
actions that processes can initially perform, while ignoring
process allocation, available data, regulating policies, . . .

2. Systems semantics, builds on process commitments and
systems configuration to provide a full description of systems
behavior.
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Operational Semantics: A flavour
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Semantics of Processes

Rules for Processes (excerpt)

a.P ↓a P P ↓◦ P

P ↓α P ′ Q ↓β Q ′

P[Q ] ↓α[β ] P
′[Q ′ ]

I a.P executes action a and then behaves like process P

I ↓◦ indicates that process P may always decide to stay idle

I The semantics of P[Q ] at process level is very permissive and
generates all combinations of the commitments of the
involved processes; its behaviour is refined at systems level
when policies enter the game.
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SOS Rules for Systems (excerpt)

From process actions to component actions

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π,P]
λ−→ I[K,Π′,P ′σ]

Interaction Predicates: Action Transformation

E [[ T ]]I = T ′ N [[ c ]]I = c ′ match(T ′, t) = σ

Π⊕, I : get(T )@c � I : t / c ′, σ,Π⊕

Interaction Predicates: Actions interleaving

Π⊕, I : α � λ, σ,Π⊕

Π⊕, I : α[ ◦ ] � λ, σ,Π⊕

Π⊕, I : α � λ, σ,Π⊕

Π⊕, I : ◦[α ] � λ, σ,Π⊕
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SOS Rules for Systems (excerpt)

Intra-component withdrawal

I[K,Π,P]
I:t/n−−→ I[K,Π′,P ′] n = I.id K 	 t = K′ Π′ ` I : t /̄ I,Π′′

I[K,Π,P]
τ−→ I[K′,Π′′,P ′]

Component n

I reads (and removes) from its knowledge repository

I after checking that tuple t is present and removes it

I asks the authorization to perform the action
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SOS Rules for Systems (excerpt)

Inter-component, point-to-point withdrawal

S1
I:t/n−−→S ′1 S2

I:t /̄J−−−→ S ′2 J .id =n I.π ` I : t /̄J ,Π′

S1 ‖ S2
τ−→ S ′1[I.π := Π′] ‖ S ′2

Component I.id

I reads tuple t from the knowledge repository of J .id = n

I after checking that component n is willing to provide it

I and after checking that it has the appropriate authorizations
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More SOS Rules for Systems

Inter-component, group-oriented withdrawal

S1
I:t/P−−→ S ′1 S2

I:t /̄J−−−→ S ′2 J |= P I.π ` I : t /̄J ,Π′

S1 ‖ S2
τ−→ S ′1[I.π := Π′] ‖ S ′2

Component I.id

I reads tuple t from the knowledge repository of a component
J satisfying predicate P .

I after checking that component n is willing to provide it

I and after checking that it has the appropriate authorisations
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Robotics scenario in SCEL

Robot Swarms

Robots of a swarm have to reach different target zones according
to their assigned tasks (help other robots, reach a safe area, clear a
minefield, etc.)

Robots:
I have limited battery lifetime

I can discover target locations

I can inform other robots
about their location

The behaviour of each robot is implemented as AM[ME ] where
the autonomic manager AM controls the execution of the
managed element ME . A general scenario can be expressed in
SCEL as a system:

I[Ki ,Πi ,Pi ] ‖ J [Kj ,Πj ,Pj ] . . .L[Kl ,Πl ,Pl ]
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Victim rescuing robotics scenario

WORKERS

LANDMARKS

VICTIM

robot 
perception range

I Two kind of robots (landmarks
and workers) and one victim to
be rescued

I No obstacles (except room
walls)

I Landmarks randomly walk until
victim is found; they choose a
new random direction when a
wall is hit

I Workers initially motionless;
they move only when signalled
by landmarks
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Victim rescuing robotics scenario

2

01

1

2

3

3

1. A landmark that perceives
the victim stops and locally
publishes the information
that it is at ‘hop’ 0 from the
victim

2. All the other landmarks in
its range of communication
stop and locally publish the
information that they are at
‘hop’ 1 from victim

3. And so on . . .
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Victim rescuing robotics scenario

I We obtain a sort of
computational fields leading
to the victim that can be
exploited by workers

I When workers reach a landmark
at hop d they look for a
landmark at hop d − 1 until
they find the victim
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Victim rescuing robotics scenario:
SCEL specification

LANDMARKS BEHAVIOUR:

VictimSeeker [DataForwarder [RandomWalk]]

VictimSeeker =
qry(“victimPerceived”, true)@self .
put(“stop”)@self .
put(“victim”, self , 0)@self

DataForwarder =
qry(“victim”, ?id , ?d)@(role = “landmark”).
put(“stop”)@self .
put(“victim”, self , d + 1)@self

RandomWalk =
put(“direction”, 2πrand())@self .
qry(“collision”, true)@self .
RandomWalk

WORKERS BEHAVIOUR: GoToVictim
GoToVictim =

qry(“victim”, ?id , ?d)@(role = “landmark”).
put(”start”)@self .
put(“direction”, towards(id))@self .
while(d > 0){ d := d − 1.

qry(“victim”, ?id , d)@(role = “landmark”).
put(“direction”, towards(id))@self }

qry(“victimPerceived”, true)@self .
put(“stop”)@self
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Victim rescuing robotics scenario:
jRESP code (an excerpt)

VictimSeeker =
qry(“victimPerceived”, true)@self .
put(“stop”)@self .
put(“victim”, self , 0)@self

public class VictimSeeker extends Agent {
private int robotId;

protected void doRun() throws IOException, InterruptedException{
query(new Template(new ActualTemplateField(”VICTIM PERCEIVED”),

new ActualTemplateField(true)) ,
Self.SELF);

put( new Tuple( ”stop” ) , Self.SELF);
put( new Tuple( ”victim” , robotId , 0 ) , Self.SELF);

}
}

}
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Victim rescuing robotics scenario:
jRESP code simulation

DEMO: video. . .
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Victim rescuing robotics scenario:
analysis

Probability of rescuing the victim within a given time
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Ongoing & Future Work
We have concentrated on modelling behaviors of components and
their interactions. We are currently assessing this work and
tackling other research items.

I working on interaction policies to study the possibility of
modelling different forms of synchronization and
communication

I considering different knowledge repositories and ways of
expressing goals by analyzing different knowledge
representation languages

I assessing the impact and the sensitivity of different adaptation
patterns

I developping quantitative variants of SCEL to support
components in taking decisions (e.g. via probabilistic model
checking).

I distilling a core calculus with attribute based communication
to fully understand the full impact of this novel paradigm.
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Many thanks for your time.

Questions?
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