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Scenario
Given a wireless sensor network represented as a graph
And a special sink node r
All the sensors collect data with a regular frequency and send them to
r along the shortest paths

r
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Alternatively the data can be forwarded to some storage nodes

Storage nodes compress and aggregate the data, and then send them
to the sink (reduced in size)

r
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Given a fixed integer k , how to choose the “best” k storage nodes among
the nodes of the network in order to minimize the energy consumption?
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Given:

a weighted connected graph G = (V ,E ,w) representing a wireless
sensor network where each v ∈ V generates raw data with size sd(v)

an integer k.

We aim at finding a set S ⊆ V of storage nodes such that |S | ≤ k

Each v ∈ V is associated to a storage node, denoted as σ(v) ∈ S

In σ(v), the compressed size of the data produced by a node v
becomes αsd(v), with α ∈ [0, 1]

Total cost: cost(S) =
∑

v∈V sd(v) (d(v , σ(v)) + αd(σ(v), r))
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For v = 2 the cost is:
sd(2) · (w(2, 7) + w(7, 3)) + α · sd(2) · (w(3, 6),w(6, r))

Total cost: cost(S) =
∑

v∈V sd(v) (d(v , σ(v)) + αd(σ(v), r))

The minimum k-storage problem (briefly, MSP) consists in finding a subset
S ⊆ V , with |S | ≤ k that minimizes cost(S)
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Related Work

[Sheng et al. 2007] 10-approximation algorithm for the case
I sd(v) is a constant for any v
I The distances are given by Euclidean distances

[Sheng et al. 2010] Optimal algorithms for trees
I Either limited or unlimited k
I They consider the cost of diffusing the query
I The algorithms are polynomial only if the degree of the tree is bounded

Gianlorenzo D’Angelo Optimal placement of storage nodes in a wireless sensor network 9 / 39



Our results

Polynomial-time exact algorithms
I For trees in directed graphs
I For bounded-treewidth undirected graphs

Approximation lower bounds
I Not in APX in directed graphs
I 1 + 1

e > 1.367 for undirected graph

Local search algorithm for undirected graphs with constant
approximation ratio

Experimental evaluation of such algorithm on several graph topologies
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Directed trees

Idea: Transform the generic rooted tree into an equivalent binary tree
We devise a dynamic programming algorithm for binary trees

Theorem

Given a directed tree T , there exists an algorithm that optimally solves
MSP in O(min{kn2, k2P}), where P is the path-length of T .

Path-length: Sum over the whole tree of the number of arcs on the path
from each tree node to the root

Balanced binary tree: P = Θ(n log n),

Random tree: P = Θ(n
√
n)

Worst case: P = O(n2)
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Undirected graph

We exploit the concept of tree decomposition to devise a dynamic
programming algorithm

Theorem

Given an undirected graph G and a tree-decomposition of G with width
w, there exists an algorithm that optimally solves MSP in O(w · k · nw+3)
time.
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We show that MSP in undirected graphs cannot be approximated within a
factor of 1 + 1

e , unless P = NP

In detail,

We show that the metric k-median problem cannot be approximated
within a factor of 1 + 1

e , unless P = NP

We show that MSP is at least as hard to approximate as the metric
k-median problem
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The metric k-median problem

Let

G = (V ,E ) be a complete graph

k ∈ N
dist(u, v) ∈ N be the distance from u to v over the edge (u, v) ∈ E

A k-median set for G is a subset V ′ ⊆ V with |V ′| ≤ k

The minimum k-median problem consists in finding a k-median set V ′

that minimizes ∑
u∈V

min
v∈V ′

dist(u, v)

In the minimum metric k-median problem (briefly, MMP) the distance
function is symmetric and satisfies the triangle inequality
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Theorem

There is no approximation algorithm for the metric minimum k-median
problem with approximation factor γ < 1 + 1

e , unless P = NP.

Sketch of the proof:

It is based on an approximation factor preserving reduction from the
minimum dominating set problem

Let G = (V ,E ) be an undirected graph, a dominating set for G is a subset
V ′ ⊆ V such that for each u ∈ V \ V ′ there is a v ∈ V ′ for which
{u, v} ∈ E

The minimum dominating set problem consists in finding the minimum
cardinality dominating set

Gianlorenzo D’Angelo Optimal placement of storage nodes in a wireless sensor network 17 / 39



Given an instance of the minimum dominating set problem, we define an
instance of the minimum metric k-median problem with G ′ = (V ,E ′),
E ′ = V × V and

dist(u, v) =

{
1 if {u, v} ∈ E

2 otherwise.
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Let us assume that there exists an approximation algorithm γ-MMP with
approximation factor γ for MMP

Let us suppose that the size k of an optimal dominating set is known

We devise an algorithm for the minimum dominating set

Select a set of size k by applying γ-MMP with parameter k
Remove the nodes in the graph corresponding to the chosen set and
their neighbors
Repeat until all the nodes are covered

k = 2
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Let λ be the number of iterations (the number of times that we apply
γ-MMP)

At each iteration we selected k nodes

We selected k · λ nodes

As k is the value of the optimal solution, λ is the approximation ratio of
the algorithm for the minimum dominating set problem
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We give an upper bound for λ:

After the first iteration,

there are k selected nodes, d1 nodes covered directly (with weight 1),
i1 nodes covered indirectly (with weight 2), k + d1 + i1 = |V | = n

The cost for MMP is d1 + 2i1 ≤ γOPT ≤ γ(n − k)

Therefore, i1 ≤ (n − k)(γ − 1) ≤ n(γ − 1)

After λ− 1 iterations there are at most n(γ − 1)λ−1 = η uncovered nodes,
for some 1 ≤ η ≤ n, and then, λ− 1 = log(γ−1)

η
n ≤ log(γ−1)

1
n = ln n

ln 1
γ−1

Cannot exists a (c ln n)-approximation algorithm for the minimum
dominating set for each c < 1, unless P = NP

Therefore, 1
ln 1

γ−1

≥ 1 which implies 1
γ−1 ≤ e, and hence γ ≥ 1 + 1

e
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Theorem

MSP is at least as hard to approximate as the metric k-median problem.

Corollary

There is no approximation algorithm for MSP with approximation factor
γ < 1 + 1

e , unless P = NP.

Theorem

For directed graphs, MSP does not belong to APX, unless P = NP.
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We define a local search algorithm as follows

Given any initial solution S0
Swap operation of t ≤ |S | nodes:

I remove t nodes from S and add t nodes in V \ S to S

If any swap move yields a solution of lower cost the resulting solution
is set to be the new current solution

Repeat until from the current solution no swap operation decreases
the cost

The solution found represents a local optimum

Gianlorenzo D’Angelo Optimal placement of storage nodes in a wireless sensor network 24 / 39



We first analyze the case of t = 1: a swap is defined between two nodes
s ∈ S and s ′ ∈ V \ S and consists in adding s ′ and removing s

Let us define
f : (0, 1]→ R, f (α) = 2

α
g : [0, 12)→ R, g(α) = 12α

1−2α
h : [0, 1]→ R

h(α) =


g(α) if α = 0
min{f (α), g(α)} if α ∈ (0, 12)
f (α) if α ∈ [12 , 1]
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Theorem

The local search algorithm for MSP exhibits a locality gap of at most
5 + h(α).
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Maximum: ≈ 12.3 for α ≈ 0.274 where f (α) = g(α) ≈ 7.3
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We can generalize for t ≥ 1: the locality gap is h′(α), where
f ′ : (0, 1]→ R, f ′(α) = 1 + t+1

t
1+2α
α

g ′ : [0, t
t+1 ]→ R, g ′(α) = (3+α)t+2+α

(1−α)t−α
h′ : [0, 1]→ R

h′(α) =


g ′(α) if α = 0
min{f ′(α), g ′(α)} if α ∈ (0, t

t+1)

f ′(α) if α ∈ [ t
t+1 , 1]
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The algorithm can have a superpolynomial number of iterations

We change the stopping condition: it finishes as soon as it finds a solution
S is such that every neighboring solution S ′ of S has
cost(S ′) > (1− ε)cost(S), for some ε > 0

The number of iterations is at most
log(

cost(S0)
cost(S∗) )

log( 1
1−ε

)
, where S0 is the initial

solution

Corollary

There exists an 1
1−εh

′(α)-approximation algorithm MSP for any ε ∈ (0, 1).
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Environment

We implemented the local search algorithm in C++ (gcc)
We compared the solution found with the optimal one obtained by an IP
formulation (GLPK solver)

min
∑

v ,s∈V xvs · sd(v)(d(v , s) + αd(s, r))

s.t.
∑

s∈V xvs = 1 for each v ∈ V
xvs ≤ ys for each v , s ∈ V∑

s∈V ys ≤ k ,
yr = 1
ys , xvs ∈ {0, 1} for each v , s ∈ V
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Input instances

Types of graphs:

Random geometric graphs (rgg) n ∈ {100, 300, 1000}
Barabasi-Albert graphs (ba) n ∈ {100, 300, 1000}
OR Library (pmed) 100 ≤ n ≤ 900

Erdős-Rényi random graphs (er) n ∈ {100, 150}
Other parameters:

The sink node is chosen uniformly at random

α ∈ {0.0, 0.1, . . . , 1} (11 values)

k ∈ {1, . . . , n} (30 values with step bn/30c)
sd(v) uniformly at random in the interval [1, 10], independently for
each v ∈ V

ε in {0.005, 0.01, 0.1}
t = 1 (worst case for the algorithm’s approximation ratio)
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Random geometric graphs – approximation ratio
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Figure : Random Geometric Graphs n = 300, α = 0.1

The ratio decreases with ε, for ε = 0.005 it is < 1.108
When k is small, the approximation ratio is reduced, for k < 100, it is
< 1.07
When k is big, the approximation ratio is reduced, for k > 250, it is
< 1.05
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Random geometric graphs – number of iterations
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Figure : Random Geometric Graphs n = 300, α = 0.1

Decreasing ε increases the number of iterations

The good values for small k require up to 18 iterations

The good values for big k require up to 2 iterations
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Random geometric graphs – approximation ratio
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Figure : Random Geometric Graphs n = 300, k = 21

For small values of ε the ratio is very small, < 1.023 for ε = 0.005
and < 1.042 for ε = 0.01

Maximum value: 1.38, obtained when α = 0

Gianlorenzo D’Angelo Optimal placement of storage nodes in a wireless sensor network 34 / 39



Random geometric graphs – number of iterations
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Figure : Random Geometric Graphs n = 300, k = 21

The good values of the approximation ratio required more iterations if
α is small
When α approaches 1, then the usage of storage nodes does not
significantly decrease the objective function and hence the first
feasible solution already has a good approximation ratio
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Other topologies
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Figure : Graph type comparison n = 100, α = 0.1, ε = 0.005

We do not observe any significant difference with respect to the type
of graph

In these cases the approximation ratio is smaller than the previously
reported ones
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Computational time

Graph n k Time per
Type iteration

(sec)

rgg
100 50 0.0121
300 150 0.3274

1000 500 15.0086

ba
100 50 0.0122
300 150 0.3291

1000 500 14.2448

Graph n k Time per
Type iteration

(sec)

pmed
100 50 0.0116
300 150 0.3191
900 450 10.9442

er
100 50 0.0137
150 75 0.0392

Table : Average computational time required for each iteration when k = n/2

The computational time of the iterations in the extreme cases, i.e. k = 1
or n = k is always < 0.0001
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Conclusions

We studied the minimum k-storage problem from the theoretical and
experimental viewpoints

Directed graphs:
I There exists a polynomial-time exact algorithm for trees
I The problem is not in APX

Undirected graph:
I There exists a polynomial-time exact algorithm for bounded-treewidth

graphs
I The problem is not approximable within a factor of 1 + 1

e , unless
P = NP

I There exists a constant-factor polynomial-time approximation
algorithm based on local search

I This algorithm performs very well in practical scenarios

Thank you for your attention
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