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Scenario

@ Given a wireless sensor network represented as a graph

@ And a special sink node r

@ All the sensors collect data with a regular frequency and send them to
r along the shortest paths
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@ Alternatively the data can be forwarded to some storage nodes

@ Storage nodes compress and aggregate the data, and then send them
to the sink (reduced in size)
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Given a fixed integer k, how to choose the "best” k storage nodes among
the nodes of the network in order to minimize the energy consumption?
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@ The Minimum k-Storage Problem
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Given:

@ a weighted connected graph G = (V, E, w) representing a wireless
sensor network where each v € V generates raw data with size sy(v)

@ an integer k.

We aim at finding a set S C V of storage nodes such that |S| < k
e Each v € V is associated to a storage node, denoted as o(v) € S

@ In o(v), the compressed size of the data produced by a node v
becomes asy(v), with o € [0, 1]

Total cost: cost(S) = >, cy sq(v) (d(v,o(v)) + ad(a(v),r))
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For v = 2 the cost is:
sd(2) - (w(2,7) + w(7,3)) + - 54(2) - (w(3,6), w(6,r))

Total cost: cost(S) =3,y sqa(v) (d(v,o(v)) + ad(a(v),r))

The minimum k-storage problem (briefly, MSP) consists in finding a subset
S C V, with |S| < k that minimizes cost(S)
8 /39
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Related Work

@ [Sheng et al. 2007] 10-approximation algorithm for the case
» sq4(v) is a constant for any v
» The distances are given by Euclidean distances

@ [Sheng et al. 2010] Optimal algorithms for trees

» Either limited or unlimited k
» They consider the cost of diffusing the query
» The algorithms are polynomial only if the degree of the tree is bounded
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Our results

Polynomial-time exact algorithms

> For trees in directed graphs
» For bounded-treewidth undirected graphs

@ Approximation lower bounds
» Not in APX in directed graphs
> 1+ % > 1.367 for undirected graph
@ Local search algorithm for undirected graphs with constant
approximation ratio

Experimental evaluation of such algorithm on several graph topologies
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© Polynomial-time exact algorithms
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Directed trees

Idea: Transform the generic rooted tree into an equivalent binary tree
We devise a dynamic programming algorithm for binary trees

Theorem

Given a directed tree T, there exists an algorithm that optimally solves
MSP in O(min{kn? k?P}), where P is the path-length of T.

Path-length: Sum over the whole tree of the number of arcs on the path
from each tree node to the root

e Balanced binary tree: P = ©(nlogn),
e Random tree: P = ©(n\/n)
e Worst case: P = O(n?)
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Undirected graph

We exploit the concept of tree decomposition to devise a dynamic
programming algorithm

Theorem

Given an undirected graph G and a tree-decomposition of G with width

w, there exists an algorithm that optimally solves MSP in O(w - k - n"*3)
time.
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© Hardness of approximation
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We show that MSP in undirected graphs cannot be approximated within a
factor of 1 + % unless P = NP

In detail,

@ We show that the metric k-median problem cannot be approximated
within a factor of 1 + % unless P = NP

@ We show that MSP is at least as hard to approximate as the metric
k-median problem
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The metric k-median problem

Let

e G = (V,E) be a complete graph

e ke N

e dist(u,v) € N be the distance from u to v over the edge (u,v) € E
A k-median set for G is a subset V' C V with |V/| < k

The minimum k-median problem consists in finding a k-median set V'
that minimizes

vn€1i\r/1, dist(u, v)

In the minimum metric k-median problem (briefly, MMP) the distance
function is symmetric and satisfies the triangle inequality

Gianlorenzo D’'Angelo Optimal placement of storage nodes in a wireless sensor network 16 / 39



Theorem

There is no approximation algorithm for the metric minimum k-median
problem with approximation factor v < 1 + % unless P = NP.

Sketch of the proof:

It is based on an approximation factor preserving reduction from the
minimum dominating set problem

Let G = (V, E) be an undirected graph, a dominating set for G is a subset
V' C V such that for each u € V'\ V' there is a v € V’ for which
{u,v} € E

The minimum dominating set problem consists in finding the minimum
cardinality dominating set
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Given an instance of the minimum dominating set problem, we define an
instance of the minimum metric k-median problem with G’ = (V, E'),
E'=V x V and

1 if{u,v}ieE
2  otherwise.

dist(u,v) = {
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Let us assume that there exists an approximation algorithm v-MMP with
approximation factor v for MMP

Let us suppose that the size k of an optimal dominating set is known
We devise an algorithm for the minimum dominating set

@ Select a set of size k by applying 7-MMP with parameter k
@ Remove the nodes in the graph corresponding to the chosen set and

their neighbors
@ Repeat until all the nodes are covered

k=2

19 / 39
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Let A be the number of iterations (the number of times that we apply
~-MMP)

At each iteration we selected k nodes
We selected k - \ nodes

As k is the value of the optimal solution, )\ is the approximation ratio of
the algorithm for the minimum dominating set problem
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We give an upper bound for A:

After the first iteration,

o there are k selected nodes, d; nodes covered directly (with weight 1),
i1 nodes covered indirectly (with weight 2), k+di + i1 =|V|=n

@ The cost for MMP is di + 2iy < yOPT < ~(n — k)
@ Therefore, it < (n—k)(y—1) <n(y—1)

After A\ — 1 iterations there are at most n(~y 1) =y uncovered nodes,
__ _Inn
for some 1 <17 < n, and then, A\ —1 = log(,_1) » 1< Iog(v 1) iy

Cannot exists a (c In n)-approximation algorithm for the minimum
dominating set for each ¢ < 1, unless P = NP

Therefore, - —L— > 1 which implies —=7 < e, and hence v > 1 +1

~—1
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Theorem

MSP is at least as hard to approximate as the metric k-median problem.

v

Corollary

There is no approximation algorithm for MSP with approximation factor
v<1l+4 % unless P = NP.

Theorem
For directed graphs, MSP does not belong to APX, unless P = NP.
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@ Local search algorithm

Gianlorenzo D’'Angelo Optimal placement of storage nodes in a wireless sensor network



We define a local search algorithm as follows
@ Given any initial solution Sg

e Swap operation of t < |S| nodes:
» remove t nodes from S and add t nodesin V\ Sto S

@ If any swap move yields a solution of lower cost the resulting solution
is set to be the new current solution

@ Repeat until from the current solution no swap operation decreases
the cost

@ The solution found represents a local optimum
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We first analyze the case of t = 1. a swap is defined between two nodes
s€Sand s’ € V\ S and consists in adding s’ and removing s

Let us define
(o 1] — R, f(a) g
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Theorem

The local search algorithm for MSP exhibits a locality gap of at most
5+ h(a).

0 010203040506070809 1
o

Maximum: = 12.3 for o ~ 0.274 where (o) = g(a) = 7.3
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We can generalize for t > 1: the locality gap is h'(«), where
f/ : (0; 1] — R, f/(O() = 1 _I_ itll—ifa

3 2
g [0, :5] = R, g'(a) = Caltizta

(1-a)t—a
KH:[0,1] >R
g'(a) ifa=0
H(a) =< min{f'(a),g'(e)} if a€ (0, ;tl)
() if o € [HLl,l]

ONWAOIOON0O

0 010203040506070809 1
o

Maximum: =~ 8.67, 7.78 and 7.05
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The algorithm can have a superpolynomial number of iterations

We change the stopping condition: it finishes as soon as it finds a solution
S is such that every neighboring solution S’ of S has
cost(S’) > (1 — €)cost(S), for some € > 0

cost(Sp)
The number of iterations is at most %, where Sp is the initial
frs
solution
Corollary
There exists an ﬁh’ (v)-approximation algorithm MSP for any € € (0,1). J
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© Experimental analysis
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Environment

We implemented the local search algorithm in C++ (gcc)
We compared the solution found with the optimal one obtained by an IP
formulation (GLPK solver)

min >, ey Xus - sa(v)(d(v, s) + ad(s, r))

St Dy Xis =1 foreach v € V
Xvs < ¥s for each v,s € V
Zsev.ys S k7
yr=1
Ys; Xvs € {0,1} for each v,s € V
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Input instances

Types of graphs:

e Random geometric graphs (RcG) n € {100,300, 1000}

o Barabasi-Albert graphs (BA) n € {100, 300,1000}

e OR Library (PMED) 100 < n < 900

o Erdos-Rényi random graphs (ER) n € {100,150}
Other parameters:

@ The sink node is chosen uniformly at random

e a€{0.0,0.1,...,1} (11 values)

e ke {l,...,n} (30 values with step |n/30])

o

s4(v) uniformly at random in the interval [1,10], independently for
eachveV

¢ in {0.005,0.01,0.1}

e t =1 (worst case for the algorithm’s approximation ratio)
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Random geometric graphs — approximation ratio
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Figure : Random Geometric Graphs n = 300, a = 0.1

@ The ratio decreases with ¢, for e = 0.005 it is < 1.108

@ When k is small, the approximation ratio is reduced, for k < 100, it is
< 1.07

@ When k is big, the approximation ratio is reduced, for k > 250, it is
< 1.05
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Random geometric graphs — number of iterations
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- Random Geometric Graphs n = 300, a = 0.1

@ Decreasing € increases the number of iterations

@ The good values for small k require up to 18 iterations

@ The good values for big k require up to 2 iterations
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Random geometric graphs — approximation ratio
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Figure : Random Geometric Graphs n = 300, k = 21

@ For small values of ¢ the ratio is very small, < 1.023 for ¢ = 0.005
and < 1.042 for e = 0.01

@ Maximum value: 1.38, obtained when o =0
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Random geometric graphs — number of iterations
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Figure : Random Geometric Graphs n = 300, k =21

@ The good values of the approximation ratio required more iterations if
« is small

@ When « approaches 1, then the usage of storage nodes does not
significantly decrease the objective function and hence the first
feasible solution already has a good approximation ratio
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Other topologies
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Figure : Graph type comparison n = 100, a = 0.1, ¢ = 0.005

@ We do not observe any significant difference with respect to the type
of graph

@ In these cases the approximation ratio is smaller than the previously
reported ones
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Computational time

Graph n k Time per || Graph | n k Time per

Type iteration Type iteration

(sec) (sec)

100 | 50 0.0121 100 | 50 0.0116

RGG 300 | 150 0.3274 || pMED | 300 | 150 0.3191

1000 | 500 15.0086 900 | 450 10.9442

100 | 50 0.0122 100 | 50 0.0137

BA 300 | 150 0.3291 ER 150 | 75 0.0392
1000 | 500 14.2448

Table : Average computational time required for each iteration when k = n/2

The computational time of the iterations in the extreme cases, i.e. k=1
or n = k is always < 0.0001
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@ Conclusions
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Conclusions

@ We studied the minimum k-storage problem from the theoretical and
experimental viewpoints
@ Directed graphs:
» There exists a polynomial-time exact algorithm for trees
» The problem is not in APX
o Undirected graph:

» There exists a polynomial-time exact algorithm for bounded-treewidth
graphs

» The problem is not approximable within a factor of 1 + % unless
P = NP

» There exists a constant-factor polynomial-time approximation
algorithm based on local search

» This algorithm performs very well in practical scenarios

Thank you for your attention
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