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EVERY CONNECTED GRAPH HAS NON-CUT VERTICES

EXAMPLE

\

MORE GENERALLY:

‘Every connected (finite) graph has at least one vertex

whose removal does not disrupt connectivity'

A,
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(IDEAL) ITINERARY OF THIS TALK

1 Connectivity and non-cut vertices
11 Applications ( one in particular. .. )
111 The proof assistant Ref

v Qur proof-verification experiment
http://www2.units.it/eomodeo/NonCutVertices.html
http://aetnanova.units.it/scenarios/NonCutVertices/
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CONNECTIVITY

Connectivity | plays a crucial role in many fields.

Es. The number of connected components of a graph
e is a topological invariant;

e corresponds to the multiplicity of the eigenvalue 0 in its
Laplacian;

o is related to the number of its claw-free subgraphs [CPRO7].

.. Large scale proof-verification efforts [Wie07, SCO11] must
formally investigate this notion.
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How WE SEE A GRAPH

BExAMPLE

o

Eugenio G. Omodeo Reasoning about Connectivity without Paths



How WE SEE A GRAPH

BExAMPLE

G
Sl

4

The edges of G belong to G .
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How WE SEE A GRAPH

ExXAMPLE
& )
"
Sd e
v )
vertices
The or of G belongto{v:ee€ G,v € e}.
nodes
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How WE SEE A GRAPH

BExAMPLE

o

In a graph, the edges have cardinality 2.
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OUR FORMAL DEFINITION OF CONNECTIVITY

Def. Conn(G) “per 1P € G | nodes(p) N nodes(G\p) = 0} C {0, G} &
HGraph(G)
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OUR FORMAL DEFINITION OF CONNECTIVITY

Def. nodes(G) =ber UG
Def. Conn(G) “per 1P € G | nodes(p) N nodes(G\p) = 0} = {0, G} &«
HGraph(G)
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OUR FORMAL DEFINITION OF CONNECTIVITY

Def. nodes(G) =ber UG

Def. HGraph(G) e (Ve € G| CardAtLeast2(e)) &
Finite(nodes(G))

Def. Conn(G) “per 1P € G | nodes(p) N nodes(G\p) = 0} = {0, G} &«
HGraph(G)
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OUR FORMAL DEFINITION OF CONNECTIVITY

Def. CardAtLeast2(E) +5p¢ E < {arb(E)}
Def. nodes(G) =ber UG

Def. HGraph(G) e (Ve € G| CardAtLeast2(e)) &
Finite(nodes(G))

Def. Conn(G) “per 1P € G | nodes(p) N nodes(G\p) = 0} = {0, G} &«
HGraph(G)
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DOES THIS HYPERGRAPH HAVE A SPANNING TREE 7

aﬁéﬁp
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EXISTENCE OF NON-CUT VERTICES

Thm. Conn(G) & G € {arb(G)} — (3v € nodes(G) | NonCut(G,v))
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EXISTENCE OF NON-CUT VERTICES

Def. NonCut(G,V)  pes Conn(rmv(G,V)) & lost(G,V) =10

Thm. Conn(G) & G € {arb(G)} — (3v € nodes(G) | NonCut(G,v))
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EXISTENCE OF NON-CUT VERTICES

Def. rmv(G, V) =per {e\{V}: e € G| CardAtLeast2(e\{V})}

Def. NonCut(G,V)  pes Conn(rmv(G,V)) & lost(G,V) =10

Thm. Conn(G) & G € {arb(G)} — (3v € nodes(G) | NonCut(G,v))
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EXISTENCE OF NON-CUT VERTICES

Def. rmv(G, V) =per {e\{V}: e € G| CardAtLeast2(e\{V})}
Def. lost(G, V) Def nodes(G)\(nodes(rmv(G,V)) U{V})

Def. NonCut(G,V)  pes Conn(rmv(G,V)) & lost(G,V) =10

Thm. Conn(G) & G € {arb(G)} — (3v € nodes(G) | NonCut(G,v))
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UR-APPLICATION OF NON-CUT VERTICES:

How can we:
o walk along an infinite acyclic path?

o visit all vertices of a finite acyclic path?
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UR-APPLICATION OF NON-CUT VERTICES:

EXAMPLE

0 1 2 3 4
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UR-APPLICATION OF NON-CUT VERTICES:

& 1 2 3 4
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UR-APPLICATION OF NON-CUT VERTICES:

é 2 3 4
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UR-APPLICATION OF NON-CUT VERTICES:

G
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UR-APPLICATION OF NON-CUT VERTICES:

G
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UR-APPLICATION OF NON-CUT VERTICES:

EXAMPLE

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)
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UR-APPLICATION OF NON-CUT VERTICES:

EXAMPLE

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Why such a silly example ?
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UR-APPLICATION OF NON-CUT VERTICES:

BExXAMPLE

0 1 2 3 4 N NuN}

*—o

Where does the difference between N and N U {N, N U {N}} lie ?
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A MORE REVEALING APPLICATION

We can get a for a connected nonnull graph by:
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A MORE REVEALING APPLICATION
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(2] getting a spanning tree for the resulting graph
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incident to it
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We can get a for a connected nonnull graph by:

@ Picking & removing a vertex from a connected graph

(2] getting a spanning tree for the resulting graph
© restoring the removed vertex, along with of the edges
incident to it
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A MORE REVEALING APPLICATION

We can get a for a connected nonnull graph by:

@ Picking & removing a vertex from a connected graph

Q getting a spanning tree for the resulting graph

© restoring the removed vertex, along with of the edges
incident to it

O In the , the spanning tree consists of the (sole) edge

THIS EXAMPLE IS PARADIGMATIC:

4

Inductive proofs on connected graphs usually follow this pattern
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DIRECT MOTIVATING APPLICATION

An achievement, but also a pending proof obligation:
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DIRECT MOTIVATING APPLICATION

An achievement, but also a pending proof obligation:

Set Graphs. II1. Proof Pearl: Claw-
Free Graphs Mirrored into Transitive
Hereditarily Finite Sets

Eugenio G. Omodeo & Alexandru
I. Tomescu

Journal of Automated Reasoning

1SN 01687433
Volume 52

s Journal of
e Automated

Reasoning

G’

N |~

@ Springer
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TWO EARLIER PROOF-PEARL SCENARIOS

Two fully formal reconstructions of results on connected claw-free
graphs have been achieved by means of Ref.

[
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TWO EARLIER PROOF-PEARL SCENARIOS

Two fully formal reconstructions of results on connected claw-free
graphs have been achieved by means of Ref.

[

@ E. G. Omodeo and A. |. Tomescu.
Set graphs. Ill. Proof Pearl: Claw-free graphs mirrored into transitive hereditarily

finite sets.
J. Autom. Reason., 52(1), pp.1-29, 2014.
Cf. http://www2.units.it/eomodeo/ClawFreeness.html

B E. G. Omodeo and A. |. Tomescu.
Appendix: Claw-free graphs as sets.
In: M. Davis, E. Schonberg (eds.) From Linear Operators to Computational
Biology: Essays in Memory of Jacob T. Schwartz, pp. 131-167, Springer, 2012.
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TWO EARLIER PROOF-PEARL SCENARIOS

Two fully formal reconstructions of results on connected claw-free
graphs have been achieved by means of Ref.

@ E. G. Omodeo and A. I. Tomescu.
Set graphs. V. On representing graphs as membership digraphs.
To appear on J. Log. Comput.
Cf. http://www2.units.it/eomodeo/GraphsViaMembership.html

@ E. G. Omodeo and A. |. Tomescu.
Set graphs. Ill. Proof Pearl: Claw-free graphs mirrored into transitive hereditarily
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A NICE CLASS OF GRAPHS: CLAW-FREE & CONNECTED

A graph (V, E) is said to be if none of its subgraphs

induced by 4 vertices has the shape of a 'Y’
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A NICE CLASS OF GRAPHS: CLAW-FREE & CONNECTED

A graph (V, E) is said to be if none of its subgraphs

induced by 4 vertices has the shape of a 'Y’

FIGURE: Forbidden claw K 3
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A NICE CLASS OF GRAPHS: CLAW-FREE & CONNECTED

A graph (V, E) is said to be if none of its subgraphs

induced by 4 vertices has the shape of a 'Y’

FI1GURE: Worse than a claw
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A NICE CLASS OF GRAPHS: CLAW-FREE & CONNECTED

A graph (V, E) is said to be if none of its subgraphs

induced by 4 vertices has the shape of a 'Y’

FIGURE: A claw-free graph
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CLASSICAL RESULTS ABOUT CLAW-FREE GRAPHS

“Every connected claw-free graph admits a perfect
matching and has a Hamiltonian cycle in its square”.

(1970s / 1980s)
o]
I : I
(a) a connected (b) a Hamiltonian (¢} a perfect
claw-free graph G cycle in G2 matching in G
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CLASSICAL RESULTS ABOUT CLAW-FREE GRAPHS

“Every connected claw-free graph admits a perfect
matching and has a Hamiltonian cycle in its square”.

(1970s / 1980s)
I : I
(a) a connected (b) a Hamiltonian (¢} a perfect
claw-free graph G cycle in G2 matching in G

Also: Each connected claw-free graph has a vertex-pancyclic square
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NOVEL PROOFS BASED ON A REPR'N THEOREM

Martin Milani¢ and A. |. Tomescu found new, simpler proofs of the
results just mentioned via a theorem about the representation of
edges as (directed!) membership arcs.

B
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NOVEL PROOFS BASED ON A REPR'N THEOREM

Martin Milani¢ and A. |. Tomescu found new, simpler proofs of the
results just mentioned via a theorem about the representation of
edges as (directed!) membership arcs.

@ M. Milani¢ and A. |. Tomescu.

Set graphs. |. Hereditarily finite sets and | extensional || acyclic | orientations.
Discrete Applied Mathematics, 161(4-5):677-690, 2013.

B
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NOVEL PROOFS BASED ON A REPR'N THEOREM

Martin Milani¢ and A. |. Tomescu found new, simpler proofs of the
results just mentioned via a theorem about the representation of
edges as (directed!) membership arcs.

@ M. Milani¢ and A. |. Tomescu.

Set graphs. |. Hereditarily finite sets and | extensional || acyclic | orientations.
Discrete Applied Mathematics, 161(4-5):677-690, 2013.

@ A. |I. Tomescu.
A simpler proof for vertex-pancyclicity of squares of connected claw-free graphs.

Discrete Mathematics, 312(15):2388-2391, 2012.

L3
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ETNANOVA aka|  [EREE: Cr. [SCO11]

=

[ metnaNova Preliminary - v %
= ' [1 aetnanova.units.it
.
) Share: ¥ Verify: 1.109 Me: Gue Pretty: 108,109
Book  Full Common Scenario  Verifier Help ﬁﬂ @ E&ﬁ
£ |
q
More Files: | choose File | GraphsViaMembership.tex | Choose File | No file chosen | Choose File | No file
:
Scenario extension:

i -~ Put the final piece of scenario here.

( On-line worksheet )
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N WITH OUR PROO

Share: || Verify: 1.2 Me: Eug Pretty:
Book  Full Common Scenario  Verifier Help ﬁﬁ E&ﬁ

ERIFIER

More Files: | cnoose File | Mo file chosen | Choose File | No file chosen |]
Scenario extension:

--BEGIN HERE

Def pow: [Family of all subsets of a given set] pow(S) ;= { x : x =jncin 5 }

Def trans: [Transitivity w.r.t. membership] Trans(T) ;= {y in T | y enincin T} = 0
Theorem trans_L: [Peddicord's lemma] (Trans(T) & (5 sincin T) & (5 /= T)) «imp (0 /= (T-5) * pow(S}). Proof:
Suppose_not(td,s0) === AUTO

Use_def(pow(s0)) ==> AUTO

Loc_def === Statl: a = arb(t0-s0)

Use_def(Trans} === Stat2: ({yin t0 | y *nincin t0} = 0} & (a notin {z: z =incin s0}

(a,a)-->Star2(Statl) ==: false

Discharge === QED

Theorem trans_2: [Peddicord's lemma, main corollary] Trans(T) simp (0 in T). Proof:
Suppose_not(td) ==> AUTO

(t0,0)-->Ttrans_1 === Statl: 0 /= t0 * pow(0}

Use_def(pow(0)) === AUTO

z-->5tatl == Stat2: (zin{ x: x «incin O }) & (z in t0)

z1-->5tat. = false

Discharge ==> QED

--END HERE
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INTERACTION WITH OUR PROOF-VERIFIER

vise. Tnit. Ouput O Gaod P, 0 51 o ik KN 5 A 2.kl §1 81 4

Thm. No. | Thm. Name | Line No. || F/A Line

(t0,0)-—>Ttrans_1 ==> Statl: 0 /= 0 * pow(0)
® 2 Ttrans_2 2 F

Attempt to derive MLS contradiction has failed

++++++++ Ttrans_2#2 -- 26 *#**%* Error verifying step: 2 of theorem Ttrans_2
(t0,0)-->Ttrans_1 ==> Statl: 0 /=10 * pow(0)
Anempt to derive MLS contradiction has failed

reduced blobbed statement was: BLB_; & ~{} € Ty & ~{} # ToMBLB_, & (BLB_; & {} # Ty — {} #
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INTERACTION WITH OUR PROOF-VERIFIER

vise. Tnit. Ouput O Gaod P, 0 51 o ik KN 5 A 2.kl §1 81 4

Thm. No. | Thm. Name || Line No. || F/A Line

(t0,0)->Ttrans_1 ==> Statl: 0 /= 10 * pow(0)
(*) 2 Tuans_2 2 F

Attempt to derive MLS contradiction has failed

++++++++ Ttrans_2#2 -- 26 *#**%* Error verifying step: 2 of theorem Ttrans_2
(t0,0)-->Ttrans_1 ==> Statl: 0 /= t0 * pow(0)
Anempt to derive MLS contradiction has failed

reduced blobbed statement was: BLB_; & ~{} € Ty & ~{} # ToMBLB_, & (BLB_; & {} # Ty — {} #

Mise. nt. Ouput O oot .0 5ad ke NS A<l § @1

Thm. No. | Thm. Name | Time | Details |

1 Terans_1 | #6: 120 || Z4: 7 || S5: 8 |

2 Ttrans_2
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3 BASIC CONSTITUENTS OF A SCENARIO

- After the celebrated paper Sur les ensembles fini ( Tarski, 1924 )
Def. Finite(F) e (Vg € P(P(F)I\{0}, Im | g n P(m) ={m})
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3 BASIC CONSTITUENTS OF A SCENARIO

-- “The cardinality of S exceeds M"
Def. Exc(S,M) ¢ S#D & {p € M| —=Exc(S\{arb(S)},p)} =0
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3 BASIC CONSTITUENTS OF A SCENARIO

Thm fing. Y D X & Finite(Y) — Finite(X). Proof:
Suppose not(yo,xo) = Yo 2 Xg & Finite(yg) & —Finite(xp)
(Yo,x0)=Tpow; = Pyo 2 Pxo
Use def(Finite) = Statl : —(Vg € P(Pxo)\{0}, Im |
gnPm={m}) & (Vg' € P(Pyo)\{0},Im | g’ n Pm ={m})
(Pyo, Pxo) s Tpow, = P(Pyo) 2 P(Pxo)
(go,g0)—Statl(Statlx) = —{(3Im | gon Pm={m}) &
(Im | go N Pm ={m})

Discharge =— Qed

V.
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4*h  MAJOR CONSTITUENT OF A SCENARIO

Theory finite_image (so, g(X))
Finite(sg)
End finite _image

Enter_theory finite _image

Enter theory Set _theory
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4*h  MAJOR CONSTITUENT OF A SCENARIO

A CONSTRUCT FOR PROOF REUSE

Theory finite_image (so, g(X))
Finite(sg)
End finite image

Enter theory finite _image

Enter theory Set _theory

Within a scenario, the discourse can momentarily digress into a
‘Theory’ that enforces certain local assumptions.
At the end of the digression, the upper theory will be re-entered.
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4*h  MAJOR CONSTITUENT OF A SCENARIO

Theory finite_image (so, g(X))
Finite(sg)

-
Finite({g(x) : x €s0})

End finite _image

As an outcome of the digression, the Theory will be able to
instantiate new theorems
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4*h  MAJOR CONSTITUENT OF A SCENARIO

A CONSTRUCT FOR PROOF REUSE

Theory finite_image (so, g(X))

Finite(sg)
= (fo)

Finite({g(x) i X E so})

fo Cso & (Vt C folg(t)=glso) & t=fe)
End finite _image

As an outcome of the digression, the Theory will be able to
instantiate new theorems: possibly involving new symbols,
whose definition it encapsulates.
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Our EXPERIMENT, IN DIGITS

The script-file containing our verified formal derivation of the
existence of non-cut vertices in hypergraphs:

comprises 13 definitions;

proves 46 theorems (only two whose length exceeds 50 lines),

organized in 3 Theorys.‘

Its processing takes ca. 4 seconds;

o the overall number of proof lines is 905.

http://www2.units.it/eomodeo/NonCutVertices.html
http://aetnanova.units.it/scenarios/NonCutVertices/
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CONCLUSIONS AND FUTURE WORK

Proof-verification can highly benefit from representation theorems
of the kind illustrated by the Milanic—Tomescu result about
connected, claw-free graphs.
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CONCLUSIONS AND FUTURE WORK

Proof-verification can highly benefit from representation theorems

of the kind illustrated by the Milanic—Tomescu result about

connected, claw-free graphs.

ON THE HUMAN SIDE, such results disclose new insights by
shedding light on a discipline from unusual angles

ON THE TECHNOLOGICAL SIDE, they enable the transfer of proof
methods from one realm of mathematics to another.

This contribution closes a cycle of activities related to claw-free
graphs. ..

...and paves the way to an extensive exploration on how to
formalize hypergraphs .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 22/24



THANK YOU FOR YOUR ATTENTION!




@ Jacob T. Schwartz, Domenico Cantone, and Eugenio G.
Omodeo. Computational Logic and Set Theory —
Applying formalized Logic to Analysis.

Springer, 2011. Foreword by Martin Dauvis.

[ Freek Wiedijk. The QED Manifesto revisited.
Studies in Logic, Grammar and Rhetoric, 10(23):121-133,
2007.

[ Gab-Byung Chae, Edgar M. Palmer, and Robert W. Robinson.
Counting labeled general cubic graphs.
Discrete Mathematics, 307(23):2979-2992, 2007.
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