
Reasoning about connectivity without paths

Alberto Casagrande and Eugenio G. Omodeo

Dip. Matematica e Geoscienze — DMI

Eugenio G. Omodeo Reasoning about Connectivity without Paths 1/24

Reasoning about connectivity without paths1

Alberto Casagrande and Eugenio G. Omodeo

Dip. Matematica e Geoscienze — DMI

1Work partially funded by: INdAM/GNCS 2013, FRA-UniTS 2012 PUMA
Eugenio G. Omodeo Reasoning about Connectivity without Paths 1/24

Every connected graph has non-cut vertices

Example

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

Every connected graph has non-cut vertices

Example

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

Every connected graph has non-cut vertices

Example

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

Every connected graph has non-cut vertices

Example

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

Every connected graph has non-cut vertices

Example

·

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

Every connected graph has non-cut vertices

Example

·

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

Every connected graph has non-cut vertices

Example

More generally:

‘Every connected (finite) hyper graph has at least one vertex
whose removal does not disrupt connectivity’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 2/24

(Ideal) itinerary of this talk

i Connectivity and non-cut vertices

ii Applications (one in particular. . .)

iii The proof assistant Ref

iv Our proof-verification experiment
http://www2.units.it/eomodeo/NonCutVertices.html
http://aetnanova.units.it/scenarios/NonCutVertices/

Eugenio G. Omodeo Reasoning about Connectivity without Paths 3/24

http://www2.units.it/eomodeo/NonCutVertices.html
http://aetnanova.units.it/scenarios/NonCutVertices/

Connectivity

Connectivity plays a crucial role in many fields.

Es. The number of connected components of a graph

is a topological invariant;

corresponds to the multiplicity of the eigenvalue 0 in its
Laplacian;

is related to the number of its claw-free subgraphs [CPR07].

∴ Large scale proof-verification efforts [Wie07, SCO11] must
formally investigate this notion.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 4/24

How we see a hypergraph

Example

a

c

b

d e

f

g

h

The edges of G belong to G .

The


vertices

or
nodes

 of G belong to {v : e ∈ G , v ∈ e} .

In a graph, the edges have cardinality 2 .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 5/24

How we see a hypergraph

Example

a

c

b

d e

f

g

h

The edges of G belong to G .

The


vertices

or
nodes

 of G belong to {v : e ∈ G , v ∈ e} .

In a graph, the edges have cardinality 2 .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 5/24

How we see a hypergraph

Example

a

c

b

d e

f

g

h

The edges of G belong to G .

The


vertices

or
nodes

 of G belong to {v : e ∈ G , v ∈ e} .

In a graph, the edges have cardinality 2 .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 5/24

How we see a hypergraph

Example

a

c

b

d e

f

g

h

The edges of G belong to G .

The


vertices

or
nodes

 of G belong to {v : e ∈ G , v ∈ e} .

In a graph, the edges have cardinality 2 .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 5/24

Our formal definition of connectivity

Def

.

CardAtLeast2(E) ↔Def E 6⊆ {arb(E)}

Def

.

nodes(G) =Def

⋃
G

Def

.

HGraph(G) ↔Def 〈∀e ∈ G | CardAtLeast2(e)〉 &
Finite

(
nodes(G)

)

Def. Conn(G) ↔Def {p⊆ G | nodes(p) ∩ nodes(G\p) = ∅}⊆ {∅,G} &
HGraph(G)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 6/24

Our formal definition of connectivity

Def

.

CardAtLeast2(E) ↔Def E 6⊆ {arb(E)}

Def. nodes(G) =Def

⋃
G

Def

.

HGraph(G) ↔Def 〈∀e ∈ G | CardAtLeast2(e)〉 &
Finite

(
nodes(G)

)

Def. Conn(G) ↔Def {p⊆ G | nodes(p) ∩ nodes(G\p) = ∅} = {∅,G} &
HGraph(G)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 6/24

Our formal definition of connectivity

Def

.

CardAtLeast2(E) ↔Def E 6⊆ {arb(E)}

Def. nodes(G) =Def

⋃
G

Def. HGraph(G) ↔Def 〈∀e ∈ G | CardAtLeast2(e)〉 &
Finite

(
nodes(G)

)
Def. Conn(G) ↔Def {p⊆ G | nodes(p) ∩ nodes(G\p) = ∅} = {∅,G} &

HGraph(G)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 6/24

Our formal definition of connectivity

Def. CardAtLeast2(E) ↔Def E 6⊆ {arb(E)}

Def. nodes(G) =Def

⋃
G

Def. HGraph(G) ↔Def 〈∀e ∈ G | CardAtLeast2(e)〉 &
Finite

(
nodes(G)

)
Def. Conn(G) ↔Def {p⊆ G | nodes(p) ∩ nodes(G\p) = ∅} = {∅,G} &

HGraph(G)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 6/24

Does this hypergraph have a spanning tree ?

a b
c

d
e f

Eugenio G. Omodeo Reasoning about Connectivity without Paths 7/24

Existence of non-cut vertices

Def

.

rmv(G,V) =Def {e\{V} : e ∈ G | CardAtLeast2(e\{V})}

Def

.

lost(G,V) =Def nodes(G)\
(
nodes

(
rmv(G,V)

)
∪ {V}

)
Def

.

NonCut(G,V) ↔Def Conn
(
rmv(G,V)

)
& lost(G,V) = ∅

Thm. Conn(G) & G 6⊆ {arb(G)}→ 〈∃v ∈ nodes(G) | NonCut(G, v)〉

Eugenio G. Omodeo Reasoning about Connectivity without Paths 8/24

Existence of non-cut vertices

Def

.

rmv(G,V) =Def {e\{V} : e ∈ G | CardAtLeast2(e\{V})}

Def

.

lost(G,V) =Def nodes(G)\
(
nodes

(
rmv(G,V)

)
∪ {V}

)

Def. NonCut(G,V) ↔Def Conn
(
rmv(G,V)

)
& lost(G,V) = ∅

Thm. Conn(G) & G 6⊆ {arb(G)}→ 〈∃v ∈ nodes(G) | NonCut(G, v)〉

Eugenio G. Omodeo Reasoning about Connectivity without Paths 8/24

Existence of non-cut vertices

Def. rmv(G,V) =Def {e\{V} : e ∈ G | CardAtLeast2(e\{V})}

Def

.

lost(G,V) =Def nodes(G)\
(
nodes

(
rmv(G,V)

)
∪ {V}

)

Def. NonCut(G,V) ↔Def Conn
(
rmv(G,V)

)
& lost(G,V) = ∅

Thm. Conn(G) & G 6⊆ {arb(G)}→ 〈∃v ∈ nodes(G) | NonCut(G, v)〉

Eugenio G. Omodeo Reasoning about Connectivity without Paths 8/24

Existence of non-cut vertices

Def. rmv(G,V) =Def {e\{V} : e ∈ G | CardAtLeast2(e\{V})}

Def. lost(G,V) =Def nodes(G)\
(
nodes

(
rmv(G,V)

)
∪ {V}

)
Def. NonCut(G,V) ↔Def Conn

(
rmv(G,V)

)
& lost(G,V) = ∅

Thm. Conn(G) & G 6⊆ {arb(G)}→ 〈∃v ∈ nodes(G) | NonCut(G, v)〉

Eugenio G. Omodeo Reasoning about Connectivity without Paths 8/24

Ur-application of non-cut vertices: Walking

How can we:

walk along an infinite acyclic path?

visit all vertices of a finite acyclic path?

Example

0 1 2 3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2 3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2 3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0

1 2 3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1

2 3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2

3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2 3

4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2 3

4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2 3

4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Why such a silly example ?

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

Ur-application of non-cut vertices: Walking

Example

0 1 2 3 4
· · ·

N N∪{N}

This amounts to repeatedly picking and removing a non-cut vertex
(the only one, in this case) from a graph (infinite in this case)

Where does the difference between N and N ∪ {N,N ∪ {N}} lie ?

Eugenio G. Omodeo Reasoning about Connectivity without Paths 9/24

A more revealing application

Example

We can get a spanning tree for a connected nonnull graph by:

1 Picking & removing a non-cut vertex from a connected graph

2 recursively getting a spanning tree for the resulting graph
3 restoring the removed vertex, along with one of the edges

incident to it
0 In the base case , the spanning tree consists of the (sole) edge

Eugenio G. Omodeo Reasoning about Connectivity without Paths 10/24

A more revealing application

Example

We can get a spanning tree for a connected nonnull graph by:

1 Picking & removing a non-cut vertex from a connected graph

2 recursively getting a spanning tree for the resulting graph
3 restoring the removed vertex, along with one of the edges

incident to it
0 In the base case , the spanning tree consists of the (sole) edge

Eugenio G. Omodeo Reasoning about Connectivity without Paths 10/24

A more revealing application

Example

We can get a spanning tree for a connected nonnull graph by:

1 Picking & removing a non-cut vertex from a connected graph

2 recursively getting a spanning tree for the resulting graph

3 restoring the removed vertex, along with one of the edges
incident to it

0 In the base case , the spanning tree consists of the (sole) edge

Eugenio G. Omodeo Reasoning about Connectivity without Paths 10/24

A more revealing application

Example

We can get a spanning tree for a connected nonnull graph by:

1 Picking & removing a non-cut vertex from a connected graph

2 recursively getting a spanning tree for the resulting graph
3 restoring the removed vertex, along with one of the edges

incident to it

0 In the base case , the spanning tree consists of the (sole) edge

Eugenio G. Omodeo Reasoning about Connectivity without Paths 10/24

A more revealing application

Example

We can get a spanning tree for a connected nonnull graph by:

1 Picking & removing a non-cut vertex from a connected graph

2 recursively getting a spanning tree for the resulting graph
3 restoring the removed vertex, along with one of the edges

incident to it
0 In the base case , the spanning tree consists of the (sole) edge

Eugenio G. Omodeo Reasoning about Connectivity without Paths 10/24

A more revealing application

Example

We can get a spanning tree for a connected nonnull graph by:

1 Picking & removing a non-cut vertex from a connected graph

2 recursively getting a spanning tree for the resulting graph
3 restoring the removed vertex, along with one of the edges

incident to it
0 In the base case , the spanning tree consists of the (sole) edge

This example is paradigmatic:
Inductive proofs on connected graphs usually follow this pattern

Eugenio G. Omodeo Reasoning about Connectivity without Paths 10/24

Direct motivating application

An achievement, but also a pending proof obligation:

Eugenio G. Omodeo Reasoning about Connectivity without Paths 11/24

Direct motivating application

An achievement, but also a pending proof obligation:

Eugenio G. Omodeo Reasoning about Connectivity without Paths 11/24

Two earlier proof-pearl scenarios

Two fully formal reconstructions of results on connected claw-free
graphs have been achieved by means of Ref.

E. G. Omodeo and A. I. Tomescu.
Set graphs. V. On representing graphs as membership digraphs.
To appear on J. Log. Comput.
Cf. http://www2.units.it/eomodeo/GraphsViaMembership.html

E. G. Omodeo and A. I. Tomescu.
Set graphs. III. Proof Pearl: Claw-free graphs mirrored into transitive hereditarily
finite sets.
J. Autom. Reason., 52(1), pp.1–29, 2014.
Cf. http://www2.units.it/eomodeo/ClawFreeness.html

E. G. Omodeo and A. I. Tomescu.
Appendix: Claw-free graphs as sets.
In: M. Davis, E. Schonberg (eds.) From Linear Operators to Computational
Biology: Essays in Memory of Jacob T. Schwartz, pp. 131–167, Springer, 2012.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 12/24

http://www2.units.it/eomodeo/GraphsViaMembership.html
http://www2.units.it/eomodeo/ClawFreeness.html

Two earlier proof-pearl scenarios

Two fully formal reconstructions of results on connected claw-free
graphs have been achieved by means of Ref.

E. G. Omodeo and A. I. Tomescu.
Set graphs. V. On representing graphs as membership digraphs.
To appear on J. Log. Comput.
Cf. http://www2.units.it/eomodeo/GraphsViaMembership.html

E. G. Omodeo and A. I. Tomescu.
Set graphs. III. Proof Pearl: Claw-free graphs mirrored into transitive hereditarily
finite sets.
J. Autom. Reason., 52(1), pp.1–29, 2014.
Cf. http://www2.units.it/eomodeo/ClawFreeness.html

E. G. Omodeo and A. I. Tomescu.
Appendix: Claw-free graphs as sets.
In: M. Davis, E. Schonberg (eds.) From Linear Operators to Computational
Biology: Essays in Memory of Jacob T. Schwartz, pp. 131–167, Springer, 2012.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 12/24

http://www2.units.it/eomodeo/GraphsViaMembership.html
http://www2.units.it/eomodeo/ClawFreeness.html

Two earlier proof-pearl scenarios

Two fully formal reconstructions of results on connected claw-free
graphs have been achieved by means of Ref.

E. G. Omodeo and A. I. Tomescu.
Set graphs. V. On representing graphs as membership digraphs.
To appear on J. Log. Comput.
Cf. http://www2.units.it/eomodeo/GraphsViaMembership.html

E. G. Omodeo and A. I. Tomescu.
Set graphs. III. Proof Pearl: Claw-free graphs mirrored into transitive hereditarily
finite sets.
J. Autom. Reason., 52(1), pp.1–29, 2014.
Cf. http://www2.units.it/eomodeo/ClawFreeness.html

E. G. Omodeo and A. I. Tomescu.
Appendix: Claw-free graphs as sets.
In: M. Davis, E. Schonberg (eds.) From Linear Operators to Computational
Biology: Essays in Memory of Jacob T. Schwartz, pp. 131–167, Springer, 2012.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 12/24

http://www2.units.it/eomodeo/GraphsViaMembership.html
http://www2.units.it/eomodeo/ClawFreeness.html

A nice class of graphs: claw-free & connected

Definition

A graph (V ,E) is said to be claw-free if none of its subgraphs
induced by 4 vertices has the shape of a ‘Y’

Eugenio G. Omodeo Reasoning about Connectivity without Paths 13/24

A nice class of graphs: claw-free & connected

Definition

A graph (V ,E) is said to be claw-free if none of its subgraphs
induced by 4 vertices has the shape of a ‘Y’

◦

◦

◦ ◦

Figure: Forbidden claw K1,3

Eugenio G. Omodeo Reasoning about Connectivity without Paths 13/24

A nice class of graphs: claw-free & connected

Definition

A graph (V ,E) is said to be claw-free if none of its subgraphs
induced by 4 vertices has the shape of a ‘Y’

Figure: Worse than a claw

Eugenio G. Omodeo Reasoning about Connectivity without Paths 13/24

A nice class of graphs: claw-free & connected

Definition

A graph (V ,E) is said to be claw-free if none of its subgraphs
induced by 4 vertices has the shape of a ‘Y’

◦

◦

◦ ◦

Figure: A claw-free graph

Eugenio G. Omodeo Reasoning about Connectivity without Paths 13/24

Classical results about claw-free graphs

“Every connected claw-free graph admits a perfect
matching and has a Hamiltonian cycle in its square”.

(1970s / 1980s)

Also: Each connected claw-free graph has a vertex-pancyclic square

Eugenio G. Omodeo Reasoning about Connectivity without Paths 14/24

Classical results about claw-free graphs

“Every connected claw-free graph admits a perfect
matching and has a Hamiltonian cycle in its square”.

(1970s / 1980s)

Also: Each connected claw-free graph has a vertex-pancyclic square

Eugenio G. Omodeo Reasoning about Connectivity without Paths 14/24

Novel proofs based on a repr’n theorem

Martin Milanič and A. I. Tomescu found new, simpler proofs of the
results just mentioned via a theorem about the representation of
edges as (directed!) membership arcs.

M. Milanič and A. I. Tomescu.

Set graphs. I. Hereditarily finite sets and extensional acyclic orientations.
Discrete Applied Mathematics, 161(4-5):677–690, 2013.

A. I. Tomescu.
A simpler proof for vertex-pancyclicity of squares of connected claw-free graphs.
Discrete Mathematics, 312(15):2388–2391, 2012.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 15/24

Novel proofs based on a repr’n theorem

Martin Milanič and A. I. Tomescu found new, simpler proofs of the
results just mentioned via a theorem about the representation of
edges as (directed!) membership arcs.

M. Milanič and A. I. Tomescu.

Set graphs. I. Hereditarily finite sets and extensional acyclic orientations.
Discrete Applied Mathematics, 161(4-5):677–690, 2013.

A. I. Tomescu.
A simpler proof for vertex-pancyclicity of squares of connected claw-free graphs.
Discrete Mathematics, 312(15):2388–2391, 2012.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 15/24

Novel proofs based on a repr’n theorem

Martin Milanič and A. I. Tomescu found new, simpler proofs of the
results just mentioned via a theorem about the representation of
edges as (directed!) membership arcs.

M. Milanič and A. I. Tomescu.

Set graphs. I. Hereditarily finite sets and extensional acyclic orientations.
Discrete Applied Mathematics, 161(4-5):677–690, 2013.

A. I. Tomescu.
A simpler proof for vertex-pancyclicity of squares of connected claw-free graphs.
Discrete Mathematics, 312(15):2388–2391, 2012.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 15/24

ÆtnaNova aka Ref eree: Cf. [SCO11]

(On-line worksheet)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 16/24

Interaction with our proof-verifier (Input)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 17/24

Interaction with our proof-verifier(Output)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 18/24

Interaction with our proof-verifier(Output)

Eugenio G. Omodeo Reasoning about Connectivity without Paths 18/24

3 basic constituents of a scenario (examples)

Definition: (shorthand)

-- After the celebrated paper Sur les ensembles fini (Tarski, 1924)

Def. Finite(F) ↔Def 〈∀g ∈ P(P(F))\{∅}, ∃m | g ∩ P(m) = {m}〉

Eugenio G. Omodeo Reasoning about Connectivity without Paths 19/24

3 basic constituents of a scenario (examples)

Definition: (∈-recursion here!)

-- “The cardinality of S exceeds M”

Def. Exc(S,M) ↔Def S6=∅ &
{
p ∈ M |¬Exc

(
S\{arb(S)}, p

)}
= ∅

Eugenio G. Omodeo Reasoning about Connectivity without Paths 19/24

3 basic constituents of a scenario (examples)

Theorem and Proof: (Monotonicity of finitude)

Thm fin0. Y ⊇ X & Finite(Y)→ Finite(X). Proof:
Suppose_not(y0, x0) =⇒ y0 ⊇ x0 & Finite(y0) & ¬Finite(x0)

〈y0, x0〉↪→Tpow1 =⇒ Py0 ⊇ Px0
Use_def(Finite) =⇒ Stat1 :¬〈∀g ∈ P(Px0)\{∅},∃m |

g ∩ Pm = {m}〉 & 〈∀g ′ ∈ P(Py0)\{∅},∃m | g ′ ∩ Pm = {m}〉
〈Py0,Px0〉↪→Tpow1 =⇒ P(Py0)⊇ P(Px0)

〈g0, g0〉↪→Stat1(Stat1?) =⇒ ¬〈∃m | g0 ∩ Pm = {m}〉 &
〈∃m | g0 ∩ Pm = {m}〉

Discharge =⇒ Qed

Eugenio G. Omodeo Reasoning about Connectivity without Paths 19/24

4th, major constituent of a scenario (example)

A construct for proof reuse
Theory finite_image (s0 , g(X))

Finite(s0)

End finite_image

Enter_theory finite_image
...

...
...

...

Enter_theory Set_theory

Within a scenario, the discourse can momentarily digress into a
‘Theory’ that enforces certain local assumptions.
At the end of the digression, the upper theory will be re-entered.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 20/24

4th, major constituent of a scenario (example)

A construct for proof reuse
Theory finite_image (s0 , g(X))

Finite(s0)

End finite_image

Enter_theory finite_image
...

...
...

...

Enter_theory Set_theory

Within a scenario, the discourse can momentarily digress into a
‘Theory’ that enforces certain local assumptions.
At the end of the digression, the upper theory will be re-entered.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 20/24

4th, major constituent of a scenario (example)

A construct for proof reuse
Theory finite_image (s0 , g(X))

Finite(s0)

=⇒ (
fΘ
)

Finite
(
{ g(x) : x ∈ s0 }

)
fΘ ⊆ s0 & 〈 ∀ t ⊆ fΘ | g(t) = g(s0) ↔ t = fΘ 〉

End finite_image

As an outcome of the digression, the Theory will be able to
instantiate new theorems

Eugenio G. Omodeo Reasoning about Connectivity without Paths 20/24

4th, major constituent of a scenario (example)

A construct for proof reuse
Theory finite_image (s0 , g(X))

Finite(s0)

=⇒ (
fΘ
)

Finite
(
{ g(x) : x ∈ s0 }

)
fΘ ⊆ s0 & 〈 ∀ t ⊆ fΘ | g(t) = g(s0) ↔ t = fΘ 〉

End finite_image

As an outcome of the digression, the Theory will be able to
instantiate new theorems: possibly involving new symbols,
whose definition it encapsulates.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 20/24

Our experiment, in digits

The script-file containing our verified formal derivation of the
existence of non-cut vertices in hypergraphs:

comprises 13 definitions;

proves 46 theorems (only two whose length exceeds 50 lines),

organized in 3 Theory s.

Its processing takes ca. 4 seconds;

the overall number of proof lines is 905.

http://www2.units.it/eomodeo/NonCutVertices.html
http://aetnanova.units.it/scenarios/NonCutVertices/

Eugenio G. Omodeo Reasoning about Connectivity without Paths 21/24

http://www2.units.it/eomodeo/NonCutVertices.html
http://aetnanova.units.it/scenarios/NonCutVertices/

Conclusions and future work

Proof-verification can highly benefit from representation theorems
of the kind illustrated by the Milanič–Tomescu result about
connected, claw-free graphs.

On the human side, such results disclose new insights by
shedding light on a discipline from unusual angles

on the technological side, they enable the transfer of proof
methods from one realm of mathematics to another.∥∥∥∥∥∥∥∥

This contribution closes a cycle of activities related to claw-free
graphs. . .
. . . and paves the way to an extensive exploration on how to
formalize hypergraphs .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 22/24

Conclusions and future work

Proof-verification can highly benefit from representation theorems
of the kind illustrated by the Milanič–Tomescu result about
connected, claw-free graphs.

On the human side, such results disclose new insights by
shedding light on a discipline from unusual angles

on the technological side, they enable the transfer of proof
methods from one realm of mathematics to another.∥∥∥∥∥∥∥∥

This contribution closes a cycle of activities related to claw-free
graphs. . .
. . . and paves the way to an extensive exploration on how to
formalize hypergraphs .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 22/24

Conclusions and future work

Proof-verification can highly benefit from representation theorems
of the kind illustrated by the Milanič–Tomescu result about
connected, claw-free graphs.

On the human side, such results disclose new insights by
shedding light on a discipline from unusual angles

on the technological side, they enable the transfer of proof
methods from one realm of mathematics to another.∥∥∥∥∥∥∥∥

This contribution closes a cycle of activities related to claw-free
graphs. . .
. . . and paves the way to an extensive exploration on how to
formalize hypergraphs .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 22/24

Conclusions and future work

Proof-verification can highly benefit from representation theorems
of the kind illustrated by the Milanič–Tomescu result about
connected, claw-free graphs.

On the human side, such results disclose new insights by
shedding light on a discipline from unusual angles

on the technological side, they enable the transfer of proof
methods from one realm of mathematics to another.∥∥∥∥∥∥∥∥

This contribution closes a cycle of activities related to claw-free
graphs. . .
. . . and paves the way to an extensive exploration on how to
formalize hypergraphs .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 22/24

Conclusions and future work

Proof-verification can highly benefit from representation theorems
of the kind illustrated by the Milanič–Tomescu result about
connected, claw-free graphs.

On the human side, such results disclose new insights by
shedding light on a discipline from unusual angles

on the technological side, they enable the transfer of proof
methods from one realm of mathematics to another.∥∥∥∥∥∥∥∥

This contribution closes a cycle of activities related to claw-free
graphs. . .
. . . and paves the way to an extensive exploration on how to
formalize hypergraphs .

Eugenio G. Omodeo Reasoning about Connectivity without Paths 22/24

Thank you for your attention!

Eugenio G. Omodeo Reasoning about Connectivity without Paths 23/24

Jacob T. Schwartz, Domenico Cantone, and Eugenio G.
Omodeo. Computational Logic and Set Theory –
Applying formalized Logic to Analysis.
Springer, 2011. Foreword by Martin Davis.

Freek Wiedijk. The QED Manifesto revisited.
Studies in Logic, Grammar and Rhetoric, 10(23):121–133,
2007.

Gab-Byung Chae, Edgar M. Palmer, and Robert W. Robinson.
Counting labeled general cubic graphs.
Discrete Mathematics, 307(23):2979–2992, 2007.

Eugenio G. Omodeo Reasoning about Connectivity without Paths 24/24

