

RELATING THRESHOLD TOLERANCE GRAPHS TO OTHER CLASSES OF GRAPHS

<u>Tiziana Calamoneri</u> & Blerina Sinaimeri

ICTCS 2014

Perugia, 17th September 2014

TTGs w.r.t. other graph classes

A phylogenetic problem (1)

The aim is to reconstruct a tree expressing evolutionary relations among organisms, on the basis of biological data [Jones & Pevzner '04].

- ♣ Leaves⇔ known species (taxa)
- ♣ Internal nodes ⇔ (hypotetical) ancestors
- ♣ Edges⇔evolutionary relations between nodes
- ♣ weight of the edges ⇔ node distance in terms of evolution

A phylogenetic problem (2)

- Somehow, internal nodes represent moments of speciation (i.e. the creation of new species from an old one).
- It is not possible to know which is the "true" tree of a certain set of taxa, nevertheless biologists are quite sure of certain speciations (e.g. on the basis of the study of fossils).
- ♣ For some sets of taxa, biologists have built some phylogenetic trees accepted as "true".

A phylogenetic problem (3)

- ♣The automatization of the creation process of a phylogenetic tree given the set of taxa involves solving an optimization problem (e.g. find the tree that minimizes the total number of evolutionary events has to be individuated)
- Usually, these optimizations lead to NP-hard problems, so the reconstruction algorithms are in fact heuristics that need to be tested.
- ♣The results of these heuristics are compared with the trees considered as "true".

A phylogenetic problem (4)

- ♣ In general, these "true" trees are huge and the reconstruction heuristics are slow...
- ♣ It is hence important to extract subtrees from the "true" trees in order to test the reconstruction heuristics on the subsets of taxa that are involved in these subtrees.

A phylogenetic problem (5)

- A Many reconstruction heuristics fail in the reconstruction if the considered taxa have a very large evolutionary distance.
- Analogously, these heuristics fail when the considered taxa have a very small evolutionary distance [Felseinster '78].
- ♣ Hence:

try to find a set of taxa that are neither too close nor too far in order to test the heuristics on the subtree induced by this set → sampling.

Pairwise Compatibility Graphs (1)

[Kearney, Munro & Phillips '03] formulated these constraints in graph theory, so introducing the **Pairwise Compatibility Graphs** (**PCGs**).

Given a phylogenetic tree (i.e. an edge-weighted tree) T and two positive values d_{min} and d_{max} , a pairwise compatibility graph $G=PCG(T,d_{min},d_{max})$ is defined as follows:

nodes of $G \Leftrightarrow leaves of T$

edges of $G \Leftrightarrow \text{paths in } T \text{ having length between } d_{min} \text{ and } d_{max}$

Pairwise Compatibility Graphs (2)

Given a tree T, to solve the sampling problem is equivalent to seek for a maximum cardinality clique in $G=PCG(T,d_{min},d_{max})$. In [Kearney, Munro & Phillips '03] it is proved that, for this class of graphs, MAX CLIQUE can be solved in polynomial time.

Given T, d_{min} and d_{max} it is trivial to determine G.

Pairwise Compatibility Problem:

Given a graph G, there exists a tree T and two positive values d_{min} and d_{max} such that $G=PCG(T,d_{min},d_{max})$?

Pairwise Compatibility Graphs (3)

The problem is not trivial:

- All graphs with at most 7 nodes are PCGs

 [Philips '02; C., Frascaria & Sinaimeri '12]
- ♣Not all graphs are PCGs:

[Yanhaona, Bayzid & Rahman '10]

[Durocher, Mondala & Rahman '13]

Pairwise Compatibility Graphs (4)

It is possible to relax the requirements:

- ♣ Leaf Power Graphs [Nishimura, Ragde & Thilikos '02]: d_{min}=0
- ♣ minLeaf Power Graphs [C., Petreschi & Sinaimeri '12]: d_{max} =+ ∞

Threshold tolerance graphs

- ♣ A graph G=(V,E) is **threshold tolerance (TT)** if it is possible to associate weights g and tolerances t (in IR+) with each node of G so that two nodes are adjacent exactly when the sum of their weights exceeds either one of their tolerances $\rightarrow G=(V,E,g,t)$.
- \clubsuit It is not restrictive to assume that g and t are defined in IN⁺.
- A Threshold tolerance graphs generalize the class of **threshold graphs** which are also extensively studied in literature.
- Here we relate the threshold tolerance graphs with min leaf power graphs (mLPGs).

TTGs vs. mLPGs (1)

- ♣ **Theorem**. Threshold tolerance graphs are mLPGs.
- ♣ **Proof.** Let G = (V, E, g, t) be a TTG. Let $T = \max_{v} t(v)$. Split the nodes of G into groups $S_1, ..., S_T$ such that $S_i = \{v \in V(G) : t(v) = i\}$.
- Associate to G a caterpillar C (i.e. a tree in which all the nodes are within distance 1 of a central path, called *spine*):

TTGs vs. mLPGs (2)

Proof of Theorem. Threshold tolerance graphs are mLPGs. (cnt.d)

The weights w of the edges of C are defined as follows:

- For each edge of the spine $w(x_i, x_{i+1}) = 0.5$ for $0 \le i \le T 1$.
- For each leaf I_v connected to the spine through node x_i we assign a weight $w(I_v, x_i) = g(v) + (T t(v))/2$.

TTGs vs. mLPGs (3)

Proof of Theorem. Threshold tolerance graphs are mLPGs. (cnt.d)

G = mLPG(C, w, T) indeed:

for each two nodes u and v in G, in C we have that I_u is connected to $x_{t(u)}$ and I_v to $x_{t(v)}$, where t(u) and t(v) are not necessary distinct. W.l.o.g. $t(v) \ge t(u)$, i.e. $t(u) = \min(t(u), t(v))$.

$$d_{T}(l_{u}, l_{v}) = w(l_{u}, x_{t(u)}) + (t(v) - t(u))/2 + w(l_{v}, x_{t(v)}) = g(u) + g(v) + T - t(u).$$

Clearly, $d_{T}(l_{u}, l_{v}) \ge T$ if and only if $g(u) + g(v) \ge t(u) = \min(t(u), t(v))$

QED

Open problems

- ♣A graph is a **tolerance graph** if to every node v can be assigned a closed interval I_v on the real line and a tolerance t_v such that x and y are adjacent if and only if $|I_x \cap I_y| \ge \min\{t_x, t_y\}$.
- *How are related tolerance graphs and leaf power graphs (and, analogously, co-tolerance and min leaf power graphs)?

ANY QUESTION?

THANK YOU!