Wednesday June 25

Morning session

Chairman: Antonio Ambrosetti

9.00 a.m. Opening address: Prof. G. Vinti *Direttore del Dipartimento di Matematica ed Informatica*Prof. A. Ambrosetti *Honorary Chairman*

- 9.10 a.m. Jean Mawhin

 The coexistence of a maximum

 and a uniform anti-maximum principle
- 10.10 a.m. Coffee break
- 10.30 a.m Filomena Pacella Symmetry and Liouville type theorems for semilinear elliptic equations
- 11.30 a.m. Marie Françoise Bidaut Veron Quasilinear elliptic equations with source terms of order 0 or 1
- 1.00 p.m. Lunch

Afternoon session

Chairman: Filomena Pacella

- 4.00 p.m. Hans-Christoph Grunau Boundary value problems for symmetric Willmore surfaces
- 5.00 p.m. Coffee break
- 5.30 p.m. Enzo Mitidieri Liouville theorems for some classes of quasilinear problems
- 6.30 p.m. Filippo Gazzola

 Partially overdetermined elliptic boundary value problems
- 7.30 p.m. Free talks
- 8.00 p.m. Conference dinner at Giò

Thursday June 26

Morning session

Chairman: Enzo Mitidieri

- 9.00 a.m. Lucio Boccardo

 Dirichlet problems with gradient quadratic lower order terms
- 10.00 a.m. Antonio Ambrosetti On systems of Schrödiger equations
- 11.00 a.m. Coffee break
- 11.30 a.m. Alberto Farina *Liouville theorems* for Lane-Emden-Fowler equations
- 12.30 a.m. Laurent Véron

 Boundary singularities of solutions of nonmonotone nonlinear elliptic equations
- 1.30 p.m. Lunch

Afternoon session

Chairman: Lucio Boccardo

4.00 p.m. John Bryce Mc Leod To be announced

5.00 p.m. Coffee break

5.30 p.m. Haïm Brezis Returning to the critical exponent in 3-d

growth in the gradient some physical models, having natural 6.30 p.m. Ireneo Peral Results for parabolic problems arising in

7.30 p.m. Free talks

8.00 p.m. Dinner at Giò

Sponsors

Perugia Università degli Studi di

Equazioni Differenziali "Metodi Variazionali ed **Progetto Nazionale MIUR** Nonlineari"

GNAMPA

Regione Umbria

Hotel Giò

International Workshop for the 80th birthday of Partial Differential James Serrin **Equations**

Perugia, Hotel Giò June 25-26, 2008

 $\operatorname{div}(\mathscr{Z}(x,u,\nabla u)) = \mathscr{Z}(x,u,\nabla u)$

 $Min \int_{\Omega} F(x, u, \nabla u)$

 $(-\Delta)^K u = \lambda u + g(u)$

 $u_t + u \cdot \nabla u = v \triangle u - \nabla_p + f$