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The quadratic Hamiltonian

Consider the quadratic form

H(η) = K ∑
i ,j

Jijηiηj

K ∈ R

η ∈ AN

Jij interacton between ηi and ηj

Possible questions of interest are
finding the minimizer of H
determine the statistical properties of minη H(η)

Different “models” depending on the values of Jij and A

Let G = (V ,E ) be a graph. It is convenient to think
N = |V |
Jij = w({ij}).
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The quadratic Hamiltonian

Sherrington–Kirkpatrick model

H(η) =
1√
N

∑
i ,j

Jijηiηj

ηi ∈ {−1, 1}
Jij i.i.d. Standard Normal Random
Variables

SK model (max cut)
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The quadratic Hamiltonian

Unconstrained Binary Quadratic Programming (main topic of this talk)

H(η) =
1√
N

∑
i ,j

Jijηiηj

ηi ∈ {0, 1}
Jij ∈ R

UBQP / QUBO
(Gaussian Mean Field Lattice Gas)

Can be used to represent a large class of discrete optimization problems.
Find the subgourp of data points with strongest correlation.

PCA and combinatorial optimization Alessio Troiani 4/29



The quadratic Hamiltonian

Linear Programming

min
η

N

∑
i=1

ciηi

ηi ∈ {0, 1}

Jij =

{
ci if i = j

0 otherwise
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The quadratic Hamiltonian

The maximum clique problem

A clique, C , in an undirected graph G = (V ,E ) is a subset of the vertices,
C ⊂ V , subgraph of G induced by C is a complete graph.

A maximum clique of G , is a clique, such that there is no clique with more
vertices.

Jij =


−1 if i = j

0 if (i , j) ∈ E

+M otherwise

Linked to the cluster detection in large data sets and social networks.
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The quadratic Hamiltonian

Other “classical” (lattice) problems in Statistical Mechanics, e.g:

Curie–Weiss model
ηi ∈ {−1, 1}
Jij = −J for i 6= j

Ising model on Zd

ηi ∈ {−1, 1}

Jij =

{
−J i , j neighboring sites on the lattice
0 otherwise

Edward–Anderson model
ηi ∈ {−1, 1}
Jij 6= 0⇔ i , j neighboring sites on the lattice
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Unconstrained Binary Quadratic Programming

Unconstrained Binary Quadratic Programming

H(η) =
1√
N

∑
i ,j

Jijηiηj

ηi ∈ {0, 1}
Jij ∈ R

Focus on
finding the minimizer of H
determine (some) statistical
properties of minη H(η)

UBQP / QUBO
(Gaussian Mean Field Lattice Gas)
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Gibbs Measure

How can we find te minima of H?

Idea: Sample from a probability distribution such that P(H(η?)) ≈ 1 with
η? = argmaxη H(η).

Gibbs measure

πβ(η) =
e−βH(η)

Zβ

with Zβ = ∑η e
−βH(η) and β > 0.

It is straightforward to check that

lim
β→∞

πβ(η
?) = 1.
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Markov Chain Monte Carlo

How can we sample from the Gibbs measure?

Let Xt be a irreducible and aperiodic Markov Chain on X with transition
probability on P. Then there is a unique probability distribution π on X such that
πP = π and

lim
t→∞
‖µ(n) − π‖TV = 0

The condition (detailed balance)

πiPij = πjPji ∀i , j ∈ X

is enough to ensure π stationary for P.
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Markov Chain Monte Carlo

Metropolis algorithm

Pη,τ =


1
N e−β[H(τ)−H(η)]+ if η ∼ τ

1−∑τ∼η
1
N e−β[H(τ)−H(η)]+ if τ = η

0 otherwise

It is immediately checked that

πηPη,τ = πτPτ,η

Can we do "better"?
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Probabilistic Cellular Automata

We are interested in natively parallel Markovian algorithms (instead of “single spin
flip”) to

find the minimizers of H(η)

draw samples from the Gibbs measure π(η) = e−βH(η)

Z

A Probabilistic Cellular Automaton (PCA), is Markov Chain (Xn)n∈N with state
space X = {1, . . . , k}N whose transition probabilities are such that

P{Xn = τ|Xn−1 = σ} =
N

∏
i=1

P{(Xn)i = τi |Xn−1 = σ}.

Possible fast(er) convergence to equilibrium measure
Well adapted to be simulated on (massively) parallel processors

PCA and combinatorial optimization Alessio Troiani 12/29



Probabilistic Cellular Automata

We will be interested in PCA defined as follows.

Let G = (V ,E ) be a graph and let H(η, τ) = ∑i∈V hi (η)τi . We will consider
transition probabilities of the type

Pη,τ =
e−H(η,τ)

∑τ e
−H(η,τ)

= ∏
i

ehi (η)τi

Zi

e.g.:

V = Λ ⊂ Z2 E = {{i , j} : i , j ∈ V , |i − j | = 1}
η, τ ∈ {−1, 1}V hi (η) = J(ηi↓ , ηi→ , ηi↑ , ηi←) + qηi + λ

Several results have been obtained for PCA of this type in the context of Ising
models when each hi (η) depends on all neighbors of the spin at site x , e.g.:

stationary measure of PCA
relation of stationary measure of PCA with Gibbs measure
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PCA - Application to UBQP

We define a transition matrix on {0, 1}N as

Pη,τ =
e−H(η,τ)

∑τ e
−H(η,τ)

with

H(η, τ) = β ∑
i

hi (η)τi + q ∑
i

[ηi (1− τi ) + τi (1− ηi )]

where
hi (η) =

1√
N

∑j J
′ijηj ,

J ′ = J+JT

2
β is the inverse temperature
q is a positive constant (inertial term)

Note that H(η, η) = βH(η).
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PCA - Application to UBQP

The transition matrix can be rewritten in the form

Pη,τ = ∏
i

e−βhi (η)τi−q[ηi (1−τi )+τi (1−ηi )]

Zi

which yields

P(τi = 1|η) = e−βhi (η)−q(1−ηi )

Zi

and

P(τi = 0|η) = e−qηi

Zi

where Zi = e−βhi+q(1−ηi ) + eqηi .
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PCA - Application to UBQP

The reversible equilibrium measure of this PCA is

π(η) =
∑τ e

−H(η,τ)

∑η,τ e
−H(η,τ)

since, because of the simmetry of J ′, the detailed balance condition is satisfied:

∑τ e
−H(η,τ)

∑η,τ e
−H(η,τ)

Pη,τ = Pτ,η
∑η e

−H(η,τ)

∑η,τ e
−H(η,τ)

As q gets “large”

π(η) =
H(η, η) + ∑τ 6=η e

−H(η,τ)

∑η,τ e
−H(η,τ)

≈ πG (η)
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PCA - Application to UBQP

N Instance id PCA Metropolis
500 500a 0.415129916 0.415129916

500b 0.424031186 0.424031186
1000 1000a 0.414470925 0.414470925

1000b 0.412802104 0.412802104
2000 2000a 0.424186053 0.424186053

2000b 0.416673303 0.416588939
4000 4000a 0.424745169 0.42479645

4000d 0.415214004 0.415233809
8000 8000a 0.416367988 0.416174887

8000d 0.421539704 0.421421773
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PCA - Application to UBQP

Computation times for 10000 iterations

N Metropolis (CPU-1 core) PCA (CPU-4 cores) PCA (GPU-P100)
500 616 ms 401 ms 1.8 s
1000 3.7 s 835 ms 2.0 s
2000 19.2 s 6.9 s 2.5 s
4000 79 s 23.9 s 3.6 s
8000 296 s 92 s 7.4 s
16000 ≈ 1200 s 356 s 23 s
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UBQP: Theoretical results

Determine the statistical properties of minη H(η)

Conjecture
Let minη∈{0,1}N H(η) := H(η∗) := −MN := −mNN

Then there exist m̄ > 0 and 0 < ᾱ < 1 such that for almost all J

lim
N→∞

MN

N
= lim

N→∞
mN = m̄ lim

N→∞

∑N
i=1 η∗i
N

= ᾱ
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UBQP: Theoretical results

Determine the statistical properties of minη H(η)

Conjecture
Let minη∈{0,1}N H(η) := H(η∗) := −MN := −mNN

Then there exist m̄ > 0 and 0 < ᾱ < 1 such that for almost all J

lim
N→∞

MN

N
= lim

N→∞
mN = m̄ lim

N→∞

∑N
i=1 η∗i
N

= ᾱ

Theorem (Lower bound for the Ground State Energy)

m̄ < .562...
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UBQP: Theoretical results

Determine the statistical properties of minη H(η)

Conjecture
Let minη∈{0,1}N H(η) := H(η∗) := −MN := −mNN

Then there exist m̄ > 0 and 0 < ᾱ < 1 such that for almost all J

lim
N→∞

MN

N
= lim

N→∞
mN = m̄ lim

N→∞

∑N
i=1 η∗i
N

= ᾱ

Let ∆ := MN − E (MN ).

Theorem (Small Fluctuations of Minimum per Particle)
For some C > 0 and for all z > 0

P(|∆| > Nz) ≤ e−CNz
2
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Lower bound for the Ground State Energy - Naive approach

Let ν(m, α) = ∑η:|η|=Nα 1(H(η)<−mN)

Then

E (ν(m, α)) =

(
N

αN

)
1√

2πα2N

∫ −mN

−∞
e
− x2

2α2N dx

and

E (ν(m)) = ∑
αN

(
N

αN

)
1√

2πα2N

∫ −mN

−∞
e
− x2

2α2N dx

Denoting by I (α) = −α log(α)− (1− α) log(1− α), we have

E (ν(m)) � max
α∈[0,1]

e
N
(
I (α)−Nm2

2α2

)
:= max

α∈[0,1]
eNF (α,m)

and F (α,m) = 0 for α ≈ 0.788 and m ≈ 0.801
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Lower bound for the Ground State Energy

Let’s try to take into account the correlations between the sum of the Jij selected
by η and the ones not selected. We want to estimate P (ν(m, α) = 0).
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Lower bound for the Ground State Energy

Let’s try to take into account the correlations between the sum of the Jij selected
by η and the ones not selected. We want to estimate P (ν(m, α) = 0).

Let 0 < γ < 1
2 . Then

P (ν(m, α) = 0) ≥ P
(

ν(m, α) = 0, |H(1)| ≤ N
1
2+γ

)
≥ 1− P(|H(1)| > N

1
2+γ)− P

 ⋃
|η|=αN

H(η) < −mN, |H(1)| ≤ N
1
2+γ


≥ 1− P(|H(1)| > N

1
2+γ)− ∑

|η|=αN

P
(
H(η) < −mN, |H(1)| ≤ N

1
2+γ

)
= 1− P(|H(1)| > N

1
2+γ)−

(
N

αN

)
P
(
H(ηα) < −mN, |H(1)| ≤ N

1
2+γ

)
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Lower bound for the Ground State Energy

We have
P(|H(1)| > N

1
2+γ) � 0

P
(
H(η) < −mN, |H(1)| ≤ N

1
2+γ

)
� e

−N m2
2α2(1−α2)

and hence

P (ν(m, α) = 0) ≥ 1− G (m, α)

with

G (m, α) � +e
N

(
I (α)− m2

2α2(1−α2)

)

Let F1(m, α) := I (α)− m2

2α2(1−α2)
. Then,

for m > m̄ = .562, F1(α, m̄) < 0 ∀ α.
for m = m̄, F1(ᾱ, m̄) = 0 for α = ᾱ = .644
F1(α, m̄) < 0 ∀ α 6= ᾱ.
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Lower bound for the Ground State Energy
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Small fluctuations of Minimum per Particle

We want to show P(|∆| > Nz) ≤ e−CNz
2

Consider P(∆ > Nz). The evaluation of P(∆ < −Nz) is done in the same way.

By exponential Markov inequality we have that for all t > 0

P(∆ > Nz) ≤ e−tNzE (et∆)

Choose an arbitrary ordering on theJij s so to have

M = min
η

1√
N

N2

∑
k=1

ηi(k)ηj(k)Jk
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Small fluctuations of Minimum per Particle

Let EI (·), with I ⊂ {1, 2, ...,N2}, denote the expectation with respect to the Jk ’s
with k ∈ I . Then

∆ = M − E{1}(M) + E{1}(M)− E{1,2}(M) + E{1,2}(M) · · · − E (M)

Call ∆i = E{1,2,...,i−1}(M)− E{1,2,...,i}(M). and hence

E (et∆) = E

(
N2

∏
i=1

et∆i

)

This expression can be estimated iteratively, showing that

E

(
N2

∏
i=l

et∆i

)
≤ E

(
N2

∏
i=l+1

et∆i

)
L(N)

with L(N) ≤ e
ct2
N .
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Small fluctuations of Minimum per Particle

For this purpose note that

E

(
N2

∏
i=l

et∆i

)
= E

((
N2

∏
i=l+1

et∆i

)
et∆l

)
=

= E{l+1,...,N2}

((
N2

∏
i=l+1

et∆i

)
E{l}(e

t∆l )

)
and estimate

E{l}(e
t∆l ) = 1+

t2

2
E{l}(∆

2
l ) + R3(∆l )

where

R3(∆l ) =
t̃3

3!
E{l}

(
e t̃∆l ∆3

l

)
0 ≤ t̃ ≤ t
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Small fluctuations of Minimum per Particle

Iterating on all indices,

E (et∆) ≤
(
e

ct2
N

)N2

≤ ecNt
2

and hence we get that for all t > 0

P(∆ > Nz) ≤ e−tNzecNt
2
.

Choosing t = z
2c we get

P(∆ > Nz) ≤ e−N
z2
4c
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Work in progress

Find better bounds for m
Exploit "Shaken Dynamics" to find the minima of H

Introduced in the search of efficient dynamics to draw samples from Gibbs
measure on spin system
Different set of neighbors considered at each step
Connects Ising models defined on different lattices
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. . . . . . . . . . . . . . . . . . . .

THANK YOU!
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