Parallel Markovian Algorithms and their application to combinatorial optimization

Alessio Troiani
Department of Mathematics and Computer Science Univeristy of Perugia

Perugia - February 8, 2023

The quadratic Hamiltonian

Consider the quadratic form

$$
H(\eta)=K \sum_{i, j} J_{i j} \eta_{i} \eta_{j}
$$

- $K \in \mathbb{R}$
- $\eta \in \mathcal{A}^{N}$
- $J_{i j}$ interacton between η_{i} and η_{j}

Possible questions of interest are

- finding the minimizer of H
- determine the statistical properties of $\min _{\eta} H(\eta)$

Different "models" depending on the values of $J_{i j}$ and \mathcal{A}
Let $G=(V, E)$ be a graph. It is convenient to think

- $N=|V|$
- $J_{i j}=w(\{i j\})$.

The quadratic Hamiltonian

Sherrington-Kirkpatrick model

$$
H(\eta)=\frac{1}{\sqrt{N}} \sum_{i, j} J_{i j} \eta_{i} \eta_{j}
$$

- $\eta_{i} \in\{-1,1\}$
- $J_{i j}$ i.i.d. Standard Normal Random Variables

SK model (max cut)

The quadratic Hamiltonian

Unconstrained Binary Quadratic Programming (main topic of this talk)

UBQP / QUBO
(Gaussian Mean Field Lattice Gas)

$$
H(\eta)=\frac{1}{\sqrt{N}} \sum_{i, j} J_{i j} \eta_{i} \eta_{j}
$$

- $\eta_{i} \in\{0,1\}$
- $J_{i j} \in \mathbb{R}$

Can be used to represent a large class of discrete optimization problems. Find the subgourp of data points with strongest correlation.

The quadratic Hamiltonian

Linear Programming

$$
\begin{aligned}
& \min _{\eta} \sum_{i=1}^{N} c_{i} \eta_{i} \\
& \eta_{i} \in\{0,1\}
\end{aligned}
$$

$$
J_{i j}= \begin{cases}c_{i} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

The quadratic Hamiltonian

The maximum clique problem
A clique, C, in an undirected graph $G=(V, E)$ is a subset of the vertices, $C \subset V$, subgraph of G induced by C is a complete graph.

A maximum clique of G, is a clique, such that there is no clique with more vertices.

$$
J_{i j}= \begin{cases}-1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in E \\ +M & \text { otherwise }\end{cases}
$$

Linked to the cluster detection in large data sets and social networks.

The quadratic Hamiltonian

Other "classical" (lattice) problems in Statistical Mechanics, e.g:

- Curie-Weiss model
- $\eta_{i} \in\{-1,1\}$
- $J_{i j}=-J$ for $i \neq j$
- Ising model on \mathbb{Z}^{d}
- $\eta_{i} \in\{-1,1\}$
- $J_{i j}= \begin{cases}-J & i, j \text { neighboring sites on the lattice } \\ 0 & \text { otherwise }\end{cases}$
- Edward-Anderson model
- $\eta_{i} \in\{-1,1\}$
- $J_{i j} \neq 0 \Leftrightarrow i, j$ neighboring sites on the lattice

Unconstrained Binary Quadratic Programming

Unconstrained Binary Quadratic Programming

$$
H(\eta)=\frac{1}{\sqrt{N}} \sum_{i, j} J_{i j} \eta_{i} \eta_{j}
$$

Gibbs Measure

How can we find te minima of H ?
Idea: Sample from a probability distribution such that $P\left(H\left(\eta^{\star}\right)\right) \approx 1$ with $\eta^{\star}=\arg \max _{\eta} H(\eta)$.

Gibbs measure

$$
\pi_{\beta}(\eta)=\frac{e^{-\beta H(\eta)}}{Z_{\beta}}
$$

with $Z_{\beta}=\sum_{\eta} e^{-\beta H(\eta)}$ and $\beta>0$.
It is straightforward to check that

$$
\lim _{\beta \rightarrow \infty} \pi_{\beta}\left(\eta^{\star}\right)=1
$$

Markov Chain Monte Carlo

How can we sample from the Gibbs measure?
Let X_{t} be a irreducible and aperiodic Markov Chain on \mathcal{X} with transition probability on P. Then there is a unique probability distribution π on \mathcal{X} such that $\pi P=\pi$ and

$$
\lim _{t \rightarrow \infty}\left\|\mu^{(n)}-\pi\right\|_{\mathrm{TV}}=0
$$

The condition (detailed balance)

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i} \quad \forall i, j \in \mathcal{X}
$$

is enough to ensure π stationary for P.

Markov Chain Monte Carlo

Metropolis algorithm

$$
P_{\eta, \tau}= \begin{cases}\frac{1}{N} e^{-\beta[H(\tau)-H(\eta)]_{+}} & \text {if } \eta \sim \tau \\ 1-\sum_{\tau \sim \eta} \frac{1}{N} e^{-\beta[H(\tau)-H(\eta)]_{+}} & \text {if } \tau=\eta \\ 0 & \text { otherwise }\end{cases}
$$

It is immediately checked that

$$
\pi_{\eta} P_{\eta, \tau}=\pi_{\tau} P_{\tau, \eta}
$$

Markov Chain Monte Carlo

Metropolis algorithm

$$
P_{\eta, \tau}= \begin{cases}\frac{1}{N} e^{-\beta[H(\tau)-H(\eta)]_{+}} & \text {if } \eta \sim \tau \\ 1-\sum_{\tau \sim \eta} \frac{1}{N} e^{-\beta[H(\tau)-H(\eta)]_{+}} & \text {if } \tau=\eta \\ 0 & \text { otherwise }\end{cases}
$$

It is immediately checked that

$$
\pi_{\eta} P_{\eta, \tau}=\pi_{\tau} P_{\tau, \eta}
$$

Can we do "better"?

Probabilistic Cellular Automata

We are interested in natively parallel Markovian algorithms (instead of "single spin flip") to

- find the minimizers of $H(\eta)$
- draw samples from the Gibbs measure $\pi(\eta)=\frac{e^{-\beta H(\eta)}}{Z}$

A Probabilistic Cellular Automaton (PCA), is Markov Chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ with state space $\mathcal{X}=\{1, \ldots, k\}^{N}$ whose transition probabilities are such that

$$
P\left\{X_{n}=\tau \mid X_{n-1}=\sigma\right\}=\prod_{i=1}^{N} P\left\{\left(X_{n}\right)_{i}=\tau_{i} \mid X_{n-1}=\sigma\right\} .
$$

- Possible fast(er) convergence to equilibrium measure
- Well adapted to be simulated on (massively) parallel processors

Probabilistic Cellular Automata

We will be interested in PCA defined as follows.
Let $G=(V, E)$ be a graph and let $H(\eta, \tau)=\sum_{i \in V} h_{i}(\eta) \tau_{i}$. We will consider transition probabilities of the type

$$
P_{\eta, \tau}=\frac{e^{-H(\eta, \tau)}}{\sum_{\tau} e^{-H(\eta, \tau)}}=\prod_{i} \frac{e^{h_{i}(\eta) \tau_{i}}}{Z_{i}}
$$

e.g.:

$$
\begin{array}{r}
V=\Lambda \subset \mathbb{Z}^{2} \quad E=\{\{i, j\}: i, j \in V,|i-j|=1\} \\
\eta, \tau \in\{-1,1\}^{V} \quad h_{i}(\eta)=J\left(\eta_{i \downarrow}, \eta_{i \rightarrow}, \eta_{i \uparrow}, \eta_{i^{\leftarrow}}\right)+q \eta_{i}+\lambda
\end{array}
$$

Several results have been obtained for PCA of this type in the context of Ising models when each $h_{i}(\eta)$ depends on all neighbors of the spin at site x, e.g.:

- stationary measure of PCA
- relation of stationary measure of PCA with Gibbs measure

PCA - Application to UBQP

We define a transition matrix on $\{0,1\}^{N}$ as

$$
P_{\eta, \tau}=\frac{e^{-H(\eta, \tau)}}{\sum_{\tau} e^{-H(\eta, \tau)}}
$$

with

$$
H(\eta, \tau)=\beta \sum_{i} h_{i}(\eta) \tau_{i}+q \sum_{i}\left[\eta_{i}\left(1-\tau_{i}\right)+\tau_{i}\left(1-\eta_{i}\right)\right]
$$

where

- $h_{i}(\eta)=\frac{1}{\sqrt{N}} \sum_{j} J^{\prime} i j \eta_{j}$,
- $J^{\prime}=\frac{J+J^{T}}{2}$
- β is the inverse temperature
- q is a positive constant (inertial term)

Note that $H(\eta, \eta)=\beta H(\eta)$.

PCA - Application to UBQP

The transition matrix can be rewritten in the form

$$
P_{\eta, \tau}=\prod_{i} \frac{e^{-\beta h_{i}(\eta) \tau_{i}-q\left[\eta_{i}\left(1-\tau_{i}\right)+\tau_{i}\left(1-\eta_{i}\right)\right]}}{Z_{i}}
$$

which yields

$$
P\left(\tau_{i}=1 \mid \eta\right)=\frac{e^{-\beta h_{i}(\eta)-q\left(1-\eta_{i}\right)}}{Z_{i}}
$$

and

$$
P\left(\tau_{i}=0 \mid \eta\right)=\frac{e^{-q \eta_{i}}}{Z_{i}}
$$

where $Z_{i}=e^{-\beta h_{i}+q\left(1-\eta_{i}\right)}+e^{q \eta_{i}}$.

PCA - Application to UBQP

The reversible equilibrium measure of this PCA is

$$
\pi(\eta)=\frac{\sum_{\tau} e^{-H(\eta, \tau)}}{\sum_{\eta, \tau} e^{-H(\eta, \tau)}}
$$

since, because of the simmetry of J^{\prime}, the detailed balance condition is satisfied:

$$
\frac{\sum_{\tau} e^{-H(\eta, \tau)}}{\sum_{\eta, \tau} e^{-H(\eta, \tau)}} P_{\eta, \tau}=P_{\tau, \eta} \frac{\sum_{\eta} e^{-H(\eta, \tau)}}{\sum_{\eta, \tau} e^{-H(\eta, \tau)}}
$$

As q gets "large"

$$
\pi(\eta)=\frac{H(\eta, \eta)+\sum_{\tau \neq \eta} e^{-H(\eta, \tau)}}{\sum_{\eta, \tau} e^{-H(\eta, \tau)}} \approx \pi_{G}(\eta)
$$

PCA - Application to UBQP

N	Instance id	PCA	Metropolis
500	500 a	0.415129916	0.415129916
	500 b	0.424031186	0.424031186
1000	1000 a	0.414470925	0.414470925
	1000 b	0.412802104	0.412802104
2000	2000 a	0.424186053	0.424186053
	2000 b	0.416673303	0.416588939
4000	4000 a	0.424745169	0.42479645
	4000 d	0.415214004	0.415233809
8000	8000 a	0.416367988	0.416174887
	8000 d	0.421539704	0.421421773

PCA - Application to UBQP

Computation times for 10000 iterations

N	Metropolis (CPU-1 core)	PCA (CPU-4 cores)	PCA (GPU-P100)
500	616 ms	401 ms	1.8 s
1000	3.7 s	835 ms	2.0 s
2000	19.2 s	6.9 s	2.5 s
4000	79 s	23.9 s	3.6 s
8000	296 s	92 s	7.4 s
16000	$\approx 1200 \mathrm{~s}$	356 s	23 s

UBQP: Theoretical results

Determine the statistical properties of $\min _{\eta} H(\eta)$

Conjecture

Let $\min _{\eta \in\{0,1\}^{N}} H(\eta):=H\left(\eta^{*}\right):=-M_{N}:=-m_{N} N$
Then there exist $\bar{m}>0$ and $0<\bar{\alpha}<1$ such that for almost all J

$$
\lim _{N \rightarrow \infty} \frac{M_{N}}{N}=\lim _{N \rightarrow \infty} m_{N}=\bar{m} \quad \lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N} \eta_{i}^{*}}{N}=\bar{\alpha}
$$

UBQP: Theoretical results

Determine the statistical properties of $\min _{\eta} H(\eta)$

Conjecture

Let $\min _{\eta \in\{0,1\}^{N}} H(\eta):=H\left(\eta^{*}\right):=-M_{N}:=-m_{N} N$
Then there exist $\bar{m}>0$ and $0<\bar{\alpha}<1$ such that for almost all J

$$
\lim _{N \rightarrow \infty} \frac{M_{N}}{N}=\lim _{N \rightarrow \infty} m_{N}=\bar{m} \quad \lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N} \eta_{i}^{*}}{N}=\bar{\alpha}
$$

UBQP: Theoretical results

Determine the statistical properties of $\min _{\eta} H(\eta)$

Conjecture

Let $\min _{\eta \in\{0,1\}^{N}} H(\eta):=H\left(\eta^{*}\right):=-M_{N}:=-m_{N} N$
Then there exist $\bar{m}>0$ and $0<\bar{\alpha}<1$ such that for almost all J

$$
\lim _{N \rightarrow \infty} \frac{M_{N}}{N}=\lim _{N \rightarrow \infty} m_{N}=\bar{m} \quad \lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N} \eta_{i}^{*}}{N}=\bar{\alpha}
$$

UBQP: Theoretical results

Determine the statistical properties of $\min _{\eta} H(\eta)$

Conjecture

Let $\min _{\eta \in\{0,1\}^{N}} H(\eta):=H\left(\eta^{*}\right):=-M_{N}:=-m_{N} N$ Then there exist $\bar{m}>0$ and $0<\bar{\alpha}<1$ such that for almost all J

$$
\lim _{N \rightarrow \infty} \frac{M_{N}}{N}=\lim _{N \rightarrow \infty} m_{N}=\bar{m} \quad \lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N} \eta_{i}^{*}}{N}=\bar{\alpha}
$$

Theorem (Lower bound for the Ground State Energy)

$$
\bar{m}<.562 \ldots
$$

UBQP: Theoretical results

Determine the statistical properties of $\min _{\eta} H(\eta)$

Conjecture

Let $\min _{\eta \in\{0,1\}^{N}} H(\eta):=H\left(\eta^{*}\right):=-M_{N}:=-m_{N} N$
Then there exist $\bar{m}>0$ and $0<\bar{\alpha}<1$ such that for almost all J

$$
\lim _{N \rightarrow \infty} \frac{M_{N}}{N}=\lim _{N \rightarrow \infty} m_{N}=\bar{m} \quad \lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N} \eta_{i}^{*}}{N}=\bar{\alpha}
$$

Let $\Delta:=M_{N}-E\left(M_{N}\right)$.

Theorem (Small Fluctuations of Minimum per Particle)

For some $C>0$ and for all $z>0$

$$
P(|\Delta|>N z) \leq e^{-C N z^{2}}
$$

Lower bound for the Ground State Energy - Naive approach

$$
\text { Let } v(m, \alpha)=\sum_{\eta:|\eta|=N \alpha} 1_{(H(\eta)<-m N)}
$$

Lower bound for the Ground State Energy - Naive approach

Let $v(m, \alpha)=\sum_{\eta:|\eta|=N_{\alpha}} 1_{(H(\eta)<-m N)}$ Then

$$
E(v(m, \alpha))=\binom{N}{\alpha N} \frac{1}{\sqrt{2 \pi \alpha^{2} N}} \int_{-\infty}^{-m N} e^{-\frac{x^{2}}{2 \alpha^{2} N}} d x
$$

and

$$
E(v(m))=\sum_{\alpha N}\binom{N}{\alpha N} \frac{1}{\sqrt{2 \pi \alpha^{2} N}} \int_{-\infty}^{-m N} e^{-\frac{x^{2}}{2 \alpha^{2} N} d x}
$$

Denoting by $I(\alpha)=-\alpha \log (\alpha)-(1-\alpha) \log (1-\alpha)$, we have

$$
E(v(m)) \asymp \max _{\alpha \in[0,1]} e^{N\left(I(\alpha)-\frac{N m^{2}}{2 \alpha^{2}}\right)}:=\max _{\alpha \in[0,1]} e^{N F(\alpha, m)}
$$

and $F(\alpha, m)=0$ for $\alpha \approx 0.788$ and $m \approx 0.801$

Lower bound for the Ground State Energy

Let's try to take into account the correlations between the sum of the $J_{i j}$ selected by η and the ones not selected. We want to estimate $P(v(m, \alpha)=0)$.

Lower bound for the Ground State Energy

Let's try to take into account the correlations between the sum of the $J_{i j}$ selected by η and the ones not selected. We want to estimate $P(v(m, \alpha)=0)$.

Lower bound for the Ground State Energy

Let's try to take into account the correlations between the sum of the $J_{i j}$ selected by η and the ones not selected. We want to estimate $P(v(m, \alpha)=0)$.

Let $0<\gamma<\frac{1}{2}$. Then

$$
\begin{aligned}
& P(v(m, \alpha)=0) \geq P\left(v(m, \alpha)=0,|H(1)| \leq N^{\frac{1}{2}+\gamma}\right) \\
& \geq 1-P\left(|H(1)|>N^{\frac{1}{2}+\gamma}\right)-P\left(\bigcup_{|\eta|=\alpha N} H(\eta)<-m N,|H(1)| \leq N^{\frac{1}{2}+\gamma}\right) \\
& \geq 1-P\left(|H(1)|>N^{\frac{1}{2}+\gamma}\right)-\sum_{|\eta|=\alpha N} P\left(H(\eta)<-m N,|H(1)| \leq N^{\frac{1}{2}+\gamma}\right) \\
& =1-P\left(|H(1)|>N^{\frac{1}{2}+\gamma}\right)-\binom{N}{\alpha N} P\left(H\left(\eta_{\alpha}\right)<-m N,|H(1)| \leq N^{\frac{1}{2}+\gamma}\right)
\end{aligned}
$$

Lower bound for the Ground State Energy

We have

- $P\left(|H(1)|>N^{\frac{1}{2}+\gamma}\right) \asymp 0$
- $P\left(H(\eta)<-m N,|H(1)| \leq N^{\frac{1}{2}+\gamma}\right) \asymp e^{-N \frac{m^{2}}{2 \alpha^{2}\left(1-\alpha^{2}\right)}}$
and hence

$$
P(v(m, \alpha)=0) \geq 1-G(m, \alpha)
$$

with

$$
G(m, \alpha) \asymp+e^{N\left(I(\alpha)-\frac{m^{2}}{2 \alpha^{2}\left(1-\alpha^{2}\right)}\right)}
$$

Let $F_{1}(m, \alpha):=I(\alpha)-\frac{m^{2}}{2 \alpha^{2}\left(1-\alpha^{2}\right)}$. Then,

- for $m>\bar{m}=.562, F_{1}(\alpha, \bar{m})<0 \forall \alpha$.
- for $m=\bar{m}, F_{1}(\bar{\alpha}, \bar{m})=0$ for $\alpha=\bar{\alpha}=.644$
- $F_{1}(\alpha, \bar{m})<0 \forall \alpha \neq \bar{\alpha}$.

Lower bound for the Ground State Energy

Small fluctuations of Minimum per Particle

We want to show $P(|\Delta|>N z) \leq e^{-C N z^{2}}$
Consider $P(\Delta>N z)$. The evaluation of $P(\Delta<-N z)$ is done in the same way.
By exponential Markov inequality we have that for all $t>0$

$$
P(\Delta>N z) \leq e^{-t N z} E\left(e^{t \Delta}\right)
$$

Choose an arbitrary ordering on the $J_{i j}$ so to have

$$
M=\min _{\eta} \frac{1}{\sqrt{N}} \sum_{k=1}^{N^{2}} \eta_{i(k)} \eta_{j(k)} J_{k}
$$

Small fluctuations of Minimum per Particle

Let $E_{l}(\cdot)$, with $I \subset\left\{1,2, \ldots, N^{2}\right\}$, denote the expectation with respect to the J_{k} 's with $k \in I$. Then

$$
\Delta=M-E_{\{1\}}(M)+E_{\{1\}}(M)-E_{\{1,2\}}(M)+E_{\{1,2\}}(M) \cdots-E(M)
$$

Call $\Delta_{i}=E_{\{1,2, \ldots, i-1\}}(M)-E_{\{1,2, \ldots, i\}}(M)$. and hence

$$
E\left(e^{t \Delta}\right)=E\left(\prod_{i=1}^{N^{2}} e^{t \Delta_{i}}\right)
$$

This expression can be estimated iteratively, showing that

$$
E\left(\prod_{i=1}^{N^{2}} e^{t \Delta_{i}}\right) \leq E\left(\prod_{i=I+1}^{N^{2}} e^{t \Delta_{i}}\right) L(N)
$$

with $L(N) \leq e^{\frac{c t^{2}}{N}}$.

Small fluctuations of Minimum per Particle

For this purpose note that

$$
\begin{aligned}
& E\left(\prod_{i=l}^{N^{2}} e^{t \Delta_{i}}\right)=E\left(\left(\prod_{i=l+1}^{N^{2}} e^{t \Delta_{i}}\right) e^{t \Delta_{l}}\right)= \\
& =E_{\left\{I+1, \ldots, N^{2}\right\}}\left(\left(\prod_{i=I+1}^{N^{2}} e^{t \Delta_{i}}\right) E_{\{I\}}\left(e^{t \Delta_{l}}\right)\right)
\end{aligned}
$$

and estimate

$$
E_{\{l\}}\left(e^{t \Delta_{l}}\right)=1+\frac{t^{2}}{2} E_{\{l\}}\left(\Delta_{l}^{2}\right)+R_{3}\left(\Delta_{l}\right)
$$

where

$$
R_{3}\left(\Delta_{l}\right)=\frac{\tilde{t}^{3}}{3!} E_{\{l\}}\left(e^{\tilde{t} \Delta_{l}} \Delta_{l}^{3}\right) \quad 0 \leq \tilde{t} \leq t
$$

Small fluctuations of Minimum per Particle

Iterating on all indices,

$$
E\left(e^{t \Delta}\right) \leq\left(e^{\frac{c t^{2}}{N}}\right)^{N^{2}} \leq e^{c N t^{2}}
$$

and hence we get that for all $t>0$

$$
P(\Delta>N z) \leq e^{-t N z} e^{c N t^{2}} .
$$

Choosing $t=\frac{z}{2 c}$ we get

$$
P(\Delta>N z) \leq e^{-N \frac{z^{2}}{4 c}}
$$

Work in progress

- Find better bounds for m
- Exploit "Shaken Dynamics" to find the minima of H
- Introduced in the search of efficient dynamics to draw samples from Gibbs measure on spin system
- Different set of neighbors considered at each step
- Connects Ising models defined on different lattices

THANK YOU!

