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Theoretical problems:

1 Automorphism groups of algebraic curves;
2 Curves with many rational points;
3 Castle curves, Frobenius non-classical curves, Galois points...;

Applications:

1 AG codes, locally recoverable codes, PIR codes...;
2 Permutation polynomials, planar functions, APN functions...;
3 Cryptography (ECC, isogeny-based cryptography).
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Notation and terminology

K algebraically closed field of characteristic p > 0.

Algebraic curve X : projective (absolutely irreducible, non-singular)
algebraic variety of dimension 1 in a projective space PG(r,K).

Birational geometry → curves up to birational maps

Any algebraic curve X is birationally equivalent to a (possibly
singular) plane curve C : F (X,Y, Z) = 0 −→ a plane model of X .
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Birational invariants: the genus

C : F (X,Y, Z) = 0 a plane model of X .
The genus g(X ) of X is

g(X ) := 1
2(deg(F )− 1)(deg(F )− 2)− δ

Lines (and irreducible conics) have genus 0
Non-singular plane cubics (elliptic curves) have genus 1
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Birational invariants: the automorphism group

Aut(X ) = {φ : X → X | φ birational}

Example: the Fermat curve

Fn : Xn + Y n + Zn = 0, n 6= pr.

1 α1 : (X,Y, Z) 7→ (X,λY, µZ), λ, µ ∈ K n-th roots of unity;
2 α2 : (X,Y, Z) 7→ (Y,Z,X);
3 α3 : (X,Y, Z) 7→ (X,Z, Y ).

〈α1, α2, α3〉 ≤ Aut(Fn).
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Some motivations

"Whatever you have to do with a structure-endowed entity Sigma try to
determine its group of automorphisms.

You can expect to gain a deep insight into the constitution of Sigma in
this way."

(H. Weyl, Symmetry)

Construction of linear codes with many automorphisms.

G ≤ Aut(X ), G finite. There exists a curve Y whose points
correspond to the G-orbits of X .
Y := X/G is the quotient curve of X by G.
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How many automorphisms?

If g(X ) ≥ 2, Aut(X ) is a finite group [Schmid (1938),
Iwasawa-Tamagawa (1951), Roquette (1952), Rosentlich (1955),
Garcia (1993)]

Hurwitz bound (1892): If K = C and g(X ) ≥ 2,

|Aut(X )| ≤ 84(g(X )− 1)

Example: Klein quartic

K : X3Z + Y Z3 +XY 3 = 0

g(K) = 3
Aut(K) = PSL(2, 7)
|Aut(K)| = 168 = 84(3− 1)→ K attains the Hurwitz bound.
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The genus 4 case

Klein-Wiman-Edge-..
The maximum size for the automorphism group of a genus 4 complex
curve is 120 → there is no Hurwitz curve of genus 4!

Example: the Bring’s curve
Let V be the algebraic curve defined by

X1 +X2 +X3 +X4 +X5 = 0;
X2

1 +X2
2 +X2

3 +X2
4 +X2

5 = 0;
X3

1 +X3
2 +X3

3 +X3
4 +X3

5 = 0.

V is an algebraic curve of genus 4 embedded in PG(4,C);
The automorphism group of V is Sym5.
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A generalization of Bring’s curve in any characteristic
Let V be the algebraic variety of PG(m− 1,K) defined by

X1 +X2 + . . .+Xm = 0;
X2

1 +X2
2 + . . .+X2

m = 0;
· · · · · ·
· · · · · ·
Xm−2

1 +Xm−2
2 + . . .+Xm−2

m = 0;

V is an algebraic curve;
If K has zero characteristic, or the characteristic p does not divide
|Aut(V)|, then Aut(V) = Symm;
Examples of maximal curves, connections with the work of Redei,
regular sequences.

G. Korchmáros, S. Lia, and M. Timpanella, A generalization of Bring’s curve
in any characteristic, submitted to Mathematische Zeitschrift.
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The case of positive characteristic

Hurwitz bound II: If p > 0 and gcd(p, |Aut(X )|) = 1, then

|Aut(X )| ≤ 84(g(X )− 1)

What if p divides |Aut(X )|?

Example: Hermitian curve

Hq : Xq+1 + Y q+1 + Zq+1 = 0, q = ph

g(Hq) = 1
2q(q − 1)

|Aut(Hq)| = |PGU(3, q)| = q3(q3 + 1)(q2 − 1).

|Aut(X )| ≤ 16g(X )4 up to one exception (the Hermitian curve)
[Stichtenoth (1973)]
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A further improvement
Henn (1978): |Aut(X )| ≤ 8g(X )3 up to four exceptions, namely:

p = 2, X a non-singular model of

Y 2 + Y = X2k+1, k > 1

p > 2, X a non-singular model of

Y 2 = Xn −X, n = ph, h > 0

The Hermitian curve

The Suzuki curve: p = 2, X a non-singular model of

Xn0(Xn +X) = Y n + Y, n0 = 2r, r ≥ 1, n = 2n2
0.
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Birational invariants: the p-rank

X algebraic curve of genus g → JX Jacobian variety of dimension
g;

For any prime m,

Gm := {Q ∈ JX | [m]Q = 0}

m 6= p −→ |Gm| = m2g

m = p −→ |Gp| = pγ −→ γ =: γ(X ) is the p-rank of X

0 ≤ γ(X ) ≤ g(X ). If γ(X ) = g(X )→ X is ordinary.
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Back to Henn

Henn (1978): |Aut(X )| ≤ 8g(X )3 up to four exceptions, namely:

p = 2, X a non-singular model of

Y 2 + Y = X2k+1, k > 1

p > 2, X a non-singular model of

Y 2 = Xn −X, n = ph, h > 0

The Hermitian curve
The Suzuki curve: p = 2, X a non-singular model of

Xn0(Xn +X) = Y n + Y, n0 = 2r, r ≥ 1, n = 2n2
0.

All these exceptions have zero p-rank!
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Links between γ(X ) and Aut(X )

Theorem (Nakajima, 1987)
If X is ordinary (γ(X ) = g(X )) then

|Aut(X )| ≤ 84g(X )(g(X )− 1)

Let S be a p-subgroup of Aut(X ). If

|S| > 2p
p− 1g(X ),

then γ(X ) = 0
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The Hurwitz bound may even fail on Aut(X )P for some P ∈ X , i.e
|Aut(X )P | > 84(g(X )− 1).

Singh (1974):

|Aut(X )P | ≤
4pg(X )2

p− 1

(2g(X )
p− 1 + 1

)

Giulietti, Korchmáros (2018): p odd−→ if
|Aut(X )P | > 30(g(X )− 1) then either X is ordinary, or X has zero
p-rank.

Korchmáros, Montanucci (2018): p odd and X ordinary −→ if
|Aut(X )P | > 12(g(X )− 1) then either
(i) |Aut(X )P | = 3ph, 3 - p, or
(ii) if X̄ = X/Q, Q normal p-subgroup of Aut(X )P , then X̄ is rational

and Q has exactly two short orbits.
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Let G be an automorphism group of an ordinary curve X . If

|GP | > 12(g(X )− 1)

then, up to birational equivalence, one of the following holds.
(i) X has affine equation L1(y) = ax+ 1/x, where a ∈ K∗ and

L1(T ) ∈ K[T ] is a separable p-linearized polynomial of degree q.
Furthermore, X is ordinary.

(ii) p 6= 3 and X has affine equation L2(y) = x3 + bx, where b ∈ K and
L2(T ) ∈ K[T ] a separable p-linearized polynomial of degree q.
Furthermore the p-rank of X is equal to zero.

In Case (i) → X is an ordinary curve
In Case (ii) → X has zero p-rank and p 6= 3.

S. Lia and M. Timpanella, Bound on the order of the decomposition groups of
an algebraic curve in positive characteristic, Finite Fields and Their
Applications vol. 69, 101771 (2021)
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An alternative proof of Nakajima’s bound

Theorem (Lia, T., 2021)
Let X be a curve of genus g(X ) ≥ 2 with positive p-rank and let G be
a subgroup of Aut(X ). If for every P ∈ X , G(2)

P = {1} then

|G| ≤ 48(g(X )− 1)2. (1)

Open problem
Is this bound sharp? (at least for sufficiently large g, up to the
constant 48)

Closest known example: DGZ curve.

M. Giulietti, G. Korchmáros and M. Timpanella, On the
Dickson-Guralnick-Zieve curve, Journal of Number Theory vol.
196, 114-138 (2019).
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The DGZ curve

Fq finite field of order q = ph.

D1(x, y, z) =

∣∣∣∣∣∣∣
x xq xq

3

y yq yq
3

z zq zq
3

∣∣∣∣∣∣∣ , D2(x, y, z) =

∣∣∣∣∣∣∣
x xq xq

2

y yq yq
2

z zq zq
2

∣∣∣∣∣∣∣ ;

A ∈ GL(3, q), and (x̄, ȳ, z̄)t = A(x, y, z)t. Then

D1(x̄, ȳ, z̄) = det(A)D1(x, y, z), and D2(x̄, ȳ, z̄) = det(A)D2(x, y, z).

The rational function

F (x, y, z) = D1(x, y, z)
D2(x, y, z)

is GL(3, q)-invariant.
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The DGZ curve

F (x, y, z) is an absolutely irreducible (homogeneous) polynomial of
degree q3 − q2.

The Dickson-Guralnick-Zieve (DGZ) curve is the (absolutely
irreducible) plane curve with homogeneous equation
D : F (x, y, z) = 0.

The DGZ curve has genus g = 1
2q(q − 1)(q3 − 2q − 2) + 1.

Several properties: (unique) double Frobenius non-classical curve
over Fq and Fq3 , combinatorial properties of D(Fq3), very large
automorphism group.

Marco Timpanella Algebraic curves and their applications 20 / 22



The DGZ curve

F (x, y, z) is an absolutely irreducible (homogeneous) polynomial of
degree q3 − q2.

The Dickson-Guralnick-Zieve (DGZ) curve is the (absolutely
irreducible) plane curve with homogeneous equation
D : F (x, y, z) = 0.

The DGZ curve has genus g = 1
2q(q − 1)(q3 − 2q − 2) + 1.

Several properties: (unique) double Frobenius non-classical curve
over Fq and Fq3 , combinatorial properties of D(Fq3), very large
automorphism group.

Marco Timpanella Algebraic curves and their applications 20 / 22



Theorem (Giulietti, Korchmáros, T., 2019)
|Aut(D)| = |PGL(3, q)| = q3(q3 − 1)(q2 − 1).

|Aut(D)| ≈ g8/5.

If q = p, D is ordinary.

Guralnick, Zieve (conjecture): Nakajima’s bound is not sharp → g8/5

Theorem (Giulietti, Korchmáros, Lia, T., in preparation)
For a point P ∈ X , let SP be the Sylow p-subgroup of Aut(X )P . If
g(X/SP ) = 0 and |Aut(X )| > 10(g(X )− 1)(2γ(X ) + 3), then either

γ(X ) = 0;
there exists g ∈ Aut(X ) such that SP ∩ SR = {1}, where R = g(P )
and SR = gSP g

−1.
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