Algebraic curves and their applications

Marco Timpanella

University of Perugia

Young researchers@DMI:

V Workshop of the Department of Mathematics and Computer Science

8 February 2023

Theoretical problems:

- Automorphism groups of algebraic curves;
- Curves with many rational points;
- ³ Castle curves, Frobenius non-classical curves, Galois points...;

Applications:

- AG codes, locally recoverable codes, PIR codes...;
- Permutation polynomials, planar functions, APN functions...;
- Solution Cryptography (ECC, isogeny-based cryptography).

Theoretical problems:

- Automorphism groups of algebraic curves;
- Curves with many rational points;
- ³ Castle curves, Frobenius non-classical curves, Galois points...;

Applications:

- AG codes, locally recoverable codes, PIR codes...;
- Permutation polynomials, planar functions, APN functions...;
- Solution Cryptography (ECC, isogeny-based cryptography).

 \mathbbm{K} algebraically closed field of characteristic p>0.

Algebraic curve \mathcal{X} : projective (absolutely irreducible, non-singular) algebraic variety of dimension 1 in a projective space $PG(r, \mathbb{K})$.

- \bullet Birational geometry \rightarrow curves up to birational maps
- Any algebraic curve \mathcal{X} is birationally equivalent to a (possibly singular) plane curve $\mathcal{C} : F(X, Y, Z) = 0 \longrightarrow$ a plane model of \mathcal{X} .

Birational invariants: the genus

 $\mathcal{C} : F(X, Y, Z) = 0 \text{ a plane model of } \mathcal{X}.$ The genus $g(\mathcal{X})$ of \mathcal{X} is

$$g(\mathcal{X}) := \frac{1}{2}(\deg(F) - 1)(\deg(F) - 2) - \delta$$

- Lines (and irreducible conics) have genus 0
- Non-singular plane cubics (elliptic curves) have genus 1

Birational invariants: the automorphism group

•
$$\operatorname{Aut}(\mathcal{X}) = \{\phi : \mathcal{X} \to \mathcal{X} \mid \phi \text{ birational}\}\$$

Example: the Fermat curve

$$\mathcal{F}_n: X^n + Y^n + Z^n = 0, \quad n \neq p^r.$$

"Whatever you have to do with a structure-endowed entity Sigma try to determine its group of automorphisms. You can expect to gain a deep insight into the constitution of Sigma in this way." (H. Weyl, Symmetry)

- Construction of linear codes with many automorphisms.
- $G \leq \operatorname{Aut}(\mathcal{X}), G$ finite. There exists a curve \mathcal{Y} whose points correspond to the *G*-orbits of \mathcal{X} .

 $\mathcal{Y} := \mathcal{X}/G$ is the quotient curve of \mathcal{X} by G.

How many automorphisms?

- If $g(\mathcal{X}) \geq 2$, Aut (\mathcal{X}) is a finite group [Schmid (1938), Iwasawa-Tamagawa (1951), Roquette (1952), Rosentlich (1955), Garcia (1993)]
- Hurwitz bound (1892): If $\mathbb{K} = \mathbb{C}$ and $g(\mathcal{X}) \geq 2$,

 $|\operatorname{Aut}(\mathcal{X})| \le 84(g(\mathcal{X}) - 1)$

Example: Klein quartic

$$\mathcal{K}: X^3Z + YZ^3 + XY^3 = 0$$

•
$$g(\mathcal{K}) = 3$$

- $\operatorname{Aut}(\mathcal{K}) = PSL(2,7)$
- $|\operatorname{Aut}(\mathcal{K})| = 168 = 84(3-1) \to \mathcal{K}$ attains the Hurwitz bound.

The genus 4 case

Klein-Wiman-Edge-..

The maximum size for the automorphism group of a genus 4 complex curve is $120 \rightarrow$ there is no Hurwitz curve of genus 4!

Example: the Bring's curve

Let \mathcal{V} be the algebraic curve defined by

$$\begin{cases} X_1 + X_2 + X_3 + X_4 + X_5 = 0; \\ X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2 = 0; \\ X_1^3 + X_2^3 + X_3^3 + X_4^3 + X_5^3 = 0. \end{cases}$$

𝒱 is an algebraic curve of genus 4 embedded in PG(4, ℂ);
The automorphism group of 𝒱 is Sym₅.

A generalization of Bring's curve in any characteristic

Let $\mathcal V$ be the algebraic variety of $\mathrm{PG}(m-1,\mathbb K)$ defined by

$$\begin{cases} X_1 + X_2 + \ldots + X_m = 0; \\ X_1^2 + X_2^2 + \ldots + X_m^2 = 0; \\ \ldots \\ \vdots \\ X_1^{m-2} + X_2^{m-2} + \ldots + X_m^{m-2} = 0; \end{cases}$$

- \mathcal{V} is an algebraic curve;
- If \mathbb{K} has zero characteristic, or the characteristic p does not divide $|\operatorname{Aut}(\mathcal{V})|$, then $\operatorname{Aut}(\mathcal{V}) = Sym_m$;
- Examples of maximal curves, connections with the work of Redei, regular sequences.

G. Korchmáros, S. Lia, and M. Timpanella, A generalization of Bring's curve in any characteristic, submitted to Mathematische Zeitschrift.

Marco Timpanella

The case of positive characteristic

• <u>Hurwitz bound II</u>: If p > 0 and $gcd(p, |Aut(\mathcal{X})|) = 1$, then

 $|\operatorname{Aut}(\mathcal{X})| \le 84(g(\mathcal{X}) - 1)$

What if p divides $|Aut(\mathcal{X})|$?

Example: Hermitian curve

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0, \quad q = p^h$$

•
$$g(\mathcal{H}_q) = \frac{1}{2}q(q-1)$$

• $|\operatorname{Aut}(\mathcal{H}_q)| = |PGU(3,q)| = q^3(q^3+1)(q^2-1).$

• $|\operatorname{Aut}(\mathcal{X})| \leq 16g(\mathcal{X})^4$ up to one exception (the Hermitian curve) [Stichtenoth (1973)]

Marco Timpanella

A further improvement

<u>Henn (1978)</u>: $|\operatorname{Aut}(\mathcal{X})| \leq 8g(\mathcal{X})^3$ up to four exceptions, namely:

• $p = 2, \mathcal{X}$ a non-singular model of

$$Y^2 + Y = X^{2^k + 1}, \quad k > 1$$

• $p > 2, \mathcal{X}$ a non-singular model of

$$Y^2 = X^n - X, \quad n = p^h, \quad h > 0$$

- The Hermitian curve
- The Suzuki curve: $p = 2, \mathcal{X}$ a non-singular model of

$$X^{n_0}(X^n + X) = Y^n + Y, \quad n_0 = 2^r, \quad r \ge 1, \quad n = 2n_0^2.$$

Marco Timpanella

Birational invariants: the p-rank

• \mathcal{X} algebraic curve of genus $g \to J_{\mathcal{X}}$ Jacobian variety of dimension g;

For any prime m,

$$G_m := \{ Q \in J_{\mathcal{X}} \mid [m]Q = 0 \}$$

Marco Timpanella

 \mathcal{X}

Back to Henn

<u>Henn (1978)</u>: $|\operatorname{Aut}(\mathcal{X})| \leq 8g(\mathcal{X})^3$ up to four exceptions, namely: • $p = 2, \mathcal{X}$ a non-singular model of

$$Y^2 + Y = X^{2^k + 1}, \quad k > 1$$

• $p > 2, \mathcal{X}$ a non-singular model of

$$Y^2 = X^n - X, \quad n = p^h, \quad h > 0$$

- The Hermitian curve
- The Suzuki curve: $p = 2, \mathcal{X}$ a non-singular model of

$$X^{n_0}(X^n + X) = Y^n + Y, \quad n_0 = 2^r, \quad r \ge 1, \quad n = 2n_0^2.$$

All these exceptions have zero *p*-rank!

Marco Timpanella

Links between $\gamma(\mathcal{X})$ and $\operatorname{Aut}(\mathcal{X})$

Theorem (Nakajima, 1987)

• If \mathcal{X} is ordinary $(\gamma(\mathcal{X}) = g(\mathcal{X}))$ then

$$|\operatorname{Aut}(\mathcal{X})| \le 84g(\mathcal{X})(g(\mathcal{X}) - 1)$$

• Let S be a p-subgroup of $\operatorname{Aut}(\mathcal{X})$. If

$$|S| > \frac{2p}{p-1}g(\mathcal{X}),$$

then $\gamma(\mathcal{X}) = 0$

Marco Timpanella

The Hurwitz bound may even fail on $\operatorname{Aut}(\mathcal{X})_P$ for some $P \in \mathcal{X}$, i.e $|\operatorname{Aut}(\mathcal{X})_P| > 84(g(\mathcal{X}) - 1).$

• Singh (1974):

$$|\operatorname{Aut}(\mathcal{X})_P| \le \frac{4pg(\mathcal{X})^2}{p-1} \left(\frac{2g(\mathcal{X})}{p-1} + 1\right)$$

• Giulietti, Korchmáros (2018): $p \text{ odd} \longrightarrow \text{ if}$ $|\operatorname{Aut}(\mathcal{X})_P| > 30(g(\mathcal{X}) - 1)$ then either \mathcal{X} is ordinary, or \mathcal{X} has zero p-rank.

Korchmáros, Montanucci (2018): p odd and X ordinary → if |Aut(X)_P| > 12(g(X) - 1) then either

(i) |Aut(X)_P| = 3p^h, 3 ∤ p, or
(ii) if X
 = X/Q, Q normal p-subgroup of Aut(X)_P, then X
 is rational and Q has exactly two short orbits. Let G be an automorphism group of an ordinary curve \mathcal{X} . If

 $|G_P| > 12(g(\mathcal{X}) - 1)$

then, up to birational equivalence, one of the following holds.

- (i) \mathcal{X} has affine equation $L_1(y) = ax + 1/x$, where $a \in \mathbb{K}^*$ and $L_1(T) \in \mathbb{K}[T]$ is a separable *p*-linearized polynomial of degree *q*. Furthermore, \mathcal{X} is ordinary.
- (ii) $p \neq 3$ and \mathcal{X} has affine equation $L_2(y) = x^3 + bx$, where $b \in \mathbb{K}$ and $L_2(T) \in \mathbb{K}[T]$ a separable *p*-linearized polynomial of degree *q*. Furthermore the *p*-rank of \mathcal{X} is equal to zero.

In Case (i) $\rightarrow \mathcal{X}$ is an ordinary curve In Case (ii) $\rightarrow \mathcal{X}$ has zero *p*-rank and $p \neq 3$.

S. Lia and M. Timpanella, Bound on the order of the decomposition groups of an algebraic curve in positive characteristic, Finite Fields and Their Applications vol. 69, 101771 (2021)

Marco Timpanella

An alternative proof of Nakajima's bound

Theorem (Lia, T., 2021)

Let \mathcal{X} be a curve of genus $g(\mathcal{X}) \geq 2$ with positive *p*-rank and let G be a subgroup of Aut(\mathcal{X}). If for every $P \in \mathcal{X}$, $G_P^{(2)} = \{1\}$ then

$$|G| \le 48(g(\mathcal{X}) - 1)^2.$$
 (1)

Open problem

Is this bound sharp? (at least for sufficiently large g, up to the constant 48)

• Closest known example: DGZ curve.

 M. Giulietti, G. Korchmáros and M. Timpanella, On the Dickson-Guralnick-Zieve curve, Journal of Number Theory vol. 196, 114-138 (2019).

Marco Timpanella

•
$$\mathbb{F}_q$$
 finite field of order $q = p^h$.

$$D_1(x,y,z) = \begin{vmatrix} x & x^q & x^{q^3} \\ y & y^q & y^{q^3} \\ z & z^q & z^{q^3} \end{vmatrix}, \quad D_2(x,y,z) = \begin{vmatrix} x & x^q & x^{q^2} \\ y & y^q & y^{q^2} \\ z & z^q & z^{q^2} \end{vmatrix};$$

• $A \in GL(3,q)$, and $(\bar{x}, \bar{y}, \bar{z})^t = A(x, y, z)^t$. Then $D_1(\bar{x}, \bar{y}, \bar{z}) = \det(A)D_1(x, y, z)$, and $D_2(\bar{x}, \bar{y}, \bar{z}) = \det(A)D_2(x, y, z)$.

• The rational function

$$F(x, y, z) = \frac{D_1(x, y, z)}{D_2(x, y, z)}$$

is GL(3, q)-invariant.

Marco Timpanella

•
$$\mathbb{F}_q$$
 finite field of order $q = p^h$.

$$D_1(x,y,z) = \begin{vmatrix} x & x^q & x^{q^3} \\ y & y^q & y^{q^3} \\ z & z^q & z^{q^3} \end{vmatrix}, \quad D_2(x,y,z) = \begin{vmatrix} x & x^q & x^{q^2} \\ y & y^q & y^{q^2} \\ z & z^q & z^{q^2} \end{vmatrix};$$

•
$$A \in GL(3,q)$$
, and $(\bar{x}, \bar{y}, \bar{z})^t = A(x, y, z)^t$. Then
 $D_1(\bar{x}, \bar{y}, \bar{z}) = \det(A)D_1(x, y, z)$, and $D_2(\bar{x}, \bar{y}, \bar{z}) = \det(A)D_2(x, y, z)$.

• The rational function

$$F(x, y, z) = \frac{D_1(x, y, z)}{D_2(x, y, z)}$$

is GL(3,q)-invariant.

Marco Timpanella

- F(x, y, z) is an absolutely irreducible (homogeneous) polynomial of degree $q^3 q^2$.
- The Dickson-Guralnick-Zieve (DGZ) curve is the (absolutely irreducible) plane curve with homogeneous equation $\mathcal{D}: F(x, y, z) = 0.$
- The DGZ curve has genus $g = \frac{1}{2}q(q-1)(q^3 2q 2) + 1$.
- Several properties: (unique) double Frobenius non-classical curve over \mathbb{F}_q and \mathbb{F}_{q^3} , combinatorial properties of $\mathcal{D}(\mathbb{F}_{q^3})$, very large automorphism group.

- F(x, y, z) is an absolutely irreducible (homogeneous) polynomial of degree $q^3 q^2$.
- The Dickson-Guralnick-Zieve (DGZ) curve is the (absolutely irreducible) plane curve with homogeneous equation $\mathcal{D}: F(x, y, z) = 0.$
- The DGZ curve has genus $g = \frac{1}{2}q(q-1)(q^3 2q 2) + 1$.
- Several properties: (unique) double Frobenius non-classical curve over \mathbb{F}_q and \mathbb{F}_{q^3} , combinatorial properties of $\mathcal{D}(\mathbb{F}_{q^3})$, very large automorphism group.

Theorem (Giulietti, Korchmáros, T., 2019)

- $|\operatorname{Aut}(\mathcal{D})| = |PGL(3,q)| = q^3(q^3 1)(q^2 1).$
- $|\operatorname{Aut}(\mathcal{D})| \approx g^{8/5}$.
- If q = p, \mathcal{D} is ordinary.

Guralnick, Zieve (conjecture): Nakajima's bound is not sharp $\rightarrow g^{8/5}$

Theorem (Giulietti, Korchmáros, Lia, T., in preparation)

For a point $P \in \mathcal{X}$, let S_P be the Sylow *p*-subgroup of $\operatorname{Aut}(\mathcal{X})_P$. If $g(\mathcal{X}/S_P) = 0$ and $|\operatorname{Aut}(\mathcal{X})| > 10(g(\mathcal{X}) - 1)(2\gamma(\mathcal{X}) + 3)$, then either

- $\gamma(\mathcal{X}) = 0;$
- there exists $g \in \operatorname{Aut}(\mathcal{X})$ such that $S_P \cap S_R = \{1\}$, where R = g(P)and $S_R = gS_Pg^{-1}$.

THANK YOU FOR YOUR ATTENTION