EINSTEIN PSEUDO-RIEMANNIAN METRICS ON SOLVABLE LIE GROUPS

Federico A. Rossi

Università degli studi di Milano-Bicocca Dipartimento di Matematica e Applicazioni

08 February 2023

Young Researchers@DMI

Joint Work with D. Conti, V. del Barco, R. Segnan Dalmasso

Outline

- 1 Introduction
- 2 Construction of Nice Nilpotent Lie Algebras
 - LINK WITH DIAGRAM
 - ALGORITHM AND CLASSIFICATION
- 3 Construction of Indefinite Einstein Metrics on Nice Lie Groups
 - DIAGRAM INVOLUTIONS AND HOMOGENEOUS RICCI-FLAT METRICS
- 4 PSEUDO NILSOLITONS & EINSTEIN SOLVMANIFOLDS
 - Correspondences
- 5 CONCLUSION
- 6 References

Introduction

M differentiable manifold. Look for "best" (special) metric on M

Einstein metric
$$\operatorname{Ric}_g = \lambda \operatorname{Id}$$
 for some $\lambda \in \mathbb{R}$ (E)

Ricci Soliton metric
$$\operatorname{ric}_g = \lambda g - \frac{1}{2}\mathcal{L}_X g$$
 for some $\lambda \in \mathbb{R}, \ X \in \mathfrak{X}(M)$

- If $\lambda = 0$ the metric is *Ricci-flat*
- Ricci-flat metrics are related to string theory, fixed point of Ricci-flow

Einstein Riemannian Homogeneous case:

- $\blacksquare \ \ \, \mathsf{Homogeneous} \,\, \mathsf{Einstein} \,\, \mathsf{Ricci-flat} \, \Rightarrow \, \mathsf{are} \,\, \mathsf{flat} \,\, [\mathsf{Alekseevsky-Kimel'fel'd}]$
- 2 Positive scalar curvature \Rightarrow compact homogeneous spaces G/K [Myers]
- **3** Negative scalar curvature \Rightarrow non-compact [Bochner]

Alekseevsky Conjecture - Theorem [Böhm, Lafuente]

All Riemannian homogeneous Einstein manifolds of negative scalar curvature are solvmanifolds

Solvmanifold: simply connected solvable Lie group with a left-invariant metric

The Setting

Lie group
$$G$$
 \longleftrightarrow Lie algebra $\mathfrak g$ (in) definite (non degenerate) $($ pseudo- $)$ Riemannian metric g \longleftrightarrow bilinear form g on $\mathfrak g$ Levi Civita Connection, Ricci, Riemann curvature \longleftrightarrow tensors on $\mathfrak g$

$$\mathfrak{g} \ \ \textit{Nilpotent} : \ \mathfrak{g} \supset \mathfrak{g}' \supset \cdots \supset \mathfrak{g}^s = \{0\} \quad \ \ \textit{s-step} \quad \ \ \mathfrak{g}^i = [\mathfrak{g}, \mathfrak{g}^{i-1}]$$

$$\mathfrak{g} \ \ \ \ \textit{Solvable} : \ \alpha_i = [\mathfrak{a}_{i-1}, \mathfrak{a}_{i-1}] \quad \ \ \mathfrak{a}_0 = \mathfrak{g} \quad \ \ \mathfrak{a}_0 = \mathfrak{g} \supset \mathfrak{a}_1 \supset \cdots \supset \mathfrak{a}_r = \{0\}$$

$$\mathfrak{g} \ \ \ \ \textit{Unimodular} : \ \text{tr} \ \text{ad}(\nu) = 0$$

g nilpotent Lie algebra, g left-invariant metric is Algebraic Ricci soliton if

$$Ric = \lambda \operatorname{Id} + D$$
 $D \in \operatorname{Der}(\mathfrak{g}), \ \lambda \in \mathbb{R}$ (nilsoliton)

 $\mathfrak s$ solvable Lie algebra is *standard* (Riemannian) if $\mathfrak s = [\mathfrak s, \mathfrak s] \oplus^{\perp} \mathfrak a$ and $[\mathfrak a, \mathfrak a] = 0$ (i.e. $\mathfrak s = [\mathfrak s, \mathfrak s] \rtimes \mathbb R^k$)

 (\mathfrak{s},g) Einstein Riemannian solvmanifold implies:

- The following are equivalent:
 - 1 \mathfrak{s} is *unimodular* (tr ad(v) = 0)
 - 2 s is Ricci-flat
 - 3 s is flat
- \mathfrak{s} is *standard*, i.e. $\mathfrak{s} = \mathfrak{n} \rtimes \mathfrak{a}$ (orthogonal sum) [Lauret 10]
- \mathfrak{s} contains an Einstein *rank one* standard extension $\mathfrak{n} \rtimes \mathbb{R}$ [Heber 98]
- restricted metric on $\mathfrak n$ is *nilsoliton*, i.e. Ric $|_{\mathfrak n} = \lambda \mathrm{Id} + D$, $D \in \mathsf{Der}(\mathfrak n)$ [Heber 98]
- D is diagonalizable and satisfies: $tr(D \circ X) = tr(X)$, $\forall X \in Der(\mathfrak{n})$
- *D* above is *Nikolayevsky* (or *pre-Einstein*) *derivation*, exists on any Lie algebra, unique up to automorphisms [Nikolayevsky 11]
- D has positive and rational eigenvalues [Heber 98, Nikolayevsky 11]
- the metric on \$\si\$ is determined by metric on \$\nabla\$ [Heber 98]

Starting with a Riemannian Nilsoliton (n, g) we have:

- Any *nilsoliton* can be extended to an Einstein solvmanifold (S, g')
- The nilsoliton is unique up to isometry [Lauret 01]
- the metric on \$\si\$ is determined by metric on \$\nabla\$ [Heber 98]

Hence:

 $\begin{array}{ccc} \text{Classification of} & \text{Classification of} \\ \text{Einstein Solvmanifolds} & \longleftrightarrow & \text{Nilsolitons} \end{array}$

Einstein Indefinite Case

Examples of Ricci-flat metrics

- that are not flat
- on compact manifolds
- on non-unimodular manifolds

Some results on nilpotent Lie group:

- [Milnor 76] A nilpotent Lie group cannot have a Riemannian Einstein metric (unless it is abelian)
- Nilpotent Lie groups with bi-invariant metrics are necessarily Ricci-flat
- Examples of Einstein indefinite metric ($s \neq 0$) on non-abelian nilpotent Lie algebras [Conti, 19a], [Conti, 20]
- Many examples of Ricci-flat metrics [Conti, del Barco, 21]
- Obstruction [Conti, 19a], [Tibssirte 22]: \mathfrak{g} unimodular (with Killing form zero). If \mathfrak{g} has Einstein metric with $s \neq 0$. Then $Der(\mathfrak{g}) \subset \mathfrak{sl}(\mathfrak{g})$

Example

Example ([Conti, — 19a])

$$\big(0,0,0,0,e^{12}+e^{34},e^{14}-e^{23},-e^{24}+e^{35}+e^{16},-e^{13}+e^{26}+e^{45}\big)$$

Admits two Einstein metric with scalar curvature $s = \frac{56}{15}$, with signature (6,2) and (3,5):

$$e^{1} \otimes e^{1} + e^{2} \otimes e^{2} \pm (e^{3} \otimes e^{3} + e^{4} \otimes e^{4}) - \frac{7}{3} e^{5} \otimes e^{5} \mp \frac{7}{3} e^{6} \otimes e^{6} \pm \frac{98}{15} (e^{7} \otimes e^{7} + e^{8} \otimes e^{8})$$

$$\begin{array}{ll} \{e_1,\ldots,e_8\}\subset \mathfrak{g} & \leadsto & \{e^1,\ldots,e^8\}\subset \mathfrak{g}^* \text{ s.t.} \\ de^1=de^2=de^3=de^4=0, \quad de^5=e^1\wedge e^2+e^3\wedge e^4=e^{12}+e^{34}, \\ de^6=e^{14}-e^{23}, \quad de^7=-e^{24}+e^{35}+e^{16}, de^8=-e^{13}+e^{26}+e^{45} \end{array}$$

Theorem (Conti, — 19a)

There exist Einstein pseudo-Riemannian metrics on 8-dimensional nilpotent Lie groups with $s \neq 0$ of any signature.

Nice Lie Algebras

Nice nilpotent Lie algebra is a pair $(\mathfrak{g}, \mathcal{B})$: \mathfrak{g} nilpotent, $\mathcal{B} = \{e_1, \dots, e_n\}$ a basis with structure constants c_{ii}^k s.t.:

- I $\forall i < j$ there exists at most one k s.t. $c_{ij}^k \neq 0$

(i.e. $[e_i, e_j]$ and $e_i \perp de^j$ are a basis element up to constant)

Two nice nilpotent Lie algebras $(\mathfrak{g}, \mathcal{B})$, $(\mathfrak{g}', \mathcal{B}')$ are considered *equivalent* if there is a Lie algebra isomorphism f that maps basis elements to multiples of basis elements

 $(\mathfrak{g},\mathcal{B})$ is unique up to equivalence, i.e. up to the action of $\Sigma_n \ltimes D_n$.

- Introduced and studied by [Lauret, Will 13], useful in the study of nilsoliton and Ricci Flow (e.g. [Nikolayevsky 11], [Payne 10], Lauret)
- Explicit left-invariant Einstein pseudo-Riemannian metrics on nilpotent Lie group with $s \neq 0$ [Conti, 20] and s = 0 [Conti, 19b]

Link with Diagram

Nice nilpotent $(\mathfrak{g}, \mathcal{B}) \rightsquigarrow \text{diagram } \Delta$:

- $N(\Delta) = \mathcal{B}$
- **an** arrow with label $i \xrightarrow{j} k$ if $[e_i, e_j] = c_{ii}^k e_k$ with $c_{ii}^k \neq 0$

Direct, acyclic, with no multiple arrows with same surce and destination.

$$M_{\Delta} = egin{pmatrix} -1 & 0 & -1 & 0 & 1 & 0 \ 0 & -1 & 0 & -1 & 1 & 0 \ -1 & -1 & 0 & 0 & 0 & 1 \ 0 & 0 & -1 & -1 & 0 & 1 \end{pmatrix}$$

M_△ root matrix

 $(0,0,0,0,e^{13}+e^{24},e^{12}+e^{34})$

Algorithm to construct Nice diagram

 Δ has a natural filtration on nodes $N(\Delta) = N_0 \supset N_1 \supset \cdots \supset N_s$, where N_{i+1} contains all the nodes that are reached by at least one arrow in N_i . A diagram has $type(a_1, \ldots, a_s)$ if

$$(|N|, |N_1|, \ldots, |N_s|) = (a_1 + \cdots + a_s, a_2 + \cdots + a_s, \ldots, a_s).$$

Step 1. Classify diagrams of type (a_1, \ldots, a_s) .

Proposition

Let s > 1, $n = a_2 + \cdots + a_s$. Up to equivalence, any diagram of type (a_1, \ldots, a_s) can be obtained from a diagram of type (a_2, \ldots, a_s) by the following procedure:

- add a_1 nodes labeled $n, \ldots, n + a_1$.
- choose appropriate subsets $A_1 \leq A_2 \leq \cdots \leq A_{a_1}$ of $\{1, \ldots, n\}$ such that $A_1 \cup \cdots \cup A_{a_1} = \{1, \ldots, n\}$.
- for each $1 \le i \le a_1$, add an arrow $(n+i) \to j$ whenever $j \in A_i$.

Step 2. Remove the diagrams where some nodes have an odd number of incoming arrows.

Step 3. Eliminate isomorphic diagrams.

 Δ, Δ' are isomorphic \Rightarrow the resulting (families of) nice Lie algebras will be equivalent.

We introduce an appropriate hash function: by construction, Δ and Δ' isomorphic only if $\#(\Delta) = \#(\Delta')$

Step 4. For each diagram, compute the possible labelings.

Adding labels in pairs, iteratively, until the diagram is fully labeled.

Step 5. Eliminate equivalent diagrams.

As in Step 3 to eliminate duplicates, with the difference that the bijections are isomorphisms of nice diagrams.

Step 6. Eliminate diagrams for which Condition 4 is violated.

Classifying nice Lie algebras

Step A. Choose $\mathcal{J}_{\Delta,2}$ a maximal set of \mathbb{Z}_2 -linearly independent rows of $M_{\Delta,2}$, and choose $\mathcal{J}_{\Delta}\supset \mathcal{J}_{\Delta,2}$ parametrizing a maximal set of \mathbb{R} -linearly independent rows of M_{Δ} .

Proposition

$$\mathcal{J}_{\Delta,2} \subset \mathcal{J}_{\Delta} \subset \mathcal{I}_{\Delta}$$
 as above. Set $\mathring{V}_{\Delta} = \left\{ \sum c_I E_I \mid c_I \neq 0 \ \forall I \right\}$ and $W = \left\{ \sum c_I E_I \mid c_I = 1 \ \forall I \in \mathcal{J}_{\Delta,2}; \ c_I = \pm 1 \ \forall I \in \mathcal{J}_{\Delta} \setminus \mathcal{J}_{\Delta,2} \right\}.$

Then $\mathring{W}=W\cap \mathring{V}_{\Delta}$ is a fundamental domain in \mathring{V}_{Δ} for the action of D_n .

We are reduced to the set \mathring{W} of elements $\sum c_l E_l$ where

Algorithm and Classification

Step B. Determine the action of $\operatorname{Aut}(\Delta)$ on the set of connected components of \mathring{W} , and choose connected components W_1, \ldots, W_k of \mathring{W} , one for each orbit. **Step C**. On each component W_i , impose the Jacobi identity

$$\sum_{I,J}c_{I}c_{J}\mathfrak{a}(E_{IJ})=0;$$

Neglecting quadratic equations for the moment, determine the subspace $L_i \subset W$ defined by linear equations and inequalities.

Step D. For each nonempty L_j , consider the corresponding family of Lie algebras obtained by imposing the quadratic constraints from the Jacobi identity.

Theorem

Let Δ be a nice diagram , $\mathring{W} \supset W_1, \ldots, W_k$ as before. Let $B_j \subset W_j$ be the subset defined by the Jacobi equations. Then:

- each element of B_j defines a nice Lie algebra with diagram Δ ;
- up to equivalence, any nice Lie algebra with diagram Δ is obtained in this way. Moreover, if $j \neq k$, elements of B_j and B_k determine inequivalent nice Lie algebras.

We obtain [Conti, — 19b]:

- Algorithm to construct nice diagrams ∆
- Classifying nice Lie algebras (up to equivalence)
- Up to dim 7, "most" nilpotent Lie algebras are nice (by comparison with classification of nilpotent Lie algebras [Gong 98])
- Nice nilpotent Lie algebras classified up to dimension 9

dim	NLA	NLA with nice basis	nice NLA
3	2	2	2
4	3	3	3
5	9	9	9
6	34	33	36
7	175 + 9 families	$141 + 4\frac{1}{2}$ families	152 + 41 families
8	?	?	917 + 45 families
9	?	?	6386 + 501 families

Construction of Einstein Nice Nilpotent Lie Algebras

Lemma (Conti, — 19b)

Let \mathfrak{g} be a nice Lie algebra with diagram Δ .

Then all derivations of $\mathfrak g$ are traceless if and only if $(1,\ldots,1)\in\mathbb R^n$ is in the space spanned by the rows of M_Δ , i.e.

$${}^tM_{\Delta}X=(1,\ldots,1)$$

Proposition (Conti, — 19b)

g nice, g diagonal metric. Then:

$$\mathsf{Ric} = \frac{1}{2} \left({}^t M_{\Delta} X \right)^D$$

$$X = (x_{ijk})$$
 s.t. $\frac{x_{ijk}}{c_{iik}^2} = \frac{g_k}{g_i g_i}$

Theorem (Conti, — 19b)

Let $\mathfrak g$ be a nice nilpotent Lie algebra with root matrix M_Δ . Then $\mathfrak g$ admits a diagonal metric of signature δ satisfying $\mathrm{Ric} = \frac{1}{2} k \mathrm{Id}$ if and only if for some X:

- (K) ${}^tM_{\Delta}X = [k]$
- (H) each component x_l is not zero;
- (L) (logsign x_I) = $M_{\Delta,2}\delta$;
- (P) for a basis $\alpha_1, \ldots, \alpha_j$ of ker ${}^tM_{\Delta}$ we have:

$$|X|^{\alpha_i} = (c^2)^{\alpha_i}$$
 $i = 1, \ldots, j$

 σ involution of order two

A metric on \mathfrak{g} is σ -diagonal if the metric tensor has the form

$$g = g_i e^i \otimes e^{\sigma_i}$$
 $0 \neq g_i \in \mathbb{R}$

Similar Theorem for $\sigma \in \operatorname{Aut} \Delta$

• Construction and classification of diagonal and σ -diagonal Einstein metrics [Conti, — 19b; Conti, — 20]

We obtain a one-parameter family of non-isometric Ricci-flat metrics

Theorem (Conti, — 20)

For each $n \ge 8$, there exist n-dimensional nice nilpotent Lie algebras with an Einstein diagonal metric with $s \ne 0$

Diagram Involutions and homogeneous Ricci-flat metrics

Definition

 Δ a nice diagram, a permutation σ of nodes will be called an *arrow-breaking* involution if it has order two and:

$$i \xrightarrow{j} k \implies \begin{cases} \nexists \ \sigma(i) \xrightarrow{\bullet} \sigma(k) \\ \nexists \ \sigma(i) \xrightarrow{\sigma(j)} \bullet \end{cases}$$

Proposition (Conti, Del Barco, — 21)

 $\mathfrak g$ nice nilpotent Lie algebra with diagram Δ , and σ an arrow-breaking involution. Then any σ -diagonal metric is Ricci-flat.

• Arrow breaking condition can be rewritten using polinomials P_{Δ} , Q_{Δ}

Results

We obtain [Conti, Del Barco, — 21]:

- Existence of arrow-braking involutions for nilpotent Lie algebras with "large center" $(n \dim 3 < \dim 3 + 3)$
- Any 2-step nilpotent Lie algebra attached to a graph has an arrow-breaking involution
- Every nice nilpotent Lie algebra of dimension ≤ 7 has a Ricci-flat metric
- Every 6-dimensional nonabelian nilpotent Lie algebra has a nonflat Ricci-flat metric
- Sufficient conditions to have Ricci-flat nonflat metrics
- Construction of infinite families of Ricci-flat metrics associated to nilradicals of parabolic subalgebras of split simple Lie algebras (A_n, B_n, C_n, G_2)

Figure: Diagram of Nilradical of parabolic subalgebra of \mathfrak{g}_2

Figure: Diagram of Nilradical of parabolic subalgebra of \mathfrak{g}_2

Pseudo-Riemannian Nilsolitons

The pair (g,g) is a *(Algebraic) nilsoliton* if g nilpotent Lie algebra, g a pseudo-Riemannian metric and

$$Ric = \lambda Id + D, \quad \lambda \in \mathbb{R}, D \in Der \mathfrak{g}$$

• There exists Ricci soliton which are not algebraic [Batat, Onda 17]

Theorem ([Conti, — 22])

- g be a nilsoliton metric on a nilpotent Lie algebra g. Then either
 - **1** $\lambda = 0$ and D is a nilpotent derivation in the null space of Der \mathfrak{g} ; or
 - 2 $\lambda \neq 0$ and setting $\tilde{D} = -\frac{1}{\lambda}D$, we have

$$\operatorname{tr}(X) = \operatorname{tr}(\tilde{D} \circ X), \quad X \in \operatorname{\mathsf{Der}} \mathfrak{g};$$

relative to the Jordan decomposition $\tilde{D}=\tilde{D}_s+\tilde{D}_n$, \tilde{D}_s is a Nikolayevsky derivation and \tilde{D}_n a nilpotent derivation in the null space of Der \mathfrak{g} .

In either case, the eigenvalues of D are rational

Types of pseudo-Riemannian Nilsolitons

- I (Nil1) $\lambda=0$, D=0This is the Ricci-flat case, examples of which exist in abundance (see e.g.[Conti, Del Barco, — 21] or [Conti, — 19b])
- 2 (Nil2) $\lambda = 0$, $D \neq 0$ D nilpotent (nonsemisimple), D is not Nikolayevsky Derivation
- **3** (Nil3) $\lambda \neq 0$, D = 0
 - This is the Einstein case, with nonzero scalar curvature: First example in [Conti, — 19a], more constructions in [Conti, — 20]
 - Obstruction: if $\mathfrak n$ has a Einstein metric with $\lambda \neq 0$, then $\mathsf{Der}\,\mathfrak n \subset \mathfrak{sl}(\mathfrak n)$ [Conti, 19a], [Tibssirte 22]
 - no counterpart in the Riemannian case [Milnor 76]
- 4 (Nil4) $\lambda \neq 0$, $D \neq 0$
 - Similar to the Riemannian situation
 - If D is diagonalizable, it is a multiple of a Nikolayevsky derivation

Standard and Pseudo-Iwasawa Lie Algebras

Definition

A *standard decomposition* of a metric Lie algebra $\tilde{\mathfrak{g}}$ is a decomposition $\tilde{\mathfrak{g}}=\mathfrak{g}\oplus^{\perp}\mathfrak{a}$, where \mathfrak{g} is a nilpotent ideal and \mathfrak{a} is an abelian subalgebra

- Standard Riemannian solvmanifolds are also standard for this definition
- lacksquare $[ilde{\mathfrak{g}}, ilde{\mathfrak{g}}]= ilde{\mathfrak{g}}'\subset\mathfrak{g}\subset\mathfrak{n}$
- \blacksquare Excluding cases $\mathfrak g$ with degenerate metric or with $\mathfrak g^\perp$ not abelian

Definition

A standard decomposition $\tilde{\mathfrak{g}}=\mathfrak{g}\oplus^{\perp}\mathfrak{a}$ is *pseudo-lwasawa* if ad $X=(\operatorname{ad} X)^*$, $X\in\mathfrak{a}$

- Solv. Einstein Examples with $(ad X)^*$ not a derivation
- Solv. Einstein Examples with $[ad X, (ad X)^*] \neq 0$
- $\tilde{\mathfrak{g}}$ Solv. Einstein with Standard decomposition s.t. $\forall X \in \mathfrak{a}$ (ad X)* is a derivation and [ad \mathfrak{a} , (ad X)*] = 0. Then $\tilde{\mathfrak{g}}$ is isometric to a Pseudo-Iwasawa

From Einstein Solvmanifolds to Nilsolitons

Theorem ([Conti, — 22])

Let $\tilde{\mathfrak{g}}=\mathfrak{g}\oplus^{\perp}\mathfrak{a}$ be a pseudo-lwasawa decomposition. Then the Einstein equation $\widetilde{\mathrm{Ric}}=\lambda\mathrm{Id}$ on $\tilde{\mathfrak{g}}$ is satisfied if and only if

1 g with the induced metric satisfies the nilsoliton equation

$$Ric = \lambda Id + D$$
, $D = ad H$

2 $\langle \operatorname{ad} X, \operatorname{ad} Y \rangle_{\operatorname{tr}} = -\lambda \langle X, Y \rangle$ for all $X, Y \in \mathfrak{a}$. In this case, then

$$\operatorname{tr} D^2 = -\lambda \operatorname{tr} D$$

Where:

- $\langle X, Y \rangle_{\mathsf{tr}} := \mathsf{tr}(X \circ Y)$
- H is the metric dual of $v \mapsto \operatorname{tr} \widetilde{\operatorname{ad}} v$, i.e. $g(H, v) = \operatorname{tr} \widetilde{\operatorname{ad}} v$, $v \in \widetilde{\mathfrak{g}}$

Einstein Solvmanifold $\lambda \neq 0$

Corollary ([Conti, — 22])

Given a pseudo-lwasawa solvable Lie algebra $\tilde{\mathfrak{g}}=\mathfrak{g}\oplus^{\perp}\mathfrak{a}$ satisfying $\widetilde{\mathsf{Ric}}=\lambda\mathrm{Id}$ for some nonzero λ , then either:

- **11** $\tilde{\mathfrak{g}}$ is unimodular, H=0 and \mathfrak{g} is a nilsoliton of type (Nil3), with $\mathrm{Ric}=\lambda\mathrm{Id}$; or
- **2** $\tilde{\mathfrak{g}}$ is not unimodular, $\langle H, H \rangle \neq 0$, $\mathfrak{g} \oplus \operatorname{Span} \{H\}$ is also Einstein with a pseudo-lwasawa decomposition, and \mathfrak{g} is a nilsoliton of type (Nil4), with $\operatorname{Ric} = \lambda \operatorname{Id} + D$ and $\operatorname{tr} D \neq 0$
- if $\lambda \neq 0$, then g is the nilradical

From Nilsolitons to Einstein Solvmanifolds

Type (Nil4) and (Nil3) nilsolitons

Theorem ([Conti, — 22])

Let $\mathfrak g$ be a nilsoliton, $\mathrm{Ric}=\lambda\mathrm{Id}+D$, $\lambda\neq0$. Let $\mathfrak a\subset\mathsf{Der}\,\mathfrak g$ be a subalgebra of self-adjoint derivations containing D, and assume that $\langle,\rangle_{\mathsf{tr}}$ is nondegenerate on $\mathfrak a$.

Then the metric $\langle , \rangle_{\mathfrak{g}} - \frac{1}{\lambda} \langle , \rangle_{tr}$ on $\tilde{\mathfrak{g}} = \mathfrak{g} \rtimes \mathfrak{a}$ is Einstein with $\widetilde{\mathsf{Ric}} = \lambda \mathrm{Id}$ and the decomposition $\tilde{\mathfrak{g}} = \mathfrak{g} \oplus^{\perp} \mathfrak{a}$ is pseudo-lwasawa

Called Pseudo-Iwasawa Extension

- Let $\tilde{\mathfrak{g}}=\mathfrak{g}\oplus^{\perp}\mathfrak{a}$ be an Einstein solvable Lie algebra of pseudo-lwasawa type of nonzero scalar curvature. Up to isometric isomorphisms, $\tilde{\mathfrak{g}}$ is a pseudo-lwasawa extension of \mathfrak{g}
- Recover the 1-dimensional extensions of [Yan 20] and [Yan, Deng 21]

Summary

Conclusions

- Strong relation between diagrams and geometric objects
- The pseudo-Riemannian case is richer:
 - Einstein nilpotent metrics
 - We describe the pseudo-Iwasawa Einstein solvmanifolds
 - We construct many nilsolitons [Conti, 21], uniqueness missing
 - We use these results to construct Einstein solvmanifolds with other compatible structures (pseudo-Kähler, para-Kähler [— 22], pseudo-Sasaki [Conti, —, Segnan Dalmasso 22])
- There is a "generalized nilsoliton" equation to construct Einstein Solvmanifold that are not pseudo-Iwasawa [Conti, —, Segnan Dalmasso 22]

Open Problems

- Construction and classification of non-nilpotent nice Lie algebras Construction and classification nilpotent nice Lie algebras over \mathbb{F}_p
- Can a nilpotent Lie algebra admit two inequivalent nice bases with the same diagram?
- Existence of nNLA with infinite many inequivalent basis?
- Does every nilpotent Lie algebra admit a Ricci-flat indefinite metric?
- Relation between diagram and ad-invariant metric (building blocks)
- $Der(\mathfrak{g}) \subset \mathfrak{sl}(\mathfrak{g}) \implies$ Existence of Einstein metric with $s \neq 0$?
- Understand better the Einstein pseudo-Riemannian Solvmanifolds

References

[Batat, Onda 17] W. Batat and K. Onda Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups. J. Geom. Phys., 114:138-152, 2017

[Böhm, Lafuente] C. Böhm and R. Lafuente. Non-compact Einstein manifolds with symmetry.

[Conti, del Barco, - 21] D. Conti, V. del Barco and F.A. Rossi. Diagram involutions and homogeneous Ricci-flat metrics. Manuscripta Math., 165,3-4, 381-413, 2021

[Conti, del Barco, — 21b] D. Conti, V. del Barco and F.A. Rossi. Uniqueness of ad-invariant metrics. arXiv:2103.16477, to appear in Tohoku Math. J.

[Conti, — 19a] D. Conti and F. A. Rossi. Einstein nilpotent Lie groups.

J. Pure Appl. Algebra, 223,3:976-997, 2019

[Conti. — 19b] D. Conti and F. A. Rossi. Ricci-flat and Einstein pseudoriemannian nilmanifolds. Complex Manifolds, 6.1:170-193, 2019

[Conti, — 20] D. Conti and F. A. Rossi. Indefinite Einstein metrics on nice Lie groups. Forum Math., 32.6:1599-1619, 2020

[Conti, — 22] D. Conti and F. A. Rossi. Indefinite nilsolitons and Einstein solvmanifolds.

J. Geom. Anal., 32.3:p.88, (2022)

[Conti, - 21] D. Conti and F. A. Rossi. Nice pseudo-Riemannian nilsolitons. J. Geom. Phys., 173:p.104433, (2022)

[Conti, —, Segnan Dalmasso 22] D. Conti, F. A. Rossi and R. Segnan Dalmasso. Pseudo-Kähler and pseudo-Sasaki Einstein solvmanifolds.

arXiv:2206.13825, 2022

[Gong 98] M.-P. Gong.

Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and \mathbb{R})
ProQuest LLC, Ann Arbor, MI, 1998

Thesis (Ph.D.)-University of Waterloo (CAN)

[Lauret 01] J. Lauret.

Ricci soliton homogeneous nilmanifolds. *Math. Annalen*, 319, 715-733, 2001

[Lauret 10] J. Lauret.

Einstein solvmanifolds are standard. Ann. of Math. (2), 172(3):1859–1877, 2010

[Heber 98] J. Heber

Noncompact homogeneous Einstein spaces. *Invent. math.*, 133, 279-352, 1998.

[Milnor 76] J. Milnor.

Curvatures of left invariant metrics on Lie groups.

Advances in Math., 21(3):293–329, 1976

[Nikolayevsky 11] Y. Nikolayevsky.

Einstein solvmanifolds and the pre-Einstein derivation.

Trans. Amer. Math. Soc., 363(8):3935–3958, 2011

[- 22] F.A. Rossi

New special Einstein pseudo-Riemannian metrics on solvable Lie algebras.

[Tibssirte 22] O. Tibssirte

Einstein Lorentzian solvable unimodular Lie groups.

arXiv:2210.15717, 2022

[Yan 20] Z. Yan.

Pseudo-Riemannian Einstein metrics on noncompact homogeneous spaces.

J. Geom., 111 (1), 2020. Art. 4, 18 pp.

 $[\mathsf{Yan},\,\mathsf{Deng}\,\,21]\,\,\mathsf{Z}.\,\,\mathsf{Yan}\,\,\mathsf{and}\,\,\mathsf{S}.\,\,\mathsf{Deng}.$

Double extensions on Riemannian Ricci nilsolitons.

J. Geom. Anal., 2021

Thank you

for your kind attention