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Introduction

Data Collection
Data collection is the process by which sensor networks collect, and store data in a sink node for
answering to external queries
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Introduction

Motivations (1)

Single-hop Connections, as the name implies, assumes direct one-hop communication between a
sensor and the sink

Not all the sensors are connected via single-hop to the depot/sink that requires the data
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Introduction

Motivations (2)
Multi-hop connection allows multiple hops for communication among a sensor and the sink
Packets are forwarded through in-the-middle nodes located between a sensor and the sink

In multi-hop implementation the sensors closer to the depot consume more energy
Several nodes may be a bottleneck for the network
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Introduction

Motivations (3)
A ground vehicle as mobile sink allows to collect data by moving close to the sensors
After collecting, the ground vehicle transfers the data to the sink node, i.e., the robot is a data carrier

Ground vehicles movements could be affected by the presence of obstacles
Ground vehicle speed is relatively low
Ground vehicles are constrained in the storage (when collecting data)
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Introduction

Motivations (4)
Using a flying vehicle as mobile sink

Drone is not affected by eventual obstacles on the terrain
Drone speed is higher than that of ground vehicles
Drones are constrained in both the energy (when flying and hovering), and the storage (when
collecting data)
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Introduction

Data Collection Scenario: The Premise
The drone has to perform a mission (route) to/from the depot, with the aim to selectively collect the
data from the sensors via single-hop close to the sensors
The drone cannot collect the data from all the deployed sensors due limited energy battery (flying and
hovering have an impact) and storage space (the larger is the data, the more is its occupancy )
The ground sensors generate data, and are characterized by a relevance, e.g., freshness of the data

⇒ Goal: collect the most relevant data, while ensuring that the mission energy cost does not
exceed the battery budget, and the total collected data does not exceed the storage limit
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Introduction

Contributions

The contributions of this paper are summarized as follows:

We define a novel optimization problem, called Single-drone Data-collection Maximization Problem
(SDMP), and prove it to be NP-hard

We devise an Integer Linear Programming (ILP) formulation for optimally solving SDMP, as well as an
approximation plus two heuristic algorithms for obtaining sub-optimal solutions

We evaluate the performance of our algorithms on randomly generated synthetic data
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Problem Formulation

Data Collection Area
The data collection area is defined by a field F

3D plane
the surface is not flat
whose center is O = (0, 0, 0)

A set V = {v1, . . . , vn} of n heterogeneous ground sensors
A depot placed at the center O = (0, 0, 0)
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Problem Formulation

Sensors

Each sensor vi ∈ V

Is randomly deployed in F
Its position is defined by a 3D coordinate (xi, yi, zi) appropriately chosen with respect to O
Has a local storage of size Wi

Perceives physical phenomena, e.g., temperature, pressure, or even pictures or videos, and then generates
data to be locally stored

Let 0 < wi ≤ Wi be the size of this generated data

The data is modeled by a relevance, and relevant data should be prioritized when ground sensors have
to start the data transferring

This is modeled by associating a reward ri > 0 to each sensor vi

The more is the reward, the more relevant is to off-load the data from the sensor
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Problem Formulation

Drone (1)
The external device which collects the data from the sensors is a drone denoted as D
The drone flies at a fixed altitude h above the ground, and it has a communication range with radius R

It can collect data from a sensor vi if ∥D − vi∥2 ≤ R, i.e., their Euclidean distance is within the
communication range
For each sensor vi, we define an admissible region Ci in which the drone can actually communicate with it

The drone is allowed to fly only at specific locations over F , called waypoints, represented by a set P
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Problem Formulation

Example

Given a set of sensor V = {v1, v2, v3, v4} we compute:

1 The admissible region Ci in which the drone can actually communicate with the sensors
2 All projected sensors’ positions at height h
3 For each pair of sensors vi and vj , we add in P all the intersection points p1

i,j and p2
i,j between Ci and Cj

4 The depot O = p0 ∈ P
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Given n sensors, the number of waypoints m = |P | ≤ n+ n(n− 1) + 1

Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 15 / 31



Problem Formulation

Example
Given a set of sensor V = {v1, v2, v3, v4} we compute:

1 The admissible region Ci in which the drone can actually communicate with the sensors

2 All projected sensors’ positions at height h
3 For each pair of sensors vi and vj , we add in P all the intersection points p1

i,j and p2
i,j between Ci and Cj

4 The depot O = p0 ∈ P

v1

C1

v2

C2

v3

C3

v4

C4

Depot

Sensor

Waypoint

Legend:

Given n sensors, the number of waypoints m = |P | ≤ n+ n(n− 1) + 1

Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 15 / 31



Problem Formulation

Example
Given a set of sensor V = {v1, v2, v3, v4} we compute:

1 The admissible region Ci in which the drone can actually communicate with the sensors
2 All projected sensors’ positions at height h

3 For each pair of sensors vi and vj , we add in P all the intersection points p1
i,j and p2

i,j between Ci and Cj

4 The depot O = p0 ∈ P

v1

C1

p1

v2

C2

p2

v3

C3

p3

v4

C4

p4

Depot

Sensor

Waypoint

Legend:

Given n sensors, the number of waypoints m = |P | ≤ n+ n(n− 1) + 1

Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 15 / 31



Problem Formulation

Example
Given a set of sensor V = {v1, v2, v3, v4} we compute:

1 The admissible region Ci in which the drone can actually communicate with the sensors
2 All projected sensors’ positions at height h
3 For each pair of sensors vi and vj , we add in P all the intersection points p1

i,j and p2
i,j between Ci and Cj

4 The depot O = p0 ∈ P

v1

C1

p1

v2

C2

p2

v3

C3

p3

v4

C4

p4 p1
3,4

p2
3,4

p1
1,2

p2
1,2

Depot

Sensor

Waypoint

Legend:

Given n sensors, the number of waypoints m = |P | ≤ n+ n(n− 1) + 1

Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 15 / 31



Problem Formulation

Example
Given a set of sensor V = {v1, v2, v3, v4} we compute:

1 The admissible region Ci in which the drone can actually communicate with the sensors
2 All projected sensors’ positions at height h
3 For each pair of sensors vi and vj , we add in P all the intersection points p1

i,j and p2
i,j between Ci and Cj

4 The depot O = p0 ∈ P

v1

C1

p1

v2

C2

p2

v3

C3

p3

v4

C4

p4 p1
3,4

p2
3,4

p1
1,2

p2
1,2

O

Depot

Sensor

Waypoint

Legend:

Given n sensors, the number of waypoints m = |P | ≤ n+ n(n− 1) + 1

Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 15 / 31



Problem Formulation

Example
Given a set of sensor V = {v1, v2, v3, v4} we compute:

1 The admissible region Ci in which the drone can actually communicate with the sensors
2 All projected sensors’ positions at height h
3 For each pair of sensors vi and vj , we add in P all the intersection points p1

i,j and p2
i,j between Ci and Cj

4 The depot O = p0 ∈ P

v1

C1

p1

v2

C2

p2

v3

C3

p3

v4

C4

p4 p1
3,4

p2
3,4

p1
1,2

p2
1,2

O

Depot

Sensor

Waypoint

Legend:

Given n sensors, the number of waypoints m = |P | ≤ n+ n(n− 1) + 1
Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 15 / 31



Problem Formulation

Drone (2)

The drone is constrained by the limited energy of its battery of capacity E

The energy is consumed when the drone:
Moves between waypoints
Hovers at a position

The sensors can start the data transferring procedure only when the drone hovers at waypoints

The drone collects data from multiple sensors sequentially, one at a time

We do not allow for a partial transferring ⇒ drone is allowed to off-load data from a subset sensor

We neglect communication issues, e.g., shadowing, fading, or multipath propagation

The drone is constrained by the limited storage by its storage capacity S
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Problem Formulation

Mission

The drone’s mission M is formed by a sequence of distinct waypoints to be visited to/from the depot

A drone’s mission is characterized:
The total mission cost CM in terms of energy consumed during the flight (flying and hovering)
The total used storage UM by the drone in terms of transferred data from the selected sensors
The total obtained rewardRQ by the drone after having transferred the whole data from the selected sensors
(Where Q is the subset of sensors selected for the mission)

A mission is valid if CM ≤ E and UM ≤ S

We assume that any mission formed by only a single waypoint is both energy- and
storage-feasible for the drone
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Problem Formulation

Single-drone Data-collection Maximization Problem (SDMP)
Given

The set of sensors V each characterized by
a reward ri

an amount of generated data wi

The drone’s energy and storage budgets E and S, respectively

The objective is to determine the optimal mission M∗ and the optimal selection of sensors Q∗ such that

(M∗, Q∗) = arg max
M,Q

RQ : CM ≤ E, UM ≤ S.
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Problem Formulation

NP-Hardness

Theorem

The SDMP is NP-hard.

The proof comes from the fact that the Orienteering Problem is a special case for this problem
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Problem Formulation

Integer Linear Programming Formulation (ILP)
The ILP formulation is:

max
∑n
i=1

∑m
j=0 rixij (1)

subject to: ∑m
j=0 xij ≤ 1, ∀i ∈ V (2)∑m
j=1 y0j =

∑m
l=1 yl0 = 1, ∀l, j ∈ M \ {0} (3)

yjj = 0, ∀j ∈ M (4)∑m
l=1 ylk =

∑m
j=1 ykj = maxi∈V xik, ∀k ∈ M \ {0} (5)

ul − uj + 1 ≤ (m− 1)(1 − ylj), ∀l, j ∈ M \ {0} (6)

1 ≤ ul ≤ m, ∀l ∈ M \ {0} (7)∑n
i=1

∑m
j=0 wixij ≤ S (8)∑m

j=0 (
∑n
i=1 hixij +

∑m
l=0 fljylj) ≤ E (9)
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1. maximizes the overall reward
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Problem Formulation

Integer Linear Programming Formulation (ILP)
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Problem Formulation

Integer Linear Programming Formulation (ILP)
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Problem Formulation

Integer Linear Programming Formulation (ILP)
The ILP formulation is:
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Problem Formulation

Integer Linear Programming Formulation (ILP)
The ILP formulation is:
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5. guarantees that the generated path is a simple cycle which contains the selected sensors
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Problem Formulation

Integer Linear Programming Formulation (ILP)
The ILP formulation is:

max
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6. ensures that no more than a single loop is allowed
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Problem Formulation

Integer Linear Programming Formulation (ILP)
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7. indicates the temporal order of the visited waypoints, i.e., ul < uj if l is visited before j
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Problem Formulation
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Proposed Algorithms

Reward-Storage-first Energy-then Optimization (RSEO) (1)

We devise an approximation algorithm that sub-optimally solves SDMP, called Reward-Storage-first
Energy-then Optimization (RSEO)

Algorithm 1: The RSEO Algorithm

1 V ′ ← knapsack(V, S)
2 P ′ ← min-set-cover(V ′, P )
3 M ← traveling-salesman(P ′)
4 while CM > E do
5 p← arg minpi∈M Rpi , M ←M \ p

6 return M

Approximation Ratio: 0.5
µ log |V ′|

⇒ Time complexity: O(|P ′|3)

v1

v2

v3

v4

O

v5

v6

v7
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3 M ← traveling-salesman(P ′)
4 while CM > E do
5 p← arg minpi∈M Rpi , M ←M \ p

6 return M

Approximation Ratio: 0.5
µ log |V ′|

⇒ Time complexity: O(|P ′|3)
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Proposed Algorithms

Reward-Storage-first Energy-then Optimization (RSEO) (2)

Theorem

RSEO solves SDMP with an approximation ratio of ψ
µϕ where µϕ is the number of waypoints returned by a

ϕ-approximation algorithm for the min-set-cover whose optimal solution has µ elements, which cover the
sensors selected by a ψ-approximation algorithm for the knapsack.

Time complexity: the overall time complexity of RSEO can be depicted as follows:
We rely fractional knapsack algorithm which requires O(n log n)
We rely on a greedy strategy for the min-set-cover which requires O(m|V ′|)
We rely on the 3

2 -approximation algorithm for the TSP which takes O(|P ′|3)
Considering that at each iteration we remove one vertex, the time required by the loop is O(|P ′| log |P ′|)

⇒ O(n log n + m|V ′| + |P ′|3 + |P ′| log |P ′|) = O(|P ′|3)
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Proposed Algorithms

Max ratio Reward-Energy (MRE)

We devise an algorithm that sub-optimally solves SDMP, called Max ratio Reward-Energy (MRE)

Algorithm 2: The MRE Algorithm

1 M ← ∅, P̂ ← {p0, p1, . . . , pn}
2 while P̂ ̸= ∅ do

3 p← best-waypoint-ratio-reward-to-energy(M, P̂ )
4 if is-augmentable(M, p) then

5 M ←M ∪ p

6 P̂ ← P̂ \ p

7 return M v1

v2

v3

v4

O

v5

v6

v7

⇒ Time complexity: O(n2)
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Proposed Algorithms

Max ratio Reward-Storage (MRS)

We propose an algorithm that sub-optimally solves SDMP, called Max ratio Reward-Storage (MRS)

MRS, similar to MRE, relies on the largest ratio overall reward to storage

Algorithm 3: The MRE Algorithm

1 M ← ∅, P̂ ← {p0, p1, . . . , pn}
2 while P̂ ̸= ∅ do

3 p← best-waypoint-ratio-reward-to-storage(M, P̂ )
4 if is-augmentable(M, p) then

5 M ←M ∪ p

6 P̂ ← P̂ \ p

7 return M

⇒ Since MRS works as MRE, its time complexity is O(n2)
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Performance Evaluation

Settings
ILP formulation is implemented using CPLEX
Coding: Python language

Description Variable Unit Value
Field sides F km 5
Number of sensors n − {10, . . . , 200}
Sensor height zi m [−5, 5]
Data to transfer wi MB [100, 1024]
Reward ri − [1, 10]
Drone altitude h m {20, 40}
Communication range R m 50
Energy consumption for flying − J/m 200
Energy consumption for hovering − J/s 700
Data transfer rate − MB/s 9
Energy budget E MJ {5, 10}
Storage budget S GB {16, 32}

Francesco Betti Sorbelli (unipg) Young researchers@DMI 2023 Feb 8th, 2023 27 / 31



Performance Evaluation

A Few Results
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The best performing algorithm is RSEO

RSEO performs worse when it has low energy
budget with respect to the size of the field

MRE’s results are quite stable

The worst performing algorithm is MRS

Storage constraint seems less stringent
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Conclusion

Conclusion and Future Work

In this work:
We formalized an optimization problem, the Single-drone Data-collection Maximization Problem (SDMP)
We showed SDMP is NP-Hard
We proposed an ILP formulation
We devised an approximation and two heuristic algorithms
We evaluated the performance of our algorithms on randomly generated data

Future work:
To investigate the SDMP considering real communication issues
To explore a multiple drone scenario, where a fleet of drones have to cooperate in order to collect data

→ under review: “Wireless IoT Sensors Data Collection Reward Maximization by Leveraging Multiple Energy- and
Storage-Constrained UAVs”, Journal of Computer and System Sciences

To build a real test-bed with a single drone which aims to evaluate a real case performance
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Conclusion

Thank you for your attention!
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