Mastering the Empirical Maze

Laurent Michel
University of Connecticut

Overview

e Motivation
eEmpirical science
eEmpirical method in CS
e Specificities
e Pijtfalls
ePlatforms

e Analysis

Motivation

e A few motivations

Empirical Method is not that easy
Essential to do it right!

—_—

|
|

Computing makes it even harder

|
l

Current trend in paper is {
scary, disappointing...
and it is getting worse!

|

Why? Oh Why?

e\What is the purpose of an experiment?

1. Validate a scientific hypothesis

2. Convince other scientists of the validity
Keys /

Clear
Sound

Reproducible)
WS | .

What are the problems?

e Clarity
eNot enough information communicated
eSetup, conditions, environment,
eSoundness
e\/alidating on irrelevant aspects
*\Nrong measurements
e Statistical significance
° ...
e Reproducibility

eSimply can’t reproduce!

Overview

e Motivation
eEmpirical science
eEmpirical method in CS
e Specificities
e Pijtfalls
ePlatforms

e Analysis

Empirical Sciences

e The scientific method

"a method of procedure that has characterized
natural science since the 17th century,
consisting in systematic observation,
measurement, and experiment, and the
formulation, testing, and modification of
hypotheses.”

Oxford English Dictionary

Empirical method

eCentral tenet
e All evidence for the scientific method must be
e Empirical or Empirically based
e Meaning....

e Dependent on observable evidence

Physics Example

eQuestion

e\What kind of relation/force (if any) exist between masses?
e Observation

o|f | hold an apple....

eAnd let go of it....

o[t falls!
eHypothesis

e Maybe the two masses are attracted to each other

¢So0: Posit some relation and check what works!

Physics Example

eNewton’s theory of universal gravity
o2nd [qw: F=
e[orce is proportional to the masses

eForce is inversely proportional to the distance
eEnvironment influence is a constant factor (no vacuum)
o[t has
e[imits (and therefore assumptions)
e[t can be tested
o\Vith experiments that either
e Confirm
e |nfirm

10

Cavendish’s Experiment

eSimple Idea
e Measure the amount of “torsion force” on wire when...
*The large balls get close to small balls
e All balls have known masses

eDistances from center to center can be measured

eCheck that it satisfies Ny
,e:/ u_ght
M - 1M P
F _ G 1 2 2 /,’ARays E
d M Mirror
eBonus @ T
.
e\\Ve determine constant G n s Focate

11

Empirical method

e|mportant facts

e Apparatus exist in the real world

e Observe that nature conforms to prediction

12

Empirical method

e|mportant facts

e Apparatus exist in the real world

e Observe that nature conforms to prediction

e Measurements are imperfect

e|nherent noise in mass, distance, torsion force

13

Empirical method

e|mportant facts

e Apparatus exist in the real world

e Observe that nature conforms to prediction

e Measurements are imperfect

e|nherent noise in mass, distance, torsion force

eEnvironment matters

G changes with location [earth, moon, jupiter....]

Empirical Method must inherently handle ‘i

this variability

14

Process

® The problem
eFirst, formulate an hypothesis
eThen, determine how to validate it
eGiven an hypothesis...

1.Formalize hypothesis / assumptions

2.Design an experiment to see whether predictions are met
3.Determine the conditions of the experiment

4.Determine the measurements needed to validate
5.Determine how to deal with the uncertainty

6.Execute the experiment

/.Analyze the outcomes

15

Question

How much of this carries over to CS”?

16

Overview

e Motivation
eEmpirical science
eEmpirical method in CS
e Specificities
ePijtfalls
ePlatforms

e Analysis

17

Empirical Method in CS

e|t’s a different world!

18

What we build

e Software as a model of the real world

19

What we build

e Software as a model of the real world

Model of software

Abstraction

20

What we build

e Software as a model of the real world

Model of software

\4

Behavioral
Hypothesis
Expectations

21

What we build

e Software as a model of the real world

Model of software

+T W,
O
¥

MJ“ * m‘" — Abstracton —p ﬁ ;‘Z A“\ '
k3 ur "‘:" .. &“’
e ((CC

execute

\4

Behavioral
Hypothesis
Expectations

22

What we build

e Software as a model of the real world

Model of software

+TW,

O

iyt
& 94 '/

::;:J::z::x e m‘m— Abstracton ——» ﬁ;’
PR

RS OO

= |
execute

Abstraction

conformance?

\4

Behavioral
Hypothesis
Expectations

23

Caveat Emptor

In the
L Implementation J
eUncertainty / Stochasticity lurks... choices
\/
Model of software V
+TW,
O
T S)
|n the J S5 o 25 Abstraction —— ﬁ(' \{Jg
model —— l}‘\e‘_‘?

v conformance?

Behavioral
Hypothesis
Expectations

itself |
execute
In the Abstraction Z In the simulator)
benchmarks i
1 \.

In the
measurements) 0t

-

What can go wrong ?

25

First Recall

e\\Ne need an experiment

¢ To validate/Test the hypothesis

eThat is tractable [doable in the allotted time]

eFor which we can make pertinent measurements

e\Where the measurement uncertainty is minimal

e That is reproducible

26

First Pitfall

e\\Vhat about this conformance?

Model of software

Note

We rarely test against the real world
We often test the computer simulation

o Behavioral
N Hypothesis
Expectations

27

Bottom-line

o|f the abstraction is flawed....
¢ The simulation might conform to the hypothesis of a flawed model!
eBut the entire result is irrelevant in practice!

e The Pitfall

The behavioral expectations should ¢
not derive from the model (alone)

but from the real world!

Refined model

Abstraction

Model of software

\4

Behavioral
Hypothesis
Expectations

”’@

Abstraction — »

' Q%

'ts,s,
|

execute

conformance?

29

Second Pitfall

® The experiment occurs on the simulator

30

What has changed

Then

Now

dedicated

Time-sharing

slow with constant speed

\Very fast, variable speed

Static speed

Power-driven resource allocation

flat memory hierarchy

NUMA

fixed CPU caches

variable cache allocation

small memory

Huge memory

Mono-processors

Multi-processors

Homogeneous

Heterogeneous

IN-order sequential

deep pipelining
speculative, out-of-order

Minimal OS

Complex OS, caching

Mono-task

Multi-task

Bottom-line

o\\ithout enough details...

e[t is impossible to reproduce timing performance reliably

e Joday, it depends on
e Fxact machine being used
e|_aptop or Desktop
¢ Other tasks running?
e\Which OS?
¢ Anything running concurrently?
e\Which compiler did you use?

¢\\ith what options?

[Ghz myth anyone?]
[why?]

[and which version!]

[are you sure?]

The compiler? Really ?

eYes! [http://www.luxrender.net/forum/viewtopic.php?f=21&t=603]

e That was in 2008, the gap is certainly not shrinking....

Compiler

Options

Speed

gcc

~02 -Wall -DLUX_USE_OPENGL -DHAVE_PTHREAD_H

factor: 1.0

gcc

-03 -march=prescott -mfpmath=sse -ftree-vectorize -funroll-loops -
Wall -DLUX_USE_OPENGL -DHAVE_PTHREAD_H

factor: 1.1419 (+14.19%)

gcc

-03 -march=prescott -mfpmath=sse -ftree-vectorize -funroll-loops -ffast-
math -Wall -DLUX_USE_OPENGL -DHAVE_PTHREAD_H

factor: 1.1677 (+16.77%)

gcc/profile

Pass 1 =>"-03 --coverage -march=prescott -mfpmath=sse -ftree-vectorize
~funroll-loops -ffast-math -Wall -DLUX_USE_OPENGL -DHAVE_PTHREAD_H"
Pass2 => "-03 -fbranch-probabilities -march=prescott -mfpmath=sse -
ftree-vectorize -funroll-loops -ffast-math -Wall -DLUX_USE_OPENGL -
DHAVE_PTHREAD_H"

factor: 1.2117 (+21.17%)

ICC

Pass 1 =>"-prof-gen -prof-dir /tmp -O3 -ipo -mtune=core2 -xT -unroll -
fp-model fast=2 -rcd -no-prec-div -DLUX_USE_OPENGL -DHAVE_PTHREAD_H

D"__sync_fetch_and_add(ptr,addend)=_InterlockedExchangeAdd(const_cast<v
oid*>(reinterpret_cast<volatile void*>(ptr)), addend)""

Pass2 => "-prof-use -prof-dir /tmp -O3 -ipo -mtune=core2 -xT -unroll -fp-
model fast=2 -rcd -no-prec-div -DLUX_USE_OPENGL -DHAVE_PTHREAD_H '-
D"__sync_fetch_and_add(ptr,addend)=_InterlockedExchangeAdd(const_cast<v
oid*> (reinternret cast<volatile void*>(ntr)) _addend)""

factor: 1.4245 (+42.45%)

34

Third Pitfall: Benchmark Selection Hell

e The Problem
eHow to build a benchmark suite?
eNamely
eUse relevant benchmarks [most likely to trigger the behaviors]
eUse the right-size benchmarks
ePrecisely specified [for reproducibility]
e Measurements cannot be intrusive

eBroadly available [for reproducibility]

35

Relevance |

eChoice is delicate
eSome benchmarks are tuned for a specific technique!
eExample

e Un-capacitated facility location

¢ORLIB source: [http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capinfo.html]

eSmall scale.
eHard for MIP methods

e Kratica source [Solving The Simple Plant Location Problem By Genetic Algorithm]
e Much bigger!

e Designed with specific structures

36

Relevance |

¢ Critical
¢|f the benchmark does not exert the piece to measure...
|t becomes useless!

eExample

¢|magine testing a new way to implement backtracking search
*Quizz

e\\Vhat is the hypothesis ?

e\What kind of benchmark should be chosen to evaluate?

37

Use case: The hypothesis

The new implementation is faster
than traditional implementations of
DFS in modern solvers.

38

Use case: Benchmark selection

eChoose a “pure” approach
eBenchmarks that
ePropagate very little [as little as possible]
eBacktrack as much as possible!
¢ This is the worst case scenario.
ePitch the benchmark against you.
¢ Therefore
¢|f you win here, you will win under better circumstances

¢ The results are independent of the propagation used

39

A New Constraint

ePaper topic

e A new constraint / propagator
e|ssues

eDoes it achieve the same filtering?

eDoes it claim better complexity?

40

Filtering issue

o|f the filtering is different...

¢ The constraint may induce changes in dynamic heuristics

¢ The constraint may induce different filtering at each fixpoint
eHow to evaluate?

eSeparate the effects [evaluate with static branching]

e Measure filtering volume

e Consider micro-benchmark on constraint alone

e Consider macro-benchmark effect [in context!]

41

Complexity issue

eQuestion
¢|s the improvement relevant in practice?
e Traps
eDepends on time spent in that propagator
¢ Time spent in propagator depends on benchmark too!

e|mprovement might not be significant on problem

42

Right-sized

o|f benchmark is too big
eYou can’t complete all the test in due time

e|f benchmark is too small

*You might well fall under your measurement noise floor.

eHence, any measurement is pure noise and useless.

43

Precisely Specified

e Meaning

eThe data set is not sufficient.

eExperiment in CP often needs
e A detailed model
e Constraint
eSearch
e A data set

44

Example

e(Consider the statement

“We used the langford 3/9
iInstance to test the search
procedure XYZ.” [anonymous]

e\\What is missing?

45

Example

e(Consider the statement

“We used the langford 3/9
iInstance to test the search
procedure XYZ.” [anonymous]

e\What is missing

¢\\/hich model was used?

46

Example

e(Consider the statement

“We used the langford 3/9
iInstance to test the search
procedure XYZ.” [anonymous]

e\Vhat is missing
e\\Which model was used?

e Given a model, which filtering algorithms were used for each
constraint?

47

Example

e(Consider the statement

“We used the langford 3/9
iInstance to test the search
procedure XYZ.” [anonymous]

e\Vhat is missing
e\Which model was used?

e Given a model, which filtering algorithms were used for each
constraint?

eSince XYZ uses randomization, what were the tie breaks?

48

Bottom line

eBenchmark choice matters a lot
e Can frustrate people trying to reproduce/understand
eCan lead you astray
e Can prompt you to draw incorrect conclusions
¢Size matters
e Too big/too many, and you can drawn
e Too small/too few, and you can miss the mark
Keys }
Beware of stochasticity [the smaller, the worse] |
Don’t be fooled by large sizes
Be deliberate and strive for reproducibility
R ——— | .

B

Fourth Pitfall: Tie break

¢ Tie-breaking

¢Or how to pick from several, apparently equally good, choices
eCan be done in two ways

e Deterministically

eRandomly

50

Deterministic tie-breaking

eSimple
eForm a lexicographic ordering instead
eFor instance
¢\\When domain sizes are equal, always prefer the first variable
e|ssue
e\What determines who is first?
¢ Typical answer
e|nternal variable identifier
eDepends on order of creation of variables
eSide-issue
e Modeling object like matrices make it harder [row major?]

51

Randomized tie breaking

eKey idea
eFrom the set of equivalent variable
eDraw one uniformly at random.
e|ssues
eHow do you deal with several invocation of the tie-break?
eHow do you deal with multiple tie-break sites?

eHow do you deal with multiple runs of the algorithm?

52

Of random number generators

eNotoriously delicate
® They are deterministic at heart
eBased on congruence relation
eRequire 64-bit wide arithmetic to get 32-bit wide pseudo-random

eSome OS/Platform have extremely bad random generators....

Bottom-line

eKey insight
¢\\le can have multiple independent streams
eBut we must maintain the seeds for each stream
|t addresses the issues related to
e Multiple invocations
e Multiple sites
eFor multiple runs
¢You must randomize the seeds too!
e Fundamentally

¢You ought to specify what you use

54

Overview

e Motivation
eEmpirical science
eEmpirical method in CS
e Specificities
e Pijtfalls
ePlatforms

e Analysis

55

Performance factor

Processor

Register
P.ddressesl I Words

Level 1 Cache
1 X

Address esl

Level 2 Cache

I Cache Lines

¢On modern hardware, what is the driving force?

Addresses Cache Lines
Address Bus DataBus
Addresses Cache Lines

Main memory

Memory hierarchy

Core Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
[L1cache | [L1 cache | | L1 cache | [L1 cache | [L1cache | [L1 cache | [L1 cache |
L2 cache L2 cache
L2 cache L2 cache L2 cache L2 cache
L3 cache L3 cache
S — e " e
single core AMD Optetron, Athlon intel Core Duo, Xeon Intel ftanium 2

56

Putting things In perspective

eUse MUL instead of SHIFT
o5 cycles

e Conditional branch mis-prediction
10 cycles

¢ Cache miss to main RAM
¢200-250 cycles

57

Putting things In perspective

e Memory access time (Linux running i7 920)

® |http://www.linux-kongress.org/2009/slides/compiler%5Fsurvey%5Ffelix%5Fvon%5Fleitner.pdf]

Page Fault - IDE Disk 1.000.000.000 cycles
Page Fault - Buffer cache 10.000 cycles
Page Fault - RAM Disk 5.000 cycles
Main memory ~ 200 cycles
L3 cache 52 cycles
L1 cache 2 cycles

The Core i7 can issue 4 instructions per cycle. So a
penalty of 2 cycles for L1 memory access means a
missed opportunity for 7 instructions.

58

CPU cycles

Non-uniform Memory Access Time [NUMA]

900 : :

memory latency on Core i7 920

800

700 +

600 |-

500 |-

400 -

300 -

200 -

100 |

| I I

o ! !

| | |

0 200000 400000

600000 800000 1e+06
data points, sorted by latency

1.2e+(

Bottom Line

eYour cache usage can have a dramatic impact on performance
eDo not run anything else on a cache sharing processor

e Possibly optimize your code to have better spatial locality

60

Measurements

e\What should be measured ?

e\Whatever it is that can confirm/refute the hypotheses.

eExamples
e Time performance user vs. system time]
eSpace usage VM usage vs. resident]
o # of choice points 'solver specific]
o # of failures 'solver specific]
eRestarts Strategy, diversification, learning]
eProcessors load Parallel code]

¢ |ncrementality

61

Measuring time

oA delicate exercise
eModern processors (cores) share their cache
eModern processors have dynamic clock scaling
eBottom line
e|mportant that nothing goes on at the same time on the machine
eNo browsing, emailing, or listening to music. [why?]
eOn a dual core:
eEither keep both core busy at all times [with same workload]

¢Or use only one core at all times

62

Measuring time

e A delicate exercise in its own right

e Many options
eUse the OS-leve

| time command

real
user
Y

$ time comet benchcp/jobshop.co

Om7.485s
Om6.172s
om0 .086s

¢ This captures the entire runtime

ereal time
euser time
esystem time

'wall clock time]

'sum of time spent in user-land for all threads]
time spent in system call on behalf of process]

63

Measuring time

e A delicate exercise in its own right
e Many options

eUse system calls from your source

int t@ = System.getCPUTime();

int t1 = System.getCPUTime();
cout << “Elapsed CPU Time (user):

“ << t1l - t0 << endl;

eFiner grained instrumentation

e Capture specific sections of the code
eCaveats

eResolution of time

e Cross-platform issues

64

Measuring on Windows

esintx is a platform dependent [32/64] signed integer

SYSTEMTIME getSTARTTime() {
FILETIME current;
SYSTEMTIME now;
GetSystemTimeAsFileTime(¤t);
FileTimeToSystemTime(¤t,&now);
now.wHour = now.wMinute = now.wSecond = now.wMilliseconds = 0;
return now;
}
static SYSTEMTIME __onStart = getSTARTTime();
static int monthLength[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
sintx daysFromStart(SYSTEMTIME& now) {

}
sintx getCPUTIME()
{

HANDLE me = GetCurrentProcess();

FILETIME createTime, exitTime, kernTime, userTime;

SYSTEMTIME now;

int ok = GetProcessTimes(me,&createTime,&exitTime,&kernTime,&userTime);

FileTimeToSystemTime(&userTime, &now);

sintx elDays = daysFromStart(now);

sintx retVal = now.wSecond *x 1000;

retVal += now.wMinute *x 60 *x 1000;

retVal += now.wHour *x 60 *x 60 *x 1000;

retVal += elDays x 60 * 60 * 24 *x 1000;

return retVal+now.wMilliseconds;

Measuring on UNIX

esintx is a platform dependent [32/64] signed integer

sintx getCPUTIME()
{

struct rusage urusage;

struct timeval utimeval;

getrusage (RUSAGE_SELF,&urusage);

utimeval = urusage.ru_utime;

return 1000 x utimeval.tv_sec + utimeval.tv_usec/1000;

eResolution I1s milliseconds

66

Very low-level measurements

eUse the builtin cycle counter of the CPU

eThere are libraries for this!

ehttp://www.ecrypt.eu.org/ebats/cpucycles.html

e Advantages
e\/ery precise

e Useful to measure effect of low-level optimizations

e Measure each core/thread independently
¢ imitations
¢ 32-bit counter [it overflows regularly]

eDoesn’t stop while interrupts/system calls are taking place

67

Measuring Space

eEasier

e At the OS level (MacOS), gain access to virtual memory usage

*pS aux
evm_stat

evmmap

global picture]
global picture]

process picture. Entire address space detail]

e At the process level (Again MacOS example)

eMany tools to inspect usage.

e|nstruments

¢| eaks, malloc usage, VM usage,....

68

Instruments

® 00 Instruments o

‘ @@@ [9 Keynote (1036) =+ | UD KoY 0] [4 00:00:19 @ (Q~ Category
e Target

_ mpecionfange (3 RUNLOTE P) vew ubnay e

Instrum-e‘nvt‘s. - Eﬂodo”“” LI B B e ———

Live Instrumentation [no need to recompile]
Can check for leaks
Can find hotspots

Can recognize “thrashing”
R ———— e L

|
Ak aalein | O ccmmn 16 byes U Tee vesexs| 7ae7
P-Specific-Data-Mining |) CrBasicHash (key-store) 624 Bytes 19 6779 224.66 KB 6798
| SFRCOWAffineTransform 704 Bytes 22 6583 206.41 KB 6605
| CFNumber 1.25 KB 80 6392 101.12 K8 6472
_| CGSRegion 96 Bytes 6 6450 100.88 KB 6456
| CFString 352 Bytes 10 5952 220.58 K8 5962
| SFDAffineGeometry 384 Bytes 6 4691 293.56 KB 4697
_ | Malloc 64 Bytes 1.25 KB 20 4639 291.19KB 4659
_ | CFString (store) 64 Bytes 2 2319 316.69 KB 2321

69

Measuring space

ePersonally...
¢| have my own memory allocator
e Finer-grained control over allocation algorithm
e|nstrumentation for space usage statistics
e Debugging support (boundary guards)
e Alternatives (for debugging/instrumentation)

edmalloc http://dmalloc.com/

evalgrind http://valgrind.org/

70

Measuring # choice points

eBe careful with this one!
eSolvers count and report #choices differently
¢So the numbers are often not comparable across solvers!
e\\WVhen comparing all the variants on the same solver...
ot is fine.
|t gives a sense of the size of the explored search space
eFor the search speed, consider #choices / second
e Above all

eDon’t compare apple & oranges!

Measuring # of Failures

oA little better than # choices
eBut still
e Counting can vary with search

e Counting can vary with what is considered a failure

using {
forall(i in S : !'x[il.bound()) by (x[il.getSize())

tryall<sm>(v in x[i].getMin()..x[i].getMax() : x[i].memberOf(v))
m. label(x[i],v);

onFailure
m.diff(x[i],v);

How Is this
counted”?

Measuring parallel search

e This is a snake pit
eDO NOT
e Measure parallel code with 1 thread vs. k threads

eUse user-time to make the measurements

e Assume that results will scale (even between known observations!)

e Confuse parallel speedup with artifacts from parallel exploration
e Compare to a slow sequential algorithm

eParallelizing slow code is easy.

73

Parallel search

e Distributed computing point of view
*“The best one can hope for is a linear speedup.”
o\\hy?
¢ The amount of work is known ahead and simply divided up
® The parallel is not “smarter” than the sequential
e\\Vhy not?
eBecause we are solving COP! Better bound == more bounding!
eBecause we are using learning algorithms in search
eSharing of learned information => more effective search

eBecause we rely on tree search => we can get lucky! [on 15t sol]

74

Bottom line

eYou must be extra-careful in what you measure
eEspecially for CSP/COP
eFor instance
o|f the benefit are attributed to better pruning....
¢ Then a sequential search that “jumps” in the tree would do well!
® The speedup observation is
eNot caused by parallelism
eBut caused by a “better” search!
¢|nstead
e Measure performance on optimality proof!

e Measure the amount of work as well.

Stochasticity

eInherent and omnipresent
¢|n the benchmark instances [online optimization]
¢|n the models
¢|n the benchmark families
*|n the measurements

e|n the simulator

Dealing with Stochasticity

¢|n the instance

e An entire different line of optimization techniques [out-of-scope]

7

Dealing with Stochasticity

¢|n the model

e Caused by tie-breaks

e Caused by deliberate randomization

e Caused by restarting [based on stability]
e|dea

e|solate each stochastic source

eMany runs with different seeds

o|f possible, evaluate each source in isolation

78

Dealing with Stochasticity

¢|n the benchmark family
e Artificial or real.
e Useful to demonstrate robustness
* The objective
eShow that the model works well across all instances in a class

eShow that the model works well across several classes

*Pitfalls
eNlnt all inctanpcace ara ampjalhy hard ITnhaca trancitinn hiicinacel
Evaluate all instances of a class thoroughly ¢

- to separate model induced stochasticity

- from Iintra-class stochasticity

Dealing with Stochasticity

¢|n the measurements
*Runs that are too short may be below the timer resolution
e That depends on the timer of course
eThat is affected by parallel code
e|dea
eDo not run on “toy”/ “small” instances.

e Run multiple times to average out these effects [with same seed]

80

Dealing with Stochasticity

¢|n the simulator
e Uncertainty in measurements induced by
eCache behaviors
¢ CPU frequency scaling
e Artifacts from better bounds
¢ Artifacts from better learning
e|dea
eRun on a dedicated server
eDon’t share caches. Always run in the same conditions/

e\/alidate results (# of choices/# of failures should not vary)

81

Overview

e Motivation
eEmpirical science
eEmpirical method in CS
e Specificities
e Pijtfalls
ePlatforms

e Analysis

82

Data Analysis

Lies, damned lies, and statistics.

Benjamin Disraeli (1804-1881) i

Mark Twain (1906)

83

With lots of data...

*One must rely on statistics
¢To gain insights in the large volume of data
¢ To compress the volume of information without loosing the keys
¢ o better communicate with peers.

e A couple of simple observations....

84

Aggregation

e\\Vhen lots of different benchmarks are used

|t is tempting to aggregate the result and give a single runtime
e This is less than ideal

e[t is much harder to reproduce

|t sheds no insights into the algorithms

eSome benchmarks may completely dominate the totals

e Averages are absolutely meaningless

¢ Averaging the individual standard deviation is just as bad
e The only “ok” thing to do

eReport the sum of the running times

eReport the total number of time outs

eBut that is very coarse!

85

For performance measures

eCompute
eMean
e Standard deviation
emin / max / range
e Empirical distribution [histogram]
e Advantage
|t captures far more information about the population of runs
e[t captures information about robustness
e[t is not any harder to do!

eDon’t forget: at least 50 runs

86

Presenting the Data

e Tables are nice
eBut graphics is often better.

eThere are excellent tools for this.

e Most notably: The R Project http://www.r-project.org/

87

The R tool

*R is a language and environment for
e Statistical computing and
eGraphics
eHuge amount of tools and material
e Statistical tests [significance, conformance]
® Time-series analysis
¢ Classification / Clustering
eRegressions
e Tons of drawing/plotting facility [line,plot,chart,box,heat,....]
eProduce nice PDF/PNG for inclusion in papers/talks
eReads data from CSV, DBMS (SQL)

88

One Example

ePerformance of ABS
eObjective

e Measure the effect of the confidence interval parameter on the
search

e Method
oFix all the parameters
e\/ary the Cl parameter from 0.8 (loose) to 0.05 (strict)
¢[0.8,0.4,0.2,0.1,0.05]

eDo 50 runs for each value

89

Raw data

ClL,Run,C,EI, T
0.8,0,30096,23126,406,26687
0.8,1,11987,8753,379,9037
0.8,2,14188,11351,412,13031
0.8,3,16744,12118,411,13379
0.8,4,75736,71120,443,27374
0.8,5,13352,9903,446,10589
0.8,6,62892,57266,408,21004
0.8,7,22590,16981,430,19250
0.8,8,66794,62422,446,21511
0.8,9,21865,16844,423,20538
0.8,10,8373,6919,404,8544
0.8,11,20901,15343,407,15412
0.8,12,16879,11469,439,11398
0.8,13,10845,8450,404,9095
0.8,14,74300,68034,430,26558
0.8,15,14053,10759,419,11507
0.8,16,17773,12979,419,11863
0.8,17,19754,15666,411,19191
0.8,18,18970,14008,409,15914
0.8,19,41105,36544,411,14298
0.8,20,22374,16362,420,18349
0.8,21,82887,77793,411,33361
0.8,22,13761,9971,407,11892
0.8,23,17800,13232,383,13903
0.8,24,17577,12390,389,12207
0.8,25,12214,8641,393,8681
0.8,26,20589,16106,363,18672
0.8,27,14155,11041,383,11676
0.8,28,18598,12930,410,14257
0.8,29,18965,14427,394,18360
0.8,30,69919,66122,372,21179
0.8,31,25475,20274,424,23633
0.8,32,13912,10992,387,13630
0.8,33,22118,16726,403,19789
0.8,34,14689,11341,400,13757
0.8,35,14052,11173,420,13878
0.8,36,14761,11390,435,12949
0.8,37,20831,14613,418,14508
0.8,38,8472,6974,415,8535
0.8,39,13001,9752,434,12070
0.8,40,18364,13813,376,13484
0.8,41,10547,8636,422,10298
0.8,42,24943,19208,429,23305
0.8,43,23276,16987,408,18071
0.8,44,12760,9285,440,10079
0.8,45,68410,62685,424,23235

0.8,46,17318,12669,416,13654
0.8,47,12610,9753,414,11244
0.8,48,20689,15974,413,15071
0.8,49,15526,11970,414,14115
0.4,0,26415,20033,941,24475
0.4,1,19779,14184,964,15593
0.4,2,57368,51920,967,20384
0.4,3,19491,13912,969,14033
0.4,4,19954,14541,1002,16555
0.4,5,22300,17158,967,20124
0.4,6,567349,51112,956,19954
0.4,7,77611,73175,972,32961
0.4,8,23799,17497,942,20566
0.4,9,11020,9056,1014,11387
0.4,10,24705,18682,972,22504
0.4,11,22850,17272,913,21001
0.4,12,22211,17254,951,21015
0.4,13,72948,68515,934,31470
0.4,14,17852,13554,1021,15920
0.4,15,17362,14180,988,18209
0.4,16,19115,13766,1043,15427
0.4,17,14254,10017,971,10606
0.4,18,22111,16307,955,18415
0.4,19,71192,67865,949,23777
0.4,20,22844,16338,952,16808
0.4,21,13317,9768,962,10798
0.4,22,25355,19482,957,22380
0.4,23,26856,21363,915,25688
0.4,24,26407,20454,945,21278
0.4,25,11866,9347,980,12023
0.4,26,22143,15583,965,15884
0.4,27,33989,27201,932,32137
0.4,28,18288,13119,899,13782
0.4,29,37535,34690,964,13250
0.4,30,27690,21339,1001,26248
0.4,31,11931,8455,957,9281
0.4,32,31243,25016,976,29665
0.4,33,20104,14029,882,13354
0.4,34,27863,21569,983,26460
0.4,35,21829,16805,986,21537

0.4,36,117921,112411,957,45676

0.4,37,76567,71850,1005,26972
0.4,38,18689,14471,958,18670
0.4,39,30167,23299,942,28599
0.4,40,60036,54970,1009,23273
0.4,41,23007,16902,980,18076
0.4,42,23234,17179,890,19238

0.4,43,32573,28493,1040,10935
0.4,44,59320,53503,995,21066
0.4,45,27738,21237,932,23985
0.4,46,21376,16615,992,18416
0.4,47,17665,13011,969,13526
0.4,48,46359,42098,933,17204
0.4,49,20228,16120,859,19052
0.2,0,36636,27888,2614,32134
0.2,1,21548,156347,2631,17357
0.2,2,22514,16542,2521,19326
0.2,3,18525,13384,2491,16185
0.2,4,20652,14730,2512,17041
0.2,5,25358,18900,2583,22777
0.2,6,17264,12712,2506,15864
0.2,7,31082,24328,2535,29977
0.2,8,27275,20526,2549,24206
0.2,9,23135,18097,2595,23599
0.2,10,28576,22327,2553,27529
0.2,11,31904,25212,2774,30391
0.2,12,18040,12884,2579,15555
0.2,13,26531,20188,2643,24343
0.2,14,23873,17530,2492,20856
0.2,15,58841,52567,2654,35641
0.2,16,27789,20224,2588,21894
0.2,17,26953,20809,2561,25830
0.2,18,21216,15007,2541,16668
0.2,19,19830,14248,2583,16759
0.2,20,24393,18680,2537,23395
0.2,21,84101,78597,2579,29563
0.2,22,60118,565369,2555,22356
0.2,23,28910,23106,2541,27910
0.2,24,53028,47760,2641,24745
0.2,25,21713,16066,2700,19409
0.2,26,21541,160563,2610,18712
0.2,27,30215,22467,2598,26670
0.2,28,27665,20826,2545,24751
0.2,29,24716,18446,2616,23055
0.2,30,20882,15067,2549,17249
0.2,31,22285,16806,2544,22645
0.2,32,18555,13693,2575,16552
0.2,33,24749,18556,2554,22626
0.2,34,22926,17525,2497,22695
0.2,35,22617,16401,2757,19726
0.2,36,24081,18209,2535,22985
0.2,37,215631,16605,2601,22003
0.2,38,21839,16696,2502,21976
0.2,39,27377,20835,2532,25391

0.2,40,27098,20871,2544,26929
0.2,41,23579,17535,2701,22024
0.2,42,14942,10806,2630,13225
0.2,43,24212,18626,2631,22751
0.2,44,19636,13756,2618,15325
0.2,45,72963,67556,2567,48830
0.2,46,18237,12364,2608,13201
0.2,47,15604,11307,2500,13498
0.2,48,18184,13460,2521,17750
0.2,49,21668,16633,2727,22190
0.1,0,24154,18634,9339,31046

0.1,1,20052,14234,9468,23809

0.1,2,21756,16852,9609,29399

0.1,3,21707,17072,9639,30326

0.1,4,23658,18323,9642,31896

0.1,5,24938,19264,9640,32477

0.1,6,23177,17853,9625,29931

0.1,7,24963,20026,9495,32600

0.1,8,21407,16326,9413,28424

0.1,9,66136,61338,9823,34901

0.1,10,22678,17866,9578,30201
0.1,11,24918,19534,9671,32242
0.1,12,24101,18829,9673,32858
0.1,13,23473,18199,9419,31035
0.1,14,22901,17794,9527,29868
0.1,15,21745,16575,9353,28186
0.1,16,23721,18214,9658,30455
0.1,17,26461,21010,9454,33132
0.1,18,25113,19332,9853,32114
0.1,19,22283,17835,9407,31571
0.1,20,65262,60595,9447,34923
0.1,21,23479,18198,9549,30186
0.1,22,23561,18006,9495,29031
0.1,23,24579,18696,9607,30129
0.1,24,24928,19104,9243,29766
0.1,25,22026,16736,9647,28994
0.1,26,22519,17428,9342,30119
0.1,27,22668,17490,9495,29470
0.1,28,23691,18429,9438,29895
0.1,29,23201,18063,9402,30998
0.1,30,23649,18004,9475,30058
0.1,31,27056,20709,9636,31638
0.1,32,19097,13242,9689,21928
0.1,33,27162,21405,9672,34702
0.1,34,21911,17153,9542,28642
0.1,35,23240,18151,9622,30767
0.1,36,20274,15418,9585,27684

0.1,37,24555,19294,9365,31221
0.1,38,20467,15562,9593,28873
0.1,39,25273,19551,9600,31379
0.1,40,20915,16348,9527,28593
0.1,41,24100,19128,9523,32089
0.1,42,22336,17371,9717,31663
0.1,43,23687,18195,9670,30179
0.1,44,23619,17836,10085,30839
0.1,45,17490,12690,9613,22766
0.1,46,23319,18442,9815,32181
0.1,47,25184,19551,9399,31589
0.1,48,24020,18183,9671,29970
0.1,49,22263,17016,9500,29828
0.05,0,17611,14587,37320,57868
0.05,1,19771,16138,37227,58820
0.05,2,20334,16794,37438,59619
0.05,3,19191,15571,37929,58363
0.05,4,19128,15468,37404,57429
0.05,5,18900,15791,37082,59550
0.05,6,20630,16895,37647,59498
0.05,7,17417,14372,37238,55488
0.05,8,18727,15530,37644,58061
0.05,9,65230,62436,37632,65816
0.05,10,19014,15603,37227,58602
0.05,11,18225,15109,37447,57018
0.05,12,20160,16468,37290,58176
0.05,13,19161,15436,37507,57318
0.05,14,20824,17307,37201,59396
0.05,15,19240,15985,37228,58327
0.05,16,18983,15412,37389,56947
0.05,17,18257,14856,37337,56048
0.05,18,22510,18194,37644,60270
0.05,19,17765,13945,37487,55808
0.05,20,20120,16786,37731,59737
0.05,21,18124,14491,37638,56319
0.05,22,20717,17611,36827,59015
0.05,23,19184,15941,37037,58811
0.05,24,17806,14492,37768,57720
0.05,25,19047,15884,37468,59860
0.05,26,19072,15700,37282,58223
0.05,27,18333,14918,37221,56483
0.05,28,18669,15254,37385,56751
0.05,29,19506,15833,37249,56701
0.05,30,18074,14976,37278,56599
0.05,31,16781,13501,36958,55473
0.05,32,19192,15447,36703,56285
0.05,33,16728,13874,37079,55990

0.05,34,20125,17036,37029,60372
0.05,35,18495,14862,37535,57456
0.05,36,17676,14229,37524,56596
0.05,37,19699,15967,37450,57888
0.05,38,18328,14878,37262,58461
0.05,39,20314,16494,37522,59196
0.05,40,19335,15944,37216,57592
0.05,41,17676,14509,37158,56840
0.05,42,20443,17209,37349,62147
0.05,43,20149,15797,37423,57836
0.05,44,16109,13350,37332,55752
0.05,45,18544,15331,37828,57614
0.05,46,18143,14353,37246,56260
0.05,47,18917,14930,37515,56635
0.05,48,16203,13270,37095,56161
0.05,49,20952,17127,37737,60247

90

A box-plot

eConveys
eFour quartiles | Mean | Median | Outliers

e Trend as a function of Cl is clear as day

o @)
3
_ o o
Q
o o !
o @ ! ! E———
£ : ' ' 8
F 9 - - —
P -
L = ! o
o | : : — mean
" ! — —— median
[[[[[
0.8 0.4 0.2 0.1 0.05

91

The R program

fh <- read.csv(file="~/Desktop/knap.csv",head=TRUE, sep=",")
ad <- vector()

ad <— append(ad,fh[1:50,]1[6]1/1000)

ad <- append(ad,th[51:100,][6]/1000)

ad <- append(ad,fh[101:150,]1[6]1/1000)

ad <- append(ad,fth[151:200,][6]1/1000)

ad <- append(ad,th[201:250,][6]1/1000)

X.l_ <_ C("0.8"'"0.4"’"®.2"’"0.1"’"0.05")
mv <— numeric(0Q)
for(i in 1:5) {
mv <— append(mv,mean(ad[i]1$T));
}

md <— numeric(0)
for(i in 1:5) {
md <- append(md,median(ad[il$T));

sdv <— numeric(0)
for(i in 1:5) {
sdv <- append(sdv,sd(ad[i]$T));

}

The R program

width <- 6
height <- 4

pdf (file="knap-ci-sensitivy.pdf",width=width,height=height,pointsize=12)

boxplot(ad,col="yellow",
at=c(1,2,3,4,5),
add=FALSE,
cex.axis=0.8,
cex.names=0.8,

names=x1,
'Log=llyll ,
xlab="CI",
ylab="Time",

title="Confidence Sensitivity")

lines(mv,col="red")
lines(md, col="blue")

legend("bottomright",c("mean","median"),col=c("red","blue"),bg="white",
lty=1, cex=0.8)

dev.off()

Advantages?

eFully scriptable

e The charts can be created from the script that runs the
experiments!

e Complete automation
*No more issues redoing the results
eCan tune the R script from the Ul

eCan also produce the LaTeX tables! (for use with \input)

94

Summary & Conclusion

eExperimental work is not that hard

oBut
e You must carefully design the experiment for a well formed question
*You must be systematic
e You must be disciplined
eYou must devote the resources (don’t do it on a laptop you use!)
eYou ought to fully automate

eYou need a minimum of statistics

95

Above all

eRemember the objective
eExperiments are there to convince your reader
eExperiments are meant to be fully reproducible

¢ Take home message
eBad experiments are worse than no experiments

e[t is worth being systematic

