
WCB’11

Workshop on Constraint Based Methods

for Bioinformatics

September 12th, 2011

Proceedings

Alessandro Dal Palù, Agostino Dovier, Andrea Formisano

Preface

The Workshop on Constraint-based methods for Bioinformatics has reached its
seventh consecutive edition. This year’s edition was held in the medieval town of
Perugia, Italy on the 12th of September as satellite workshop of the CP’11 con-
ference. By looking at the corpus of contributions gathered in these years (more
than fifty papers), we can draw some observations about trends and connections
between the constraint area and the modern biology. In the Omics era, the avail-
ability of large amount of biological data is made possible by modern experimen-
tal techniques and recent advances in the biochemical research area. Non-trivial
techniques are required in order to analyze, mine and combine this large piece of
information. Constraint techniques showed to be a valid methodology to tackle
the challenge presented by biology. The various papers presented throughout the
years at WCB cover different topics that are challenging because of either the
large amount of data involved (networks and genes) or the intrinsic complexity
(structural problem). We can identify at least five main categories in which most
of the contributions to WCB fall: sequence alignment (DNA classification, gene
prediction, module identification, etc.), RNA secondary structure prediction,
biological networks (pathways, metabolic and gene regulatory networks, analy-
sis of biological systems, etc.), haplotype inference and related problems, and
protein structure prediction (secondary structure prediction, tertiary structure
prediction on-lattice and off-lattice, quaternary structure prediction). It is also
interesting, from the Computer Science point of view, to note that different fla-
vors of constraint-related techniques have been exploited during the recent years.
For instance, we mention the use of different popular constraint solvers (such as
CLP(FD), Gecode, Comet), as well as the proposals relying on other general
logic programming frameworks (such as Answer Set Programming, SAT solvers
and Integer Linear Programming solvers, Inductive Logic Programming). At the
same time, several search heuristics have been proposed and adopted within ap-
proaches based on local search and local neighboring search. From the point
of view of programming languages, various applications of Prolog have been
employed: BProlog for PRISM applied to Hidden Markov Models, Prolog for
Biochamm and Stochastics Concurrent Constraint Programming to model net-
works evolution. Moreover, some dedicated constraint solvers have been designed
and implemented for specialized constraint handling (Chemera and COLA are
significant examples).

Concerning this edition of the workshop, seven papers are collected in WCB’11
Proceedings (and listed in random order).

The first paper, Declarative Merging of and Reasoning about Decision Dia-
grams, by T. Eiter, T. Krennwallner, and C. Redl, proposes a modular framework
to merge decision diagrams in a transparent and declarative way. An application
of the proposed approach, that is based on Answer Set Programming, to the
problem of DNA classification is addressed by the authors.

In the paper Constraints and Global Optimization for Gene Prediction Over-
lap Resolution, C. Theil Have shows how to apply constraints (in particular,
Constraint Handling Rules are considered) and global optimization to the prob-
lem of restricting overlapping of gene predictions. The specific case of prokaryotic
genomes is dealt with.

The third paper, Introducing FIASCO: Fragment-based Interactive Assem-
bly for protein Structure prediction with COnstraints illustrating the work of a
numerous research team, outlines a declarative constraint-based framework de-
signed to support chemists, biologists, and computer scientists in their analysis
of protein conformations.

The paper Improving Multiple Sequence Alignments with Constraint Pro-
gramming and Local Search by M. Correia, F. Madeira, P. Barahona, and L. Krip-
pahl, proposes a method for a repairing MSA by exploiting constraint program-
ming and local search techniques.

Petri nets are exploited in the paper by A. Palinkas and A. Bockmayr, titled
Petri Nets for Integrated Models of Metabolic and Gene Regulatory Networks,
as a basis for a systematic method that supports the integrated modeling of
metabolic and gene regulation networks.

The paper A Constraint Program For Subgraph Epimorphisms with Applica-
tion to Identifying Model Reductions in Systems Biology, by S. Gay, F. Fages,
T. Martinez, and S. Soliman, shows how a constraint-based approach to the
subgraph epimorphism problem can be used in the biological context to identify
meaningful relationships between biochemical reaction graphs.

Finally, the paper A New Local Move Operator for Reconstructing Gene Reg-
ulatory Networks, by J. Vandel and S. De Givry, deals with the problem of
learning the structure of a Bayesian network. The application to the case of
regulatory networks is addressed.

In conclusion, we would like to thank all colleagues that accepted to serve
as members of the Program Committee or as external reviewers and that ded-
icated their precious time in the reviewing phase. We also would like to thank
the Dipartimento di Matematica e Informatica in Perugia for hosting the event
and the Committees of the CP conference. In particular, we mention Christian
Schulte, the workshops and tutorials chair of CP’11, as well as the conference
chair Stefano Bistarelli and the local organization team in Perugia. Finally, we
express our gratitude to all the authors that submitted their papers to WCB’11
and to the invited speaker Alessandro Brozzi.

Perugia, September 12, 2011 Alessandro Dal Palù
Agostino Dovier

Andrea Formisano

Organization

WCB’11 has been organized by Alessandro Dal Palù, Agostino Dovier, and An-
drea Formisano and was hosted by the Dipartimento di Matematica e Informa-
tica of the Università di Perugia.

Program Committee

Rolf Backofen, Freiburg Universität
Pedro Barahona, Universidade Nova de Lisboa
Alexander Bockmayr, Freie Universität Berlin
Mats Carlsson, SICS, Uppsala
Alessandro Dal Palù, Università di Parma
Simon de Givry, INRA, Toulouse
Agostino Dovier, Università di Udine
Esra Erdem, Sabanci University
François Fages, INRIA Rocquencourt
Andrea Formisano, Università di Perugia
Inês Lynce, INESC-ID Lisboa
Neil Moore, University of St. Andrews
Enrico Pontelli, New Mexico State University
Sven Thiele, Potsdam Universität
Sebastian Will, Freiburg Universität

Additional Referee

David Fournier

Sponsoring institutions

A. Dal Palù, A. Dovier, and A. Formisano are partially supported by the grants
GNCS-INdAM Tecniche innovative per la programmazione con vincoli in appli-
cazioni strategiche, GNCS-INdAM Nuova architettura parallela per la Program-
mazione Logica mediante GPGPU, and by MIUR-PRIN’08 project Innovative
and multi-disciplinary approaches for constraint and preference reasoning.

Table of Contents

Preface

Inferring gene pathways controlling clonal outgrowth by high-
throughput insertional mutagenesis screens . 1

Alessandro Brozzi

Declarative merging of and reasoning about decision diagrams 3
Thomas Eiter, Thomas Krennwallner, Christoph Redl

Constraints and global optimization for gene prediction overlap resolution 17
Christian Theil Have

Introducing FIASCO: Fragment-based Interactive Assembly for protein
Structure prediction with COnstraints . 27

Michael Best, Kabi Bhattarai, Federico Campeotto, Alessandro
Dal Palù, Hung Dang, Agostino Dovier, Ferdinando Fioretto,
Federico Fogolari, Trung Le, Enrico Pontelli

Improving multiple sequence alignments with constraint programming
and local search . 37

Marco Correia, Fábio Madeira, Pedro Barahona, Ludwig Krippahl

Petri nets for integrated models of metabolic and gene regulatory networks 45
Aljoscha Palinkas, Alexander Bockmayr

A constraint program for subgraph epimorphisms with application to
identifying model reductions in systems biology . 59

Steven Gay, François Fages, Thierry Martinez, Sylvain Soliman

A new local move operator for reconstructing gene regulatory networks . . 67
Jimmy Vandel, Simon De Givry

Author Index . 73

Inferring Gene Pathways Controlling Clonal
Outgrowth by High-throughput Insertional

Mutagenesis Screens?

invited talk

Alessandro Brozzi

Dipartimento di Oncologia Sperimentale
Istituto Europeo di Oncologia (IEO), Milano

Abstract. A pathway is a group of genes which act together in a coor-
dinated manner to control a cellular phenotype. The characterization of
each set of genes forming a pathway and their organization inside of it
represents an hard task in biology.

Clonal outgrowth is a cellular phenotype resulting from a combination
of acquired mutations affecting cellular genes.

The insertion of proviruses in the genome of the host cell can mutate
cellular genes and it might confer a selective advantage to the host cell
resulting in clonal outgrowth. When the proviruses are experimentally
injected into cells it takes the name of insertional mutagenesis. By this
genetic approach we wanted to discover genome-wide the set of genes
involved in the pathway controlling clonal outgrowth.

We conducted insertional mutagenesis on mouse model of PML-RARalpha
induced leukemia. Examining 48 leukemias we found a set of nearly 200
genes affected by the proviruses linked to clonal outgrowth.

To infer the organization of these genes inside a pathway we took ad-
vantage by Mutual Information (MI) reverse-engineering approach [1]
to quantify the extent to which the expression profiles of two genes are
related to each other across a dataset of 20000 gene expression profiles.

Out of the 200 genes, we discovered large and interconnected co-expressed
modules consisting of genes strongly connected to each other. These co-
expressed modules represent genes putatively sharing the same features
and occupying the same position inside the pathway organization.

The co-expressed modules constitute the basis to detail the fine organi-
zation and each biological role of the pathway components.

We discuss the computational challenges and the future perspectives
about insertional mutagenesis teqnique as an highly informative genetic
approach to infer gene pathway linked to cellular proliferation.

Keywords: Gene pathways, inference, proliferation, high-throughput.

? Joint work with Chiara Ronchini, Dipartimento di Oncologia Sperimentale, Istituto
Europeo di Oncologia (IEO), Milano.

2 Alessandro Brozzi

References

[1] V. Belcastro, V. Siciliano, F. Gregoretti, P. Mithbaokar, G. Dharmalingam,
S. Berlingieri, F. Iorio, G. Oliva, R. Polishchuck, N. Brunetti-Pierri, and
D. Di Bernardo. Transcriptional gene network inference from a massive dataset
elucidates transcriptome organization and gene function. Nucleic acids research,
DOI:10.1093/nar/gkr593, 2011.

Declarative Merging of and
Reasoning about Decision Diagrams?

Thomas Eiter, Thomas Krennwallner, and Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,tkren,redl}@kr.tuwien.ac.at

Abstract. Decision diagrams (DDs) are a popular means for decision making,
e.g., in clinical guidelines. Some applications require to integrate multiple related
yet different diagrams into a single one, for which algorithms have been developed.
However, existing merging tools are monolithic, application-tailored programs
with no clear interface to the actual merging procedures, which makes their reuse
hard if not impossible. We present a general, declarative framework for merging
and manipulating decision diagram tasks based on a belief set merging framework.
Its modular architecture hides details of the merging algorithm and supports pre-
and user-defined merging operators, which can be flexibly arranged in merging
plans to express complex merging tasks. Changing and restructuring merging tasks
becomes easy, and relieves the user from (repetitive) manual integration to focus
on experimenting with different merging strategies, which is vital for applications,
as discussed for an example from DNA classification. Our framework supports
also reasoning over DDs using answer set programming (ASP), which allows to
drive the merging process and select results based on the application needs.

1 Introduction

Many medical decisions are based on Decision Diagrams (DDs), which support med-
ical doctors and health care personnel in decision making like to determine the best
medication or intervention for a patient depending on her medical history and examina-
tions. Such diagrams are also used for diagnosis as part of computer supported decision
systems, cf. [6]. A very common use case frequently found in clinical protocols is to
quantify the degree of severity depending on the patient’s condition, see eg. [14]; the
suggested treatment depends then on the stage. Clearly, DDs are relevant beyond clinical
practice and have become popular in economy (e.g. in liquidity rating), psychology (e.g.
in tests for personality disorders), and basic life sciences; for example, [12]—which we
will consider in more detail below—uses decision trees to classify given DNA sequences
into protein coding and non-coding ones. More applications are listed in [2].

Multiple DDs often exist for the same issue, due to various reasons: different in-
stitutes working on similar projects, different views of correct decisions, statistical
impreciseness, or simply human errors. Making a choice between several DDs, espe-
cially from authoritative sources, is notoriously difficult and ignoring expertise captured
? This research has been supported by the Austrian Science Fund (FWF) project P20840 and

P20841, and by the Vienna Science and Technology Fund (WWTF) project ICT 08-020.

4 Thomas Eiter, Thomas Krennwallner, and Christoph Redl

in such diagrams is a waste of resources. This requires to integrate multiple diagrams
into a single one that should be concise and coherent. Several integration algorithms have
been developed [7, 10], and implemented tools exist [13]. However, they are monolithic
programs tailored for a particular application, without clear interface between the inte-
gration components and other programs parts; reusing the merging procedures is hard if
not impossible. Moreover, existing approaches usually produce one output diagram, but
merging can often be done in various ways, hence it is interesting to develop merging
strategies that produce multiple diagrams. A diagram can then be selected according to
the application needs. This naturally calls for reasoning about DDs.

In this paper we present a general, declarative approach which supports semi-
automatic integration of multiple DDs into a single one, as well as reasoning about
DDs. Both features can also be combined to include user-defined constraints or—more
generally—rules that influence the further integration process. To this end, we encode
decision diagrams to belief sets and transform the integration of DDs into a belief set
merging problem in the generic framework of [11], which provides merging plans of
abstract merging operators to accomplish complex belief merging tasks. With the MELD
system, which implements the framework via answer set programming (ASP) [3], we can
exploit a rich infrastructure to realize a powerful declarative tool. It facilitates a range
of different DD integration algorithms, allows to formulate complex, operator-based
integration tasks in a modular, flexible manner, and offers on top the possibility to use
ASP for reasoning about DDs. Specifically, this can be exploited to compute properties
of diagrams (like height or number of variables) that are used for filtering results.

We proceed as follows. After fixing a formal model of decision diagrams, we map
DDs to belief sets and integration of DDs into a belief set merging in Sec. 3. Reasoning
over DDs and support for it in our tool, the DDM system, is discussed in Sec. 4. Finally,
we consider application for DNA classification similar as in [12], with the aim to stress
flexibility and user friendliness, and capabilities beyond those of other systems (Sec. 6).

2 Decision Diagrams

We define a classification function c : D → C as a mapping of some domain D to a set of
class labels C. To represent such a function one can use, e.g., lookup tables, production
rules, or decision diagrams. We focus on the latter as they have turned out to be very
useful in practice not only because they are comprehensible and easy to explain.

Abstractly, we can define a decision diagram as follows.

Definition 1. A decision diagram (DD) overD and C is a labelled rooted directed acyclic
graph D = 〈V,E, `C , `E〉, where V is the set of nodes with unique root node rD ∈ V
and E ⊆ V × V is a nonempty set of directed edges. The labelling function `C maps
leaf nodes in D to elements from C, and `E : E → 2D assigns each edge a subset of
domain D. We call D a decision tree if every node has at most one incoming edge.

Classifying an element d ∈ D is intuitively done by starting at node rD and following
an outgoing edge e iff d ∈ `E(e). This step is repeated until a leaf node v is reached.
Then `C(v) is the class label assigned to d. To guarantee that the classification by some
DD D is deterministic and the result is unique, `E is required to satisfy the following
two conditions. In this case we say that D is valid:

Declarative Merging of and Reasoning about Decision Diagrams 5

rD

v1 v2

c1v3 c2 v4

{0, 1, 2} {3, 4, 5}

{0, 1}
{2}

{3}
{4, 5}

(a) Graphical representation

root(rD); inner(rD); inner(v1); inner(v2);
leaf (v3, c1); leaf (v4, c2);
cond(rD, v1, z, <, 3); else(rD, v2);
cond(v1, v3, z, <, 2); else(v1, v4);
cond(v2, v3, z, <, 4); else(v2, v4)

(b) Formal encoding

Fig. 1: A valid decision diagram D

(a) for non-leaf nodes v of D,
⋃

(v,w)∈E `E(v, w) = In(v), where In(rD) =D and
In(u) =

⋃
(p,u)∈E `E(p, u) for u 6= rD, and

(b) for a node v of D and any successors u,w of v, `E(v, u)∩ `E(v, w) 6= ∅ ⇒ u = w.
Condition (a) states that, if a node is reached for element d, there must be an outgoing

edge for d, i.e., computation can always continue, while (b) forces branching at internal
nodes to be deterministic. In the following we consider valid decision diagrams only.

Example 1. Fig. 1a shows a valid decision diagram D over D = {0, 1, 2, 3, 4, 5}
and C = {c1, c2}. The edges are marked with `E , and its leaves with `C . It represents the
classification function c s.t. c(d) = c1 if d ∈ {0, 1, 3} and c(d) = c2 if d ∈ {2, 4, 5}.

For practical purposes it is convenient to realize edge labels by queries over some
query language. A query Q(z) with free variable z is then a shortcut for all domain ele-
ments which satisfy it. E.g., if V is the set of positive integers and we want to distinguish
between prime and non-prime numbers, we may label the according edge with Q(z) =
z > 1∧∀m,n (m > 1 ∧ n > 1 ⊃ z 6= m · n) instead of {2, 3, 5, 7, 11, . . . }. In practice,
simple queries of form X ◦ Y often suffice, where X and Y are constants or attribute
values of the domain, and ◦ is a comparison operator. For example, if the domain consists
of patient records with attributes such as blood values, the query Q(z) = z .TSH >
4.5mU/l is true for all patients z that have a Thyroid-Stimulating Hormone level larger
than 4.5 milli-units per liter. More complex queries involving logical connectives can
easily be rewritten to this form by introducing intermediate nodes.

For the further development of our framework we assume that the query language of
a DD is fixed. When developing our encoding, we will assume that queries are of the
form X ◦ Y , but it can easily be extended to more complex query languages.

3 Merging of Decision Diagrams

Some applications require to work with multiple DDs. The reasons for this are manyfold:
statistical fluctuations, different expert opinions on correct decisions, or simply human
errors. For an example merging, see Fig. 4, which is discussed in Section 6. We will
see in Sec. 4 that merging operators (as introduced here) may produce multiple output
diagrams. Picking one of them over another is not easy to justify, and sometimes it is
shearly impossible to have any preference among a variety of diagrams.

6 Thomas Eiter, Thomas Krennwallner, and Christoph Redl

Belief Merging. Redl et al. [11] developed the ASP-based MELD system for belief set
merging tasks.1 MELD can integrate multiple collections of belief sets using merging
operators that are hierarchically arranged in trees, called merging plans. They are
evaluated bottom-up, and the result is the one at the root.

More in detail, a belief (¬)p(c1, . . . , cn) is a literal (atom or negated atom) where
p is a predicate symbol of arity n from a set of predicate symbols ΣP , and the ci
are constants from a set ΣC of constant symbols. A belief set is any set B of beliefs
(wrt. Σ). A collection of belief sets B is any set of belief sets (wrt. Σ); BΣ denotes
the set of all collections of belief sets. A belief set merging operator is a function
Op : (BΣ)k × A1 × · · · × Am → BΣ that assigns each tuple B̂ = (B1, . . . ,Bk) of
collections of belief sets Bi and arguments A1, . . . , Am from domains A1, . . . ,Am
a result collection of belief sets Op(B̂, A1, . . . , Am); we allow k = 1 (in abuse of
terminology) to enable also transformations of collections of belief sets. A merging plan
is any expression built using the operators over belief bases, which comprise facts and
(optionally) logical rules; each belief base has an associated collection of belief set (its
semantics), used for evaluation.

Example 2. We define operator ◦2,0∪ for consistently integrating two collections B1

and B2 of belief sets

◦2,0∪ (B1,B2) = {B1 ∪B2 | B1 ∈ B1, B2 ∈ B2,@A s.t. {A,¬A} ⊆ (B1 ∪B2)} .

The operator computes the pairwise union of two belief sets B1 and B2 from B1

and B2, respectively, where classically inconsistent pairs are skipped. Assume B1 =
{{a, b, c}, {¬a, c}} andB2 = {{¬a, d}, {c, d}}, we get that ◦2,0∪ (B1,B2) = {{a, b, c, d},
{¬a, c, d}}. Let B3 = {{¬d, e}, {d, e}}, then ◦2,0∪ (◦2,0∪ (B1,B2), B3) is a merging plan
which evaluates to {{a, b, c, d, e}, {¬a, c, d, e}}.

We instantiate the framework for decision diagram merging. We obtain an imple-
mentation, based on MELD, called the DDM system.1 The basic idea is to

– encode DDs as belief sets, described by belief bases;
– define merging operators for MELD (implemented in C++), tailored to the integra-

tion and manipulation of encoded diagrams; and based on them
– declare merging plans to integrate and manipulate (convert, optimize, etc.) the

encoded DDs.

Encoding. Let D = 〈V,E, `C , `E〉 be a decision diagram over domain D and class
labels C. We assume that D is a set of tuples (a1, . . . , an) ∈ D1 × · · · × Dn, where Di,
1 ≤ i ≤ n, is the domain of attribute ai. Informally, D consists of composed objects,
which are described by n attribute values. Then we use the following atoms to encode D:

– root(rD) for the root node rD of D;
– inner(v) for inner nodes v ∈ V ;
– leaf (v, c) for leaf nodes v ∈ V with assigned class label c = `C(v);
– cond(v, w, a,Op, b) for an edge (v, w) ∈ E with some condition Q(z) = a Op b

such that Q(z) holds iff z ∈ `E((v, w)), where a and b are constants or named
attributes of z and Op is a comparison operator;

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

Declarative Merging of and Reasoning about Decision Diagrams 7

– else(v, w) for an else-edge (v, w) ∈ E. It is optional but unique for v and encodes
the set of domain elements D \

⋃
(v,u)∈E,u 6=w

`E((v, u)).

Formally, the query language has expressions a Op b and else for optional else-edges,
where else(v, w) is viewed as the conjunction of the negated expressions on all other
out-edges of v. Thus, a tuple t ∈ D belongs to `E((v, w)) iff no condition of some other
out-edge of v is true for t. An example encoding that corresponds to the diagram in
Fig. 1a is shown in Fig. 1b. This basic encoding can be easily extended to provide more
features and support enriched decision diagrams. For instance, we could allow leaf nodes
to store additional information besides the class label (we will use this below).

Decision Diagram Merging using Merging Plans. Let kD,C denote the set of all
decision diagrams over domain D and classes C. We then define (recall that 2X is the
powerset of a set X):

Definition 2. An n-ary DD merging operator is a function

◦n : (2kD,C)n ×A1 × · · · × Am → 2kD,C

which maps each tuple ∆ = (∆1, . . . ,∆n) of sets of DDs ∆i (over D and C) to a set of
DDs ◦n(∆,A1, . . . , Am), where Ai ∈ Ai are additional arguments from domains Ai
for all 1 ≤ i ≤ m.

In our examples, the domains of additional arguments will usually be either the
natural numbers or the set of all ASP programs. Def. 2 allows for arranging operators
hierarchically in so-called merging plans (for an example see Fig. 2a). The merging plan
can be evaluated bottom-up, and the final result is the output of the topmost operator.
Concrete operators ◦n(∆,A1, . . . , Am) are given e.g. in [7, 10] and in Sec. 6. Allowing
operators of arity n = 1 enables decision diagram transformations. It is often convenient
to transform diagrams into a special form (e.g. trees) prior to integration; this may
simplify the implementation of the actual merging operators (n ≥ 2) enormously.

Each such operator produces an output decision diagram which behaves as if the input
classifiers were consulted independently and the results were combined as described
below for some predefined operators:

– majority voting: the majority of the input diagrams D1, . . . , Dn decides;
– user preference: wrong decisions may be of different severity. In medical screening

tests, e.g., one usually prefers false positives to false negatives: additional tests may
refute the former, while the latter let the disease proceed. Thus a natural decision
rule could be: “If the input classifiers vote differently, classify as X rather than Y ”;

– average: interpreting decision diagrams as decision boundaries in an n-dimensional
feature space, it is natural to compute the (possibly weighted) “average boundary.”

Technically, merging plans are declaratively specified in a user-friendly language and
may be automatically evaluated by our prototype implementation. The set of predefined
operators can be extended by custom ones by implementing an operator-API in C++.
For more technical details we refer to the online documentation.

8 Thomas Eiter, Thomas Krennwallner, and Christoph Redl

◦1asp(·, Pmin)

◦2Q(·)
◦2R(·)

D1 D2

◦1asp(·, P)

◦R(·)
D3 D4

(a) Decision Diagram Merging Plan

cnt(I, C)←LC = #count{L : leaf in(I, L, C)},
IC = #count{N : inner in(I,N)},
root in(I, R), C = LC + IC

c(I)←root in(I, R), not¬c(I)
¬c(I) ∨ ¬c(J)←root in(I, R), root in(J, S), I 6= J

leaf (L,C)←c(I), leaf in(I, L, C)

...
else(N1, N2)←c(I), elsein(I,N1, N2)

⊥←M = #min{NC : cnt(I,NC)},
c(I), cnt(I, C), C > M

(b) Pmin

Fig. 2: Node count minimization

4 Reasoning about Decision Diagrams

The second major benefit of our formal representation is the possibility of reasoning about
DDs. Properties of a diagram (e.g., height, variable occurrences, redundancy, etc.) can
be computed automatically from an encoding as in Sec. 3. This is particularly interesting
when merging and reasoning operators are combined in merging plans. According
to Def. 2, merging operators output sets of DDs. Hence, when a merging operator
encounters a choice point, it may simply produce alternative diagrams. Such choice
points can e.g. be leaves with (almost) uniform distributions, i.e., the best classification
is not obvious. One can then select the most appropriate diagram by reasoning over
the alternatives, resorting e.g. to properties as above. For example, take the redundancy
measure defined as the number of indistinguishable nodes. Computationally optimal
representations require an appropriate choice for the diagram with minimum redundancy.
Another possibility is to prefer DDs with minimum height or minumum number of nodes.
This is reasonable if the decision diagram is intended for being used by humans such as
medical doctors applying classifiers published in medical guidelines.

To reason about DDs, answer set programs are well-suited for several reasons:
(1) transitive closures allow to reason over paths in diagrams, (2) the multi-model seman-
tics allows for producing multiple diagrams (one per answer set), and (3) constraints are
useful to rule out inappropriate diagrams, or to account for a cost. Technically, we realize
reasoning over diagrams (i.e. “applying” programs to diagrams) by instantiating Def. 2
as a special operator ◦asp(∆,P) which can be used as any other operator in the merging
plan. The input is a set ∆ ∈ 2kD,C of DDs and an answer set program P . The operator
◦asp encodes all input diagrams in ∆, adds them as facts to the user-defined program P ,
and returns as result its answer sets. They are expected to contain the encoded output
diagrams (one per answer set). ASP is well-suited for this purpose because of its multi
model semantics which allows for producing multiple alternative results.

We slightly modify our encoding from Sec. 3: to handle multiple diagrams within
one set of input facts, we add a diagram index I as first argument to all predicates p ∈
{root , leaf , inner , cond , else} and call them pin ; to distinguish between program input
diagrams and result diagrams, pin are used for the input, and p denote output predicates.

Declarative Merging of and Reasoning about Decision Diagrams 9

Merging
Task

Description
MELD

Decision
Diagram
Merging

Operators

Belief Bases Belief Set Control Script

Input:
Decision
Diagrams

Converter
Output:

Decision
Diagram

Fig. 3: DDM Architecture (data flow→, control flow 99K)

Use Case: Node Count Minimization. The merging plan in Fig. 2a shows four input
DDs D1, . . . , D4. First, we merge D1 and D2, as well as D3 and D4 using operator ◦2R
whose result is subsequently fed into a user-defined program P (potentially, any program
can be used that is using the encoding as described above). The result of this and the
merge of D1, D2 is passed to the next binary merging operator ◦2Q, which is eventually
filtered by Pmin as shown in Fig. 2b. Program Pmin is intended to select among arbitrarily
many input DDs the one with the minimal number of nodes. Let V (D) denote the set of
nodes in diagram D. We have the following result.

Proposition 1. For a set∆ of input decision diagrams, we get that ◦asp(∆,Pmin) yields
a set of decision diagrams ∆min ⊆ ∆ such that for every D ∈ ∆min there is no D′ ∈ ∆
with |V (D)| > |V (D′)|.

Intuitively, Pmin filters diagrams with minimal node number. It computes in cnt for
each diagram (identified by its root) the total number of nodes (rule 1). Then it selects
non-deterministically exactly one input diagram at a time (rule 2–3) and copies it to the
answer set (rules 4–); to minimize the node count, answer sets representing non-minimal
diagrams are eliminated in the last integrity constraint. In practice, the selection criteria
might be more involved. In Sec. 6 we will (abstractly) propose a program Psel which
tests the input diagrams over some test set and selects the diagram with the best behavior.

5 Prototype Implementation of the DDM System

The architecture of our prototype (see Fig. 3) consists of the following parts.2

MELD. This is the underlying belief set merging system. It is implemented on top of
the logic programming reasoner DLVHEX, which evaluates HEX programs; for details we
refer to Redl et al. ([11]). Our DDM system extends MELD by two major components:
a converter between different forms of decision diagram representation, and a suite of

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/ddm.html

10 Thomas Eiter, Thomas Krennwallner, and Christoph Redl

decision diagram merging operators, which are plugins for the MELD system. Further
components are the Merging Task Description and the Control Script.

Converter. MELD expects decision diagrams in the belief set encoding from above; the
Converter transforms human-readable input and output formats of machine learning tools
(which realize hierarchical structures) into corresponding belief bases (sets of facts in
HEX format). Our implementation, graphconverter, currently supports (1) a graph-based
input format, (2) the output format of the machine learning tool RapidMiner (http://
rapid-i.com), (3) a representation as logic program or as answer set. graphconverter
takes two arguments that specify the input resp. output format; it reads from standard
input and writes to standard output.

Merging Operators. At the core of our DDM system is a suite of merging operators
which interpret their input as encoded decision diagrams. We provide some predefined
operators, which are mostly considered to serve as examples for demonstrating the
possibilities. Users may use them directly, refine them to make them suitable for a certain
application, or develop completely new operators as plugins (in C++).

Merging Task Description. The merging plan, the decision diagrams and the merging
operators used, is stored as a merging task description in an .mt file, say task.mt,
formulated in MELD’s merging task language (MTL). The merging operators are tailored
to decision diagrams only, i.e., they assume that belief sets associated with belief bases
encode decision diagrams (otherwise an error is raised). The merging task can be initiated
by invoking the command

$ dlvhex --merging task.mt > res.as

storing the output in file res.as. (Note that dlvhex --merging invokes MELD.)
The result is another diagram represented by the facts in the belief set.

Control Script. A simple control script, as used in the examples of the system, manages
the workflow of executing a merging task. It converts the input diagrams, stored in files
diagN.X (the filename extension X tells the input diagram type) to belief bases in files
diagN.hex. It then calls MELD as above, and finally converts the obtained diagram
(represented by a set of facts given by res.as) into the input format X; e.g., for dot
files it calls

$ graphconverter as dot < res.as > res.dot

Further details on system usage input and MTL format description is given at the
accompanying homepage.2

6 Example: DNA Classification

A central task in (semi-)automatic generation of protein databases is to recognize genes in
DNA sequences. Recall that DNA molecules are composed of the four bases (A)denine,
(G)uanine, (C)ytosine and (T)hymine which are lined up in vast strings. In reproduction,
only a minor part of the total DNA will be transcribed as most of it is junk DNA not
encoding proteins. To construct protein databases like SWISSPROT (http://expasy.

Declarative Merging of and Reasoning about Decision Diagrams 11

org/sprot/) requires to automatically classify sequenced DNA into (protein) coding
and non-coding (junk DNA) samples.

To this end, one usually computes numeric features for a set of annotated train-
ing sequences. They incorporate knowledge from molecular biology which allows to
discriminate—with some level of uncertainty—between the two classes. For instance,
it is known that the predominant bases at the first codon position in coding sequences
are purines (A and G), while in non-coding sequences the distribution is rather random.
Hence, a useful feature is the relative frequency of A and G on the first codon position
with respect to the number of codons in a sequence. For details we refer to [8]. Feature
vectors can then be used to train a classifier using machine learning techniques.

We instantiate Def. 1 with C = {c, n} (coding and non-coding) and use the query
language in Sec. 3 for the edge labelling. We extend our basic DD model by an additional
frequency distribution `F (v) = (cv, nv) at each node v, which tells the number of
coding (cv) and non-coding (nv) samples (in fact, below we will use it only at leaf
nodes). E.g., if in leaf l we have that 70 out of 100 training samples were coding, the
classification is `C(l) = c with frequency distribution `F (l) = (70, 30).

MORGAN Merging Operator. The MORGAN system [13] trains multiple decision
trees D1, . . . , Dn and merges them afterwards (see Fig. 4). The class of a yet unseen
sample s is then determined as follows. First s is classified by each tree Di, ending in
leaf li. Then all frequency distributions `F (li) are summed up by component-wise vector
addition, and the class with the largest count is the final classification. For instance, if
we have two classifiers which yield the distributions `F (l1) = (90, 10) and `F (l2) =
(20, 80), they are added to (110, 90), and consequently the final classification is c
(since 110 > 90). The implementation of the binary case is straightforward as follows:
Each leaf node of diagram D1 is replaced by a copy of the diagram D2. Then the
frequency distribution of each new leaf node is recomputed, and the class label is set
according to the highest component. More than two diagrams are integrated by iteration.

We implemented MORGAN’s merging strategy as operator ◦M for our DDM system.
It takes as input two singleton collections of belief sets (general diagrams must be
converted to trees, for which our system provides operators). The output will be another
classifier behaving as the suggested procedure, but represented by a new decision tree.
Fig. 4c shows the diagram after application of another operator ◦simp from our system,
which simplifies the input diagram by eliminating unnecesary branches and reusing
equivalent subdiagrams.

Experiments with Decision Diagram Merging. Concerning the accuracy increase,
our most impressive results were achieved with three different decision trees, trained
by the open-source machine learning tool RapidMiner. The variations concerned both
the selected algorithm and the training samples. The training sets of only ten sequences
per tree was drawn randomly from a set of 4, 000 sequences (2, 000 coding and 2, 000
non-coding) from [5]. The intuition was to obtain trees that involve at most two attributes
(with the greatest variance between coding and non-coding sequences). These attributes
depend on the training set and the selected learning technique. The performance of these
trees was tested with 2, 000 test instances (1, 000 coding and 1, 000 non-coding) outside
the training set. As expected, the results were very poor due to the very small training
set. Table 1 shows the overall performance which is about 50%, or in other words, as

12 Thomas Eiter, Thomas Krennwallner, and Christoph Redl

D1

c (90:10) n (40:60)

f20≤ 1.42 f20 > 1.42

D2

c(70:30)

n(20:80) c(90:10)

f8 > 0.056 f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

(a) Two decision diagrams D1 and D2

c

(160:40)

c(110:90) c (180:20)

c

(110:90)

n(60:140) c (130:70)

f20 ≤ 1.42 f20 > 1.42

f8 > 0.056
f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

f8 > 0.056
f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

(b) Merged decision diagram D1 ◦M D2

c

(450:150)
c

(110:90)

n(60:140) c (130:70)

f20 ≤ 1.42
f20 > 1.42

f8 > 0.056
f8 ≤ 0.056

f3 > 7.5 f3 ≤ 7.5

(c) Simplified decision diagram ◦simp(D1 ◦M D2)

Fig. 4: Classifiers for coding (c) and non-coding (n) DNA sequences, based on features fi

good as random classification. An interesting observation is that the first classifier tends
towards non-coding and the second towards coding; the third is slightly better balanced,
i.e., ratio of false positives and false negatives is smaller.

The merged tree, produced by the described merging procedure, performs surpris-
ingly good. The overall accuracy was 65.25%, which is much better than any of the
source classifiers. Recall that we used only very few (ten) training examples to train
the individual decision trees; in total we had 30 samples. In experiments we found that
about 1, 000–2, 000 training examples are needed to reach this accuracy with a single-set
decision tree. Furthermore, such trees had depth ≈7, which is much larger than height
3 of the merged tree. This accuracy cannot be enhanced much by using more training
samples or source classifiers. Empirical results for different algorithms show that ≈75%
is the best one can expect, which seems to be a limit of the statistical features [15].

Our findings in experiments with DNA data from the Human Genome Project largely
confirm those of [13]. Compared to training single diagrams, the merging approach

Declarative Merging of and Reasoning about Decision Diagrams 13

Table 1: DNA Classification Results (Data from Human Genome Project)

Input 1 Input 2 Input 3 Merged
TC TN TC TN TC TN TC TN

PC 175 214 854 877 262 346 565 260
PN 825 786 146 123 738 654 435 740

A 48.05% 48.85% 45.80% 65.25%

PC/PN: predicted coding/non-coding, TC/TN: true coding/non-coding, A: accuracy

– often yields a simpler diagram structure (in particular height);
– often gains the same accuracy with a smaller (overall) training set; and
– can use parallel training (also with different methods).

We stress that qualitative improvements (as targeted in machine learning) was not the
primary goal of our research, and thus we omit detailed statistical results here. Instead,
our contribution is the methodology and tool support for flexible DD merging: many
experiments and trials are needed to obtain the above results, and this is only reasonably
possible with a tool allowing to quickly restructure the modular merging plans. This
makes our system more powerful than, e.g., MORGAN, which uses a hard-coded merging
procedure. We can switch from MORGAN’s merging strategy to majority voting by
changing one line in the merging plan; more than two input diagrams can be merged
hierarchically, possible using different operators. Furthermore, different from MORGAN
operatores can be reused for other applications.

Extending the Scenario. In addition, a major advantage when using our declarative
approach is the possibility to reason about DDs between the merging steps. While ◦M
returns exactly one output diagram for two input diagrams [13], the following variant ◦M ′

seems reasonable (for space reasons, we omit formal details): when merging two leaf
nodes l1 and l2 with frequency distributions (c1, n1) and (c2, n2), the merged node l
gets `F (l) = (c1 + c2, n1 + n2). While ◦M classifies l as coding (c) if c1 + c2 >
n1 + n2, and non-coding (n) otherwise, it makes sense to produce both alternatives
if
∣∣∣ c1+c2−(n1+n2)
c1+c2+n1+n2

∣∣∣ < ε for some threshold ε > 0, i.e., the numbers of coding and
non-coding samples are almost equal.

This strategy intends to avoid overfitting by estimating and minimizing the gen-
eralization error of the classifier, which is known as the model selection problem in
machine learning (for more information, see [1]). Moreover, it may even lead to different
diagram structures after simplification. Applying ◦simp to the diagram in Fig. 4b gives
the diagram in Fig. 4c. In contrast, when the label of the shaded leaf node is switched
from c to n, the left and the right subtree of the root become equivalent. Therefore ◦simp

will eliminate the unnecessary branching at the root, and D2 is reproduced.
A declarative choice program Psel can then select, one of the alternatives. This

program may prefer the diagram which performs best over some test set, or it prefers
diagrams with a simpler structure or lower number of nodes. Our contribution in this
regard is tool support for convenient generation and selection of best merges by declara-

14 Thomas Eiter, Thomas Krennwallner, and Christoph Redl

tive merging plans, e.g., ◦asp(◦simp(◦′M ({D1}, {D2})), Psel), where ◦′M (or any other
operator) constructs candidates, and ◦asp makes the final selection. In the DNA appli-
cation, this strategy led to sensible differences in the resulting diagrams (yet not to a
significant increase in best precision).

7 Related Work and Conclusion

The integration of several classifiers is known in machine learning as ensemble learning,
for which well-working methods are available; see e.g. [4, 9] for an overview. However,
these approaches train new classifiers using an existing one and training samples. In
decision diagram merging, we directly integrate them without using training samples at
all. This strategy was also discussed in [13] where an algorithm and a tool for integrating
decision diagrams for DNA classification was developed. We have discussed this scenario
(and extensions). Their system, however, is monolithic, hard-coded, and tailored to this
application. Our DDM system, instead, is more general and can be used for different tasks
as well. Its modular architecture simplifies the exchange, reusability and modification of
merging strategies enormously. This is especially useful for experimenting with different
strategies and evaluating their outcomes empirically.

The real strength of our system becomes visible when combining merging capabilities
with declarative reasoning about decision diagrams between the merging steps. User-
defined ASP programs may be used on a meta-level to constrain the further integration
process. This allows merging operators to produce multiple alternative results. The ASP
program can in turn select one which is appropriate for the application in mind. In
particular, the high expressivity of HEX programs and the possibility to access other
software from them offers support to declare involved criteria.

Concerning complexity issues, both the time complexity of merging and the size of
the integrated diagram depends on the merging operators in use. The analysis of concrete
operators remains for future work.

References

[1] Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Statist.
Surv. 4, 40–79 (2010)

[2] Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebraic
decision diagrams and their applications. In: ICCAD’93. pp. 188–191. IEEE (1993)

[3] Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM (2011), to appear

[4] Dietterich, T.G.: Ensemble methods in machine learning. In: Intl. Workshop Multiple
Classifier Systems. pp. 1–15. Springer (2000)

[5] Fickett, J.W., Tung, C.S.: Assessment of protein coding measures. Nucleic
Acids Res. 20(24), 6441–6450 (1992), http://fruitfly.org/sequence/
human-datasets.html

[6] Mair, J., Smidt, J., Lechleitner, P., Dienstl, F., Puschendorf, B.: A decision tree for the early
diagnosis of acute myocardial infarction in nontraumatic chest pain patients at hospital
admission. Chest 108(6), 1502–1509 (1995)

Declarative Merging of and Reasoning about Decision Diagrams 15

[7] Naylor, B., Amanatides, J., Thibault, W.: Merging BSP trees yields polyhedral set operations.
In: SIGGRAPH’90. pp. 115–124. ACM (1990)

[8] Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.
Intell. 27(8), 1226–1238 (2005)

[9] Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3),
21–45 (2006)

[10] Quinlan, J.R.: Simplifying decision trees. Int. J. Hum.-Comput. St. 51(2), 497 – 510 (1999)
[11] Redl, C., Eiter, T., Krennwallner, T.: Declarative belief set merging using merging plans. In:

PADL’11. pp. 99–114. Springer (2011)
[12] Salzberg, S.: Locating protein coding regions in human DNA using a decision tree algorithm.

J. Comput. Biol. 2(3), 473–485 (1995)
[13] Salzberg, S., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding

genes in DNA. J. Comput. Biol. 5(4), 667–680 (1998)
[14] Sobin, L., Gospodarowicz, M., Wittekind, C. (eds.): TNM classification of malign tumors.

Wiley-Blackwell, 7 edn. (2009), http://www.uicc.org
[15] Sree, P.K., Babu, I.R.: Identification of protein coding regions in genomic DNA using

unsupervised FMACA based pattern classifier. Int. J. Comput. Sci. Network Secur. 8(1),
305–309 (2008)

Constraints and Global Optimization

for Gene Prediction Overlap Resolution

Christian Theil Have

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: cth@ruc.dk

Abstract. We apply constraints and global optimization to the problem
of restricting overlapping of gene predictions for prokaryotic genomes.
We investigate existing heuristic methods and show how they may be
expressed using Constraint Handling Rules. Furthermore, we integrate
existing methods in a global optimization procedure expressed as proba-
bilistic model in the PRISM language. This approach yields an optimal
(highest scoring) subset of predictions that satisfy the constraints. Exper-
imental results indicate accuracy comparable to the heuristic approaches.

1 Introduction

Traditionally, gene finding has been considered as a classification task which
could be performed without much context [6]. This ignores the problem of the
constraints between the set of predicted genes and their placement in the genome.
A common problem occurs with overlapping genes. Overlapping genes are rare
in prokaryotic genomes, but they do occur [12, 8].

The traditional intrinsic gene finding methods have a tendency to predict too
many overlapping genes (particularly in GC rich genomes) because the feature
patterns of a gene predicted in one reading frame give rise to similar feature
patterns in other reading frames. This effect is known as shadow genes.

Several gene finders deal with the problem of overlapping genes by discarding
some of the overlapping predictions in a post-processing step. In this paper we
consider and compare such post-processing techniques and give unified presenta-
tion using Constraint Handling Rules [7]. We demonstrate how such rules can be
formulated as constraints and integrated with a global optimization procedure
implemented as a constrained Markov chain in the PRISM system [13].

We adopt a divide and conquer approach to gene finding, which can be seen
as composed of two steps:

1. A gene finder supplies a set of candidate predictions p1 . . . pn, called the
initial set.

2. The initial set is pruned according to certain rules or constraints. We call
the pruned set the final set.

18 Christian Theil Have

The present paper is concerned with methods for the second step. The pur-
pose of this step is to repair effects of flawed assumptions in the first step, i.e.
leading to over-prediction of overlapping genes, and more specifically to improve
accuracy by pruning false predictions. We consider this step as a Constraint
Satisfaction Problem (CSP).

Definition 1. A Constraint Satisfaction Problem is a triplet 〈X, D, C〉. X is a
set of n variables, X = x1, . . . , xn, with domains D = D(x1), . . . , D(xn). The
constraints C impose restrictions on possible assignments for sets of variables.
A solution is an assignment of a value v ∈ D(xi) to each variable xi ∈ X,
consistent with C.

We introduce variables X = xi . . . xn corresponding to each prediction p1 . . . pn

in the initial set. All variables have boolean domains, ∀xi ∈ X, D(xi) = {true, false}
and xi = true ⇒ pi ∈ final set.

If there are multiple solutions, then we are usually interested in the “best”
one. We interpret “best” as meaning a solution that contains as many real genes
as possible and as few incorrect predictions as possible. We do not know in
advance which predictions are correct, but optimize the probability (or a sim-
ilar measure) that the predictions are correct. This extends the problem as a
constraint optimization problem.

Definition 2. A Constraint Optimization Problem (COP) is a CSP where each
solution is associated with a cost and the goal is to find a solution with minimal
cost1.

2 Local heuristic methods

An approach taken by many gene finders is to employ local heuristic pruning
rules to post-process a set of gene predictions. These rules make pruning decisions
based on the context of only a subset of the predictions. Typically, the rules
consider overlapping predictions on a case by case basis and deletes inconsistent
predictions based on various criteria. The rules essentially work as propagators
that reduce the domains of variables, e.g. a deletion corresponds to reducing the
boolean domain of the corresponding variable to false. The drawback is that
the rules are generally not guaranteed to yield a globally optimal solution and
that they may produce different solutions depending on the order in which they
are applied.

These types of rules are conveniently expressed as simplification rules in the
Constraint Handling Rules (CHR) language. Such rules work on a constraint
store, which starts out as the initial set. The simplification rules remove predic-
tions from the constraint store, until no more rules apply. Then, the constraint
store represents the final set.

As example, consider the post-processing procedure of the Genemark frame-
by-frame gene finder [11] expressed as a single rule in CHR:

1 Or equivalently, a solution with maximal negative cost (utility).

Gene Prediction Overlap Resolution 19

prediction(Left1,Right1), prediction(Left2,Right2) <=>

Left1 =< Left2, Right1 >= Right2

| prediction(Left1,Right1).

The head of the rule — the part before <=> — matches two predictions in
the constraint store. The rule replaces both predictions with the first prediction
if the first prediction completely overlaps the second prediction. This condition
is expressed in the guard of the rule – the part between the head and the | char-
acter. The rule is applied for all predictions matching the head and the guard,
effectively removing all predictions which are completely overlapped by another
prediction. With this rule it does not matter in which order the predictions are
processed – the final set will be same. This is a consequence since the program
consisting of the unique rule presented is confluent [1], i.e. it is not sensitive to
the order of execution.

As an example of non-confluent rules, consider the scheme used in the ECO-
PARSE gene finder [9] which addresses partial overlaps and the score of the
predictions:

prediction(Left1,Right1,Score1), prediction(Left2,Right2,Score2) <=>

overlap_length((Left1,Right1),(Left2,Right2),OverlapLength),

length_ratio((Left1,Right1),(Left2,Right2),Ratio),

length(Left1,Right1,Length1), length(Left2,Right2,Length2),

OverlapLength > 15, Score1 > Score2

((Length1 > 400, Length2 > 400) ; Ratio > 0.5),

| prediction(Left1,Right1,Score1).

prediction(Left1,Right1,Score1), prediction(Left2,Right2,Score2) <=>

overlap_length((Left1,Right1),(Left2,Right2),OverlapLength),

length_ratio((Left1,Right1),(Left2,Right2),Ratio),

length(Left1,Right1,Length1), length(Left2,Right2,Length2),

OverlapLength > 15, Ratio =< 0.5, Length1 =< Length2

| prediction(Left1,Right1,Score1).

If two predictions overlap by more than 15 bases, then one of them is removed.
If the ratio between the longest and shortest of the predictions is more than
0.5, then the lowest scoring is removed (first rule) otherwise the shortest one is
removed (second rule). Note how this may lead to different effects depending on
the order in which predictions are considered, as illustrated in figure 1.

There are other approaches which employ more complex local heuristics. An
example is heuristics of the RescueNet gene finder [10] which has rules consider-
ing scores, percent overlaps and local overlaps between up to three predictions.
These heuristics can be implemented with nine CHR rules (not shown), but the
resulting program is not confluent.

It is a general theme for the heuristics to be based on two central character-
istics of overlapping predictions – the score of the predictions and the (relative)
lengths of the predictions and the overlap.

20 Christian Theil Have

P1: score=0.3, length=500

P3: score=0.25, length=480

P2: score=0.6, length=220

Fig. 1. ECOGENE post processing: We have two predictions P1 and P2 that overlap
each end of a third prediction P3 by more than 15 bases. If P1 and P3 is are considered
before P2 and P3 then P3 will be removed by the first rule. Consequently P2 does not
overlap and is kept. If they are considered in opposite order, however, then P2 will be
removed by the second rule and subsequently P3 is removed by the first rule.

3 Global optimization

We would like the final set to reflect the relative confidence scores in the pre-
dictions assigned by the gene finder and at the same time be consistent with
the overlap constraints. To accomplish this we reformulate the problem as a
constraint optimization problem.

Let the scores of p1 . . . pn be s1 . . . sn and si ∈ R+. The scores are the con-
fidence scores given by the underlying gene finder, i.e. they reflect the supposed
probability that a prediction constitutes a real gene. Such scores are commonly
expressed as probabilities, but need not be.

We would like to maximize the sum of the scores
∑n

i=1
si since it is directly

related to the criteria of the model that produced the initial set. With this crite-
ria, the inclination to prune a prediction in the final set is inversely proportional
to the score which is expected to reflect the underlying models belief that the
prediction is a real gene.

To perform global optimization with a set of constraints, we propose to use a
constrained first-order Markov chain. We assume that a gene finder has produced
initial set of predictions, p1 . . . pn, and further require these to be sorted by
the position of their left-most base, such that ∀pi, pj, i < j ⇒ left-most(pi) ≤
left-most(pj). The variables x1 . . . xn of the CSP are given the same ordering.

The Markov chain has a begin state, an end state and two states for each
variable xi corresponding to its boolean domain D(xi). The state corresponding
to D(xi) = true is denoted αi and the state corresponding to D(xi) = false is
denoted βi. In this model, a path from the begin state to the end state corre-
sponds to a potential solution of the CSP. The Markov model is illustrated in
figure 2. The begin state has transitions to α1 with probability P (α1|begin) = σ1

and β1 with probability P (β1|begin) = 1 − σ1. The last two prediction states,
αn, βn can only transit to the end state, i.e. P (end|αn) = P (end|βn) = 1. For
all other states, we have the transition probabilities,

P (αi|αi−1) = P (αi|βi−1) = σi and P (βi|αi−1) = P (βi|βi−1) = 1 − σi

We normalize the scores to the interval (0.5, 1], yielding the normalized prob-
ability scores σ1 . . . σn, in the following way,

Gene Prediction Overlap Resolution 21

1
−

σ
1 β1 β2 βn

σ 1

α2 αn

begin end

α1

σ2

1 − σ2

1

1

σ 2

1
−

σ
2

Fig. 2. Illustration of the Markov chain used. The transitions are marked with their
corresponding probabilities. Only the first few and the last states are included - the
dotted transition arrows symbolize the omitted α3 . . . αn−1 and β3 . . . βn−1 states and
their transitions, which follows the same principle as the previous.

σi = 0.5 + λ +
(0.5 − λ) × (si − min(s1 . . . sn))

max(s1 . . . sn) − min(s1 . . . sn)

λ is a small pseudo-count to ensure that all σ scores are above 0.5. Since α

probabilities are always larger than 0.5, the model prefers α states over their
corresponding β states. Hence, a most probable path from the begin state to
the end state will not include any β states. The predictions that maximize the
product of the σ scores will also maximize the sum of the original scores, since the
normalized σ scores are monotonic to the original scores, σi ≥ σj ⇐⇒ si ≥ sj .

For inference with the model we use the Viterbi algorithm [16], which returns
a most probable state sequence {begin, S1, S2 . . . Sn, end}|Si ∈ {αi, βi}.

Constraints are defined on states that are not allowed to occur together in
a path. These constraints force the Viterbi algorithm to choose a most prob-
able path, consistent with the imposed constraints, i.e. this path may include
β states. The constraints are formulated as CHR rules similar to those of the
local heuristics, but instead of removing predictions they define conditions for
inconsistency. We call these inconsistency rules. Inconsistency rules match pre-
dictions corresponding to α and β states in the head of the rule. The guard of
the rule ensures that the additional criteria for rule application are met and the
implication of the rules is always failure. Note that such rules are necessarily
confluent.

As example, version 3 of the Glimmer gene finder [5] use a similar approach
with a constraint that enforce a maximal length of overlaps (110 for E.coli). In
our system, this constraint is formulated as,

alpha(Left1,Right1), alpha(Left2,Right2) <=>

overlap_length((Left1,Right1),(Left2,Right2),OverlapLength),

OverlapLength > 110

| fail.

The Genemark heuristic rule is represented as two inconsistency rules,

22 Christian Theil Have

alpha(Left1,Right1), alpha(Left2,Right2) <=>

Left1 =< Left2, Right1 >= Right2 | fail.

beta(Left1,Right1), alpha(Left2,Right2) <=>

Left1 =< Left2, Right1 >= Right2 | fail.

The first rule states that one prediction may not completely overlap another
and the second says that we cannot include a prediction if a pruned prediction
completely overlaps it. Since the heuristic is confluent it may also be applied to
the initial set as a filtering algorithm before the process of global optimization.
We can reformulate the two ECOGENE rules in the same fashion (guard is
omitted, but it is the same as in the heuristic rules),

alpha(Left1,Right1), alpha(Left2,Right2) <=> ... | fail.

beta(Left1,Right1), alpha(Left2,Right2) <=> ... | fail.

Note that the Score arguments have been removed. They are now implicitly
integrated in the optimization algorithm. The confluence issue is resolved due
to the optimization procedure. In effect, the execution strategy that maximizes
the score is applied.

3.1 Implementation in PRISM

A PRISM program that implements the constrained Markov chain is created
from the initial set of predictions and constraints expressed as CHR rules. PRISM
is an extension of Prolog with special goals representing random variables. A
derivation of the PRISM program corresponds to a path through the Markov
chain. The Markov chain is implemented as a recursive predicate, such that in
the i′th recursive call, the (random) variable xi is assigned a value corresponding
to a Markov chain state; αi or βi. After each recursion — an attempted transition
in the Markov model — the constraints are checked.

Relevant recent states As part of a derivation we maintain a list of recent
states (mi) sorted by the right-most position of the corresponding predictions.
Constraints are only checked for predictions corresponding to elements of mi.
In step i, we construct mi as the maximal prefix of xi + mi−1, such that
xj ∈ mi ⇐⇒ right-most(pj) ≥ left-most(pi). If the constraints propagate
fail, then the PRISM derivation fails and the (partial) path it represents is
pruned from the solution space.

The most probable consistent path is found using PRISMs generic adaptation
of the Viterbi algorithm for PRISM programs [14].

4 Evaluation

In lack of a true golden standard, we use an accepted reference set to define
the set of ”correct” genes. A slight complication of this approach is that the
reference set itself may have incorrect and missing annotations. True positives

Gene Prediction Overlap Resolution 23

are gene predictions in the final set which are included (exactly) in the reference
set and false positives are those predictions that are not.

Traditionally, in gene finding, accuracy is measured in terms sensitivity and
specificity. Sensitivity measures the fraction of reference genes exactly predicted
by the approach and specificity measures the fraction of predicted genes that are
correct. Since the starting point is the initial set of predictions (which may omit
some potential genes) we cannot improve on sensitivity. The goal of a pruning
approach is then to improve on specificity with minimal impact to sensitivity.

We consider a pruning approach successful wrt. to an initial set when it
prunes false positives at a higher rate than it prune true positives. This is re-
flected by the difference in sensitivity and specificity of the final set compared
to the initial set.

We consider constraints safe when the constraints prune only false positives.
Neither of the examined constraints are safe with respect the RefSeq annotation
of E.coli, NC 000913. Three of the reference genes are completely overlapped
by another reference gene. These would be removed by the genemark heuristic
and hence it is not safe, although the negative impact of sensitivity would neg-
ligible. Similarly with the Glimmer constraint – the reference annotation have
four overlaps longer than 110 bases which would be removed by this constraint.
There are 93 overlaps longer than 15 bases. All of these would be removed by
the ECOGENE constraints, which is therefore expected to have a noticeable
negative sensitivity impact.

4.1 Experimental validation

We compare the different approaches using the predictions from a very simple
codon preference based gene finder – the simplest model described in [4]. The
gene finder has been trained on E.coli NC 000913 and applied to predict genes
in the same genome. It overpredicts quite a lot – a total of 10799 predictions for
the genome, which has 4145 known genes.

We ran the constrained Markov chain using the gene finder predictions as
initial set, applying our adaptations of the both the Genemark constraint, the
ECOGENE constraint and the Glimmer3 constraint. We also tested the local
heuristic versions of the Genemark and ECOGENE constraints. The results are
summarized in table 1.

Both the Genemark and ECOGENE heuristics achieve quite impressive im-
provement compared to the initial set. Our global optimization achieves better
sensitivity than ECOGENE and better specificity than Genemark, but seen as
a combination of the measures, the result is not significantly better.

Note that the optimal or highest scoring set of predictions subject to the
constraints is not necessarily the most successful, but it is the one that most
faithfully reflects the confidence scores assigned by the gene finder.

The purely declarative CHR implementations of genemark or ECOGENE
rules are quite slow (hours), e.g. it essentially considers each pair of constraints
resulting in O(n2) complexity, n being the number of predictions in the initial

24 Christian Theil Have

Method #predictions Sensitivity Specificity Time (seconds)

initial set 10799 0.7625 0.2926 na

Genemark rules 5823 0.7558 0.5379 1.4

ECOGENE rules 4981 0.7148 0.5947 1.7

global optimization 5222 0.7201 0.5714 75
Table 1. Accuracy of predictions using different overlap resolution approaches. Note
that the results for the ECOGENE heuristic may vary depending on execution strategy
- in case of above results, predictions with lower left position are considered first.

set. However, with proper control in place (using the relevant recent states opti-
mization described in section 3.1), they can be made to run very fast (less than
two seconds). The running time for the global optimization is slower – it takes
a little more than one minute. This is still acceptable.

5 Conclusions

We presented a novel way to post-process gene prediction results based on con-
strained global optimization. Contrary to the heuristic approaches our approach
provides an optimality guarantee – the final set of prediction will be the max-
imally scoring set that satisfies the imposed constraints. We have incorporated
existing heuristic methods with the optimization procedure using inconsistency
rules implemented in CHR. Currently, the approach has similar accuracy to the
heuristic methods. The results indicate that maximizing the sum of scores have
the effect of including more short predictions. This could be addressed weight-
ing the scores by prediction length. We also plan to experiment with different
constraints to achieve better accuracy. Our approach is limited to local overlap
constraints and is not well-suited for global or long-distance constraints.

We are not the first to use dynamic programming based approaches to post-
processing of gene predictions. Version 3 of Glimmer [5] use a custom dynamic
programming algorithm which is similar to the present approach, but incorpo-
rates only the maximal overlap constraint. Another difference is that our ap-
proach is expressed as a declarative PRISM program and can therefore utilize
the generalized Viterbi algorithm. Our approach is similar to constrained HMMs
in PRISM, which has previously be applied to other biological sequence analysis
tasks [2, 3]. A main difference is that we express constraints with CHR rules.

CHRiSM[15] already combines CHR and PRISM and is to our knowledge
the first system to do so. CHRiSM assigns probabilistic semantics to CHR rules,
which are interpreted as chance rules – e.g. even if a rule head is matched the
rule is only applied with a certain probability. The main difference with our
approach is that we use ordinary CHR rules in conjunction with a PRISM pro-
gram, although ordinary CHR rules may be seen as a special case of CHRiSM
rules, where the probability of invocation is one. Additionally, the form of the
CHR rules we use is restricted (inconsistency rules) and they are only used in
the constraint checking part of the PRISM program. It would be interesting to

Gene Prediction Overlap Resolution 25

use CHRiSM as a method of incorporating soft constraints with our approach,
e.g. redefining the inconsistency rules as CHRiSM chance rules.

Acknowledgement This work is part of the project “Logic-statistic modeling and
analysis of biological sequence data” funded by the NABIIT program under the
Danish Strategic Research Council.

References

[1] S. Abdennadher, T. Fruehwirth, and H. Meuss. On confluence of constraint han-
dling rules. Lecture Notes in Computer Science, 1118:1–15, 1996.

[2] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Pe-
tit. A constraint model for constrained hidden markov models: a first biological
application. In Proc. of the International Workshop on Constraint Based Methods
for Bioinformatics, pages 19–26, Lisbon, Portugal, September 2009.

[3] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Petit.
Inference with constrained hidden markov models in PRISM. TPLP, 10(4-6):449–
464, 2010.

[4] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Petit.
Bayesian Annotation Networks for Complex Sequence Analysis. In John Gallagher
and Michael Gelfond, editors, Technical Communications of the 27th International
Conference on Logic Programming (ICLP’11), volume 11 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 220–230, Dagstuhl, Germany, 2011.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] Arthur L. Delcher, Kirsten A. Bratke, Edwin C. Powers, and Steven L. Salzberg.
Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformat-
ics, 23:673–679, 2007.

[6] James W. Fickett and Chang-Shung Tung. Assessment of protein coding mea-
sures. Nucl. Acids Res., 20(24):6441–6450, 1992.

[7] Thom W. Frühwirth. Constraint handling rules. In Andreas Podelski, editor,
Constraint Programming, volume 910 of Lecture Notes in Computer Science, pages
90–107. Springer, 1994.

[8] Yoko Fukuda, Yoichi Nakayama, and Masaru Tomita. On dynamics of overlapping
genes in bacterial genomes. Gene, 323:181 – 187, 2003.

[9] Anders Krogh, I. Saira Mian, and David Haussler. A hidden Markov model that
finds genes in E.coli DNA. Nucl. Acids Res., 22(22):4768–4778, 1994.

[10] Shaun Mahony, James O. McInerney, Terry J. Smith, and Aaron Golden. Gene
prediction using the self-organizing map: automatic generation of multiple gene
models. BMC Bioinformatics, 5:23, 2004.

[11] Anton M.Shmatkov, Arik A.Melikyan, Felix L.Chernousko, and Mark Borodovsky.
Finding prokaryotic genes by the frame-by-frame’ algorithm: targeting gene starts
and overlapping genes. Bioinformatics, 15(11):874–886, 1999.

[12] S. Normark, S. Bergstrom, T. Edlund, T. Grundstrom, B. Jaurin, F. P. Lindberg,
and O. Olsson. Overlapping genes. Annual Review of Genetics, 17:499–525, 1983.

[13] Taisuke Sato. Generative Modeling by PRISM. Proceedings of the International
Conference on Logic Programming, LNCS 5649:24–35, 2009.

[14] Taisuke Sato and Yoshitaka Kameya. A viterbi-like algorithm and EM learning
for statistical abduction, June 16 2000.

26 Christian Theil Have

[15] Jon Sneyers, Wannes Meert, Joost Vennekens, Yoshitaka Kameya, and Taisuke
Sato. CHR(PRISM)-based probabilistic logic learning. TPLP, 10(4-6):433–447,
2010.

[16] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

Introducing FIASCO: Fragment-based
Interactive Assembly for protein Structure

prediction with COnstraints

M. Best1, K. Bhattarai1, F. Campeotto2, A. Dal Palù3,1, H. Dang1,
A. Dovier2, F. Fioretto1, F. Fogolari2, T. Le1, and E. Pontelli1

1 Depts. Computer Science and Biology, New Mexico State University
2 Depts. Math. & Computer Science and Biomed. Sciences & Tech., Univ. Udine

3 Dept. Mathematics, Univ. Parma

Abstract. The paper summarizes the recent developments in the cre-
ation of a constraint-based framework for the analysis of protein confor-
mations. The framework is designed to be used by computational and life
scientists to provide new insights in the structural analysis of proteins.
The framework is composed of two parts: a graphical and web-based user
interface and a parallel constraint solving engine. The solver is able to
model the geometric and energetic properties of proteins and perform
a conformational search among structure candidates. The paper reports
the design and preliminary experimental considerations.

1 Introduction

In this paper, we present an overview of FIASCO (Fragment Interactive As-
sembly for protein Structure with COnstraints), a new framework dedicated to
protein structure analysis. The goal of our project is to deliver a tool that can be
used by researchers interested in the analysis of protein behaviors and structure.
The underlying core of the system is built on constraint programming technology,
which has been shown to be effective in modeling and reasoning about complex
systems, because of its modularity, simplicity, and its implicitly exploitable par-
allelism. This project is work in progress—in this report we highlight the overall
structure and current development status. The key features and goals that guide
the development of the system are:
• A simple and portable interface to allow a convenient protein modeling;
• The search engine technical details are hidden by the interface;
• It provides online access and seamlessly integrates with existing databases;
• It uses simplified spatial models in order to speed-up the search, while main-

taining a good description of protein features;
• The geometrical description of protein structure is based on a set of simple

physical constraints that are controlled by the user;
• The scoring of conformations is based on user-selectable energy functions

and it is decoupled from the geometric modeling;

28 M. Best et al.

• It effectively uses constraint technology to explore the protein’s degrees of
freedom and to guide the generation of conformations;

• It exploits cluster-level parallelism to enhance computational speed.

For biological background and constraint modeling we refer to [3, 4].
FIASCO’s capabilities range from ab-initio prediction on approximated mod-

els to conformation analysis and refinement.
For ab-initio prediction—i.e., search for a molecular structure that lies in

the global minimum of a suitable cost function—a set of native state candidates
are generated according to a user-selectable scoring function. A set of additional
information, derived from homology, prediction and/or experimental data, can
be included as constraints describing the molecule’s properties. The results can
be refined by molecular dynamics for further enhancements in accuracy [3].

In the analysis of conformations, a global enumeration of promising and
geometrically feasible conformations is performed. This can be used for studying
protein flexibility, loop closure, docking, long range transitions, and even as
part of the folding process. Particularly for those scenarios that require a long
time scale, which are beyond the current state-of-the-art all-atom simulations,
FIASCO is able to provide a simplified yet insightful overview of the process.

The ability to generate a conformational space with the guidance of con-
straints is substantially different from traditional approaches, e.g., those based
on Monte Carlo, Genetic and/or Simulated Annealing methods. Classical al-
gorithms produce new offsprings/results based on the evolution of a previous
generation and thus biased by the energy model used. The geometric descrip-
tion through constraints allows us, instead, to sample the space with different
methods and heuristics that can be controlled with greater precision.

WEB PAGE

Fragment
Library

Constraints

Parallel
machine

JAVA
INTERFACE

Fig. 1. FIASCO logo and structure

In Fig. 1, we depict the overall structure of the framework. The user in-
terface allows scientists to define the protein and its geometric characteristics.
These properties are encoded as a set of user-defined structural constraints, that
add to the possible local arrangements stored in a fragment library. The Con-
straint Optimization Problem defined by the user through constraints and a cost
function is solved by a parallel constraint solver. The results, e.g., protein struc-
tures, can be fed back to the interface for further analysis and refinement. In the
remainder of the paper we provide some details about each single phase.

Introducing FIASCO 29

Related work. Several studies have been presented using constraint program-
ming in the context of the protein folding problem. Most of them deal with
lattice spatial models, where each amino acid is represented by its Cα atom and
the set of points allowed are the nodes of a discrete lattice. For example, [1]
investigates the protein folding problem using a face centered cubic lattice and a
Boolean energy function—i.e., an energy contribution (measured as -1) is present
only when two hydrophobic amino acids are in contact, while other contacts do
not provide any contributions. The authors are able to efficiently determine the
optimal folding, with minimal energy, for relatively long proteins. In [3, 6], this
approach is extended with a more refined energy function. In particular, in [6] the
authors propose an ad-hoc parallel constraint solver, COLA, based on constraint
solving over 3D domains for amino acid locations. Another line of research has
been developed that makes use of constraint based technologies to investigate
protein folding and protein docking problems [2].

In the context of fragment assembly, the most popular approach is the one
used in the ROSETTA system [12]. Lee et al. [11] have recently extended the
idea of fragment assembly to investigate loop modeling, i.e., predicting the loops
that connect partially known parts of a protein structure.

Finally, the design of our graphical interface has been partially inspired by
the Fold It video game (http://fold.it/portal).

2 Web Interface and Java GUI

We have developed the proof-of-concept of a graphical user interface that allows
the interactive definition of a protein structure prediction problem. The user can
identify the target primary sequence and manually define known fragments and
constraints among fragments (e.g., spatial constraints), using 3D representations
of structures. The GUI interacts with public databases, enabling the retrieval
of homology and secondary structure prediction information. The GUI provides
also a portal to the constraint solving engine, located on a dedicated server,
allowing the user to submit all the collected information and constraints, and
retrieve and graphically represent the output produced by the constraint engine.
The GUI itself is integrated in a Web portal.

The GUI is based on the BioJava [10] and the Jmol (http://www.jmol.
org) open-source libraries, that offer many features to process and visualize
protein structures and to handle protein structure encoding formats. The tool is
structured according to the Model-View-Controller pattern style. It allows the
user to define fragments selected from homologous proteins and to introduce
geometric constraints by placing the fragments in a 3D workspace.

The workflow is managed by three main panels (Fig. 2): (1) the Target
panel, that displays the alignment of the selected fragments compared to the
target, (2) the Extraction panel, which allows the user to extract fragments
from a known protein (these fragments will be referred as special fragments),
and (3) the Assembling panel, where the user can assemble, move, and impose
the following types of constraints on the fragments:

30 M. Best et al.

• Block constraint: Fragments can be constrained in their relative coordinates
as a single rigid unit (free to rotate and translate).

• Volume constraint: A specific point (amino acid) is forced into a specific
box-shaped volume.

• EQ/LEQ Distance constraint: It imposes a constraint of exact/maximum
Euclidean distance between two residues.

• Exact Coordinates constraint: The specific fragment is blocked with specific
coordinates in the space, in order to prevent rotations and translations.

Fig. 2. A screenshot of the FIASCO Java interface

3 The constraint solver

In this section we describe the constraint framework addressed for encoding the
problem of the Protein Structure Prediction.
Main geometrical constraints. Our approach is based on a protein fragment
assembly technique [4, 5]. The key idea is to simplify the exploration of the
conformational space of a protein by looking at a subset of probable and observed
behaviors of several local substructures. Each part of the protein is associated
to a number of fragments, i.e., possible arrangements in the space, that can be
combined together while preserving typical structural constraints, derived from
chemical properties and user-defined restrictions.

We start by devising a fragment library of structures observed in the Protein
Data Bank (PDB, http://www.pdb.org) for fragments of short length (e.g., 4
amino acids), along with statistics concerning their occurrence frequencies. For
the case of longer fragments, the PDB typically does not offer a statistically
relevant coverage. However, it is possible to derive highly conserved homologous
structures that resemble an hypothetical similar conformation with high prob-
ability. These special fragments can be retrieved by combining different types
of primary sequence analysis, e.g., alignment for homology, secondary structure

Introducing FIASCO 31

prediction, etc. The interface provides methods to aid the user in identifying
large fragments that can be used as building blocks of the protein.

The fragments are handled through a constraint that models the assem-
bling of consecutive selected fragments. This constraint, in conjunction with
all distant global constraint [7], allows us to model geometrically feasible and
probable structures. However additional constraints, coming from user knowl-
edge, can restrict the feasible structures. For example, the prediction of sec-
ondary structure and the presence of similar known sequences with structure
may be added to prune incompatible solutions. We also introduce a novel con-
straint to describe spatial interactions among known special fragments (the pair
constraint). A fragment of type special represents a highly conserved polymer
conformation. These conformations are likely to form strong local interactions
among each other, according to the nature of their components and their spe-
cific shapes. In order to capture these local interactions, we design a constraint
that models the relations among local conformations by identifying the possi-
ble placements of fragments pairs. These relationships are statically determined
during preprocessing where, given the first fragment of the pair, multiple orien-
tations and distances are tested for the second fragment. We maintain the k-best
relative positions according to the contact and torsional angle contributions of
a free energy model.

Modeling. Let us introduce the following notations. The primary sequence of a
protein is denoted by S = a1, . . . , an, where ai is the ith amino acid. Fstd is the
set of standard fragments imported from the Assembly DB [4]. Fspc is the set
of special fragments, containing the fragments created through the Extraction
panel described in section 2. The Constraint Satisfaction Problem is defined over
three set of variables: Point, Fragment, and Pair.

The variables in the set Point represent the 3D position of the corresponding
Cα atoms and their domains are described by pairs [L,U], where L,U ∈ R3

represents the lower and the upper bound of the cube in which the variable
can range, namely the p ∈ R3 such that Lx ≤ px ≤ Ux, Ly ≤ py ≤ Uy and
Lz ≤ pz ≤ Uz. The points are subject to the all distant property [7], i.e.,
each pair of amino acids must be separated by a minimal Euclidean distance.
Another distance constraint restricts the maximal diameter between each pair
of Cα atoms. As argued in [3], a good diameter value is 5.68n0.38 Å.

Each variable Fi in Fragment is associated to fragments starting at amino
acid i and it represents the possible choices of compatible fragments that can
be placed over the positions ai, · · · , ai+k (3 ≤ k ≤ n − 3). The domain of the
variable contains every standard and/or special fragment that is compatible with
the specific amino acid types involved.

The information necessary to combine two fragments Fi and Fj consists of
a rotation matrix Mi,j and a translation vector sj , which provide the relative
affine transformation to best fit the two fragments—by overlapping the 3 amino
acid in common between the two fragments (the last 3 in Fi and the first 3 in
Fj). This information is computed in a pre-processing stage to ensure an efficient
handling during the search.

32 M. Best et al.

In order to restrict the search space, when using special fragments, it is pos-
sible to pre-compute the most probable spatial relationships between pair of
special fragments. The search can explore first these potential relative place-
ments and therefore we introduce the set Pair of variables, that summarizes
this information into the corresponding domains. Each variable in the set refers
to a specific pair of special fragments.

Each domain element of a variable in Pair identifies a specific rotation matrix
M and a translation vector v associated to the relative position of the two
fragment involved. M and v describe the affine transformations to be applied
to the second fragment of the pair, in order to couple the two fragments with
a favorable energy contribution. A special value is added to the domain. This
value is selected when no specific relationship is enforced over the pair.
Search. The search is guided by the instantiation of the fragment variables.
These variables are selected according to the following strategy. We distinguish
the following cases:

1. The leftmost Fi, such that either there is no pair variable associated or every
pre computed association has been tested before, is selected and assigned.

2. There exists a pair variable P associated to the ith and jth fragment vari-
ables Fi and Fj , and a fragment fa has already been selected from the
domain Fi. The choice of a specific element from the domain of P will prop-
agate a specific fb ∈ Fj and relative positions over the corresponding Point
variables.

This selection strategy tries to label first all the special variables Fragment,
possibly involved in some pair relation. The rationale behind this choice is the
desire to produce a highly constrained search space.

Note that the selection strategy described above attempts to place variables
Pair in a cascade effect: the selection of a pair 〈fa, fb〉 can trigger at the next step
the selection of a pair 〈fb, fc〉 if such a relation exists. The intuition here is that,
multiple pair relations among fragments might denote the presence of groups of
structures in the target protein, characterized by strong local interactions. These
local forces, providing high stability to the polypeptide, might give a strong hint
what the final 3D protein structure looks like.

The values of the domains of the variables selected are assigned starting with
the most likely choice, or with the one maximizing local interaction (when appli-
cable). Energy contributions are encoded as constraints that link the coordinates
associated to variable Point and the types of the amino acids involved.

From a computational point of view, we analyzed the computational complex-
ity of the fragment assembly problem, and showed that finding a conformation
with an energy fewer than an input limit is NP-complete even in a 2D space,
HP energy model approximation of the problem.
Energy. The energy function employed is described in [5] and it is based on
three components: (1) a contact potential for side chain and backbone contacts,
(2) an energy component for each backbone conformation based on backbone
conformational preferences observed in the database, and (3) a component that
considers the relative orientation of spatially close triplets.

Introducing FIASCO 33

The first two components are described in [4]. The third component weighs
the proper orientation of three consecutive amino acid fragments in order to
form hydrogen bonds, following [9]. This energy contribution is introduced when
the distance between two three-amino acid fragments is less than 5.8Å. Each
fragment identifies a plane, and we are interested in those cases where the planes
of the two fragments are almost co-planar and normal to the distance vector,
i.e., the absolute product of the cosines of the angles between the normals to the
two planes among themselves and with the distance vector is greater than 0.5.

4 Parallelism

The constraint solving engine has been implemented in C and parallelized using
MPI and a multi-threaded design; the parallel version is capable of performing
dynamic load balancing to address the problem of the irregular structure of the
search trees. The search can be abstracted as a tree where each node (a choice
point) is expanded according to available choices. Some of the choices can fail due
to constraint inconsistencies detected by constraint propagation. In the parallel
framework, an agent can process a partition of the search tree, e.g., a specific
subtree or task. A naive static partition of the main task is not effective, since
subtrees sizes may vary drastically, depending on the specific interactions of the
variables analyzed. To ensure an effective load balance, we devised a dynamic
rescheduling strategy that ensures the task reallocation and migration depending
on the specific features of each task and agents status.

Each agent is implemented by two threads: a worker and a scheduler.
• The worker performs the actual constraint solving activities; it owns a queue

of tasks to be processed and it is also able to generate new sub-tasks derived
from a partition of its current task. Each task has a weight information,
estimating its size (the estimate is computed by combining the depth of the
subtree ad the average depth of the agent during its exploration).

• The scheduler is in charge of negotiating the tasks to pass around and/or to
obtain. Tasks are encoded with minimal information (e.g., the description of
the branch that leads to that subtree) in order to minimize network usage.
The scheduling is decentralized and each agent is in charge to poll the others
with minimal overhead (see Algorithm 1 for details).

The parallelization approach corresponds to the traditional search-based paral-
lelism (e.g., [8, 13]); a novelty of our approach is the use of a multi-threaded
engine, which allows us to separate the scheduling activities from the constraint
solving process (which allows a more elegant overlapping between scheduling and
computation). Work is in progress to explore different scheduling strategies.

5 Experimental tests

Table 1 summarizes a test set for FIASCO against two proteins: 3L2A (129 amino
acids)–associated to the Ebola virus–and 3EMN (283 amino acids)–derived from

34 M. Best et al.

the study of the inner ear of the Xenopous laevis. The experimental tests have
been performed on a parallel machine composed of 24 nodes, each composed
of 2 quad core CPUs (Intel Xeon E5335), 288GB of RAM, and an Infiniband
network. This test set is performed using 8 concurrent agents.

For every referred protein, we perform different computations, according to
the number of special fragments (Fspc) used to build the final conformation.
We perform an exhaustive search with time limit set to 2 hours. The solutions
reported correspond to the best conformation found (in terms of energy min-
imization) within the time limit. Note that the pair constraint has not been
enabled for the above computations. Moreover, we perform additional tests tar-
geted to minimizing the RMSD values. The best evaluation (w.r.t. the native,
known, structure) are marked in the table with the “*” symbol.

Prot ID |Fspc| Energy RMSD T(s)

3L2A 2 -697.5 11.1 478
3L2A* 2 -670.5 5.7 478
3L2A 3 -259.8 12.0 2h
3L2A* 3 -200.7 3.8 2h
3L2A 4 -333.2 13.6 2h
3L2A* 4 -241.3 7.6 2h
3EMN 3 -1402.3 15.5 2h
3EMN* 3 -1150.3 3.1 2h

Table 1. Computational results

As expected, increasing the number of gaps (part of the protein not covered
by special fragments) the computational complexity arises. The gaps, indeed,
are modeled through shorter fragments (of length 4) imported by the Assembly
DB, that implicitly define a higher number in the degrees of freedom in those
protein regions. The experiments underline that the way of partitioning the
target sequence to produce special fragments plays an important role in this
respect. It is our intention to automatize the system to produce/suggest the
splitting site for possible special fragments candidates. This suggestion system
would help in producing conformations that are structurally closer to the protein
native state, yet, possibly, reducing the computational workload by avoiding
some unnecessary degrees of freedom, in those area of the protein in which
homology information can be used to generate special fragment candidates.

It is interesting to note that, the set of conformations that could potentially
be generated by FIASCO, contains solutions close enough to the native confor-
mations. The RMSD minimization tests ensure the feasibility of the methods
presented, showing that a good fragment set, able to produce satisfactory can-
didates, can be generated.

Note that the energy function used in this test set is optimized for proteins
that are completely immersed in fluid. In this respect we wish to stress that
3EMN is is a channel protein (beta-barrel eukaryotic membrane protein), thus
it does not fall in the above category.

Introducing FIASCO 35

F
1

F
2

F
3

Fig. 3. 3L2A (3): secondary structure prediction and special fragments (red boxes)

6 Conclusions

In this paper, we provided a very brief overview of a novel experimental platform
for the investigation of protein structures. The platform is based on the use of
constraint solving techniques to implement a fragment assembly approach to pre-
diction of tertiary protein structures. The fragments include statistically-ranked
peptides extracted from the Protein Data Bank as well as longer fragments
obtained through user observations, homology studies, or secondary structure
predictions. The assembly process is modeled as resolution of different types
of constraints, capturing the known fragments, estimated relative positions, ge-
ometric restrictions, and energetic considerations derived from a novel energy
model. Parallelism and novel search strategies are employed to guarantee an
efficient exploration of the search space of possible conformations.

The framework is currently under development—though several of its core
components have already been completed. It is accessible through a web-based
interface which integrates a sophisticated GUI, that allows the user to graphi-
cally provide the desired input (e.g., user defined fragments). We are currently
completing the implementation work and applying it to study two sets of un-
known proteins—one associated to the Ebola virus and one derived from the
study of the inner ear of the Xenopous laevis.

Acknowledgments. This research is partially supported by NSF grants 0947465,
0812267, and 0420407, by a grant from AHPCRC, by INdAM GNCS 2011, and
by PRIN 20089M932N.

References

[1] R. Backofen and S. Will. A Constraint-Based Approach to Fast and Exact Struc-
ture Prediction in 3-Dimensional Protein Models. Constraints 11(1):5–30, 2006.

[2] P. Barahona and L. Krippahl. Constraint Programming in Structural Bioinfor-
matics. Constraints 13(1–2):3–20, 2008.

[3] A. Dal Palù, A. Dovier, and F. Fogolari. Constraint logic programming approach
to protein structure prediction. BMC Bioinformatics, 5(186), 2004.

[4] A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. CLP-based protein fragment
assembly. Theory and Practice of Logic Programming, 10(4–6):709–724, 2010.

36 M. Best et al.

[5] A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. Exploring Protein Fragment
Assembly Using CLP. Proc. of IJCAI, pp. 2590–2595, AAAI Press, 2011.

[6] A. Dal Palù, A. Dovier, and E. Pontelli. A constraint solver for discrete lattices, its
parallelization, and application to protein structure prediction. Software: Practice
and Experience 37(13):1405–1449, 2007.

[7] A. Dal Palù, A. Dovier, and E. Pontelli. Computing Approximate Solutions of the
Protein Structure Determination Problem using Global Constraints on Discrete
Crystal Lattices. Int. Journal of Data Mining and Bioinformatics 4(1):1–20, 2010.

[8] G. Gupta, E. Pontelli, M. Carlsson, M. Hermenegildo, K. Ali. Parallel Execution
of Prolog Programs: a Survey. ACM TOPLAS, 23(4), 2001.

[9] T. X. Hoang, A. Trovato, F. Seno, J. R. Banavar, and A. Maritan. Geometry and
symmetry presculpt the free-energy landscape of proteins. PNAS, 101(21):7960–
7964, 2004.

[10] R.C.G. Holland; T. Down; M. Pocock; A. Prlic; D. Huen; K. James; S. Foisy; A.
Drger; A. Yates; M. Heuer; M.J. Schreiber. BioJava: an open-source framework
for bioinformatics. Bioinformatics 2008.

[11] J. Lee, D. Lee, H. Park, E.A. Coutsias, and C. Seok. Protein Loop Modeling by
Using Fragment Assembly and Analytical Loop Closure. Proteins, 78(16):3428–
3436, 2010.

[12] S. Raman, R. Vernon, J. Thompson, et al. Structure prediction for CASP8 with
all-atom refinement using Rosetta. Proteins 77(S9):89–99, 2009.

[13] C. Schulte. Parallel Search Made Simple. Techniques for Implementing Constraint
Programming Systems Workshop, 2000.

Algorithm 1 A general overview of the scheduler algorithm.
1: while ¬ global termination do
2: decode incoming message (if any) according to their msg.type

3: if timer elapsed then
4: send msg.type=statinfo to next agent in the ring
5: end if
6: if worker.status=busy then
7: process incoming message according to msg.type

8: else
9: if termination conditions then

10: send msg.type=termination to next agent in the ring
11: end if
12: process incoming message according to msg.type

13: end if
14: end while
15: Collect solutions
16: return best-k solution(s)

The procedure handles incoming communications asynchronously, and processes them
according to the type of message and the actual status of the worker (idle/busy).
Termination is guaranteed by a suitably modified Dijkstra termination detection
algorithm in a token-ring fashion. Upon termination, the k−best solutions found by
every agent are exchanged among agents, and processed, in turn, to return the global
k-best solutions.

Improving Multiple Sequence Alignments with
Constraint Programming and Local Search

Marco Correia, Fábio Madeira, Pedro Barahona, and Ludwig Krippahl

CENTRIA-DI {mc,fmmm,pb,ludi}@di.fct.unl.pt

Abstract. Sequence alignment is a core problem in Bioinformatics, and
multiple sequence alignments (MSA) are an important tool for phyloge-
netics, motif and domain identification, physiological studies and even
protein structure and interaction, since MSA provide information on
the coevolution of amino acid residues. However, the complexity of si-
multaneously aligning multiple sequences is exponential on the number
of sequences, and so MSA must be computed using heuristics that cut
through this large search space, compromising the quality of the result
and limiting the scoring functions that can be used. In this paper, we
propose a constraint programming (CP) and local search based method
for repairing MSA obtained with classical algorithms in order to improve
the alignments and to allow greater flexibility in the scoring functions.

1 Introduction

The sequence alignment problem is at the origin of bioinformatics [1, 2] and
is still of central importance. As the growth of sequence databases made more
demands on the organization of these data, alignment algorithms that speed up
the search by pruning the search space with heuristics became the norm [3, 4],
dominating the field over the initial, dynamic-programming, approaches. This is
even more evident in multiple sequence alignment (MSA), which is the harder
problem of aligning, simultaneously, a large number of sequences.

A MSA can be understood as a graph where the symbols are joined by edges
representing the correspondences in the alignment, with a complete n-partite
graph with edges joining all elements of each sequence to all elements of every
other sequence representing the set of all possible MSA [5, 6]. Alternatively, a
MSA can be seen as a matrix where each row represents a sequence and each
column represents a set of aligned elements from all sequences. In this case, gaps
are added to the alignment matrix to adjust the position of the elements (gaps
are not part of the sequences themselves). The ultimate goal of the MSA is to
show the evolutionary relations between the sequences, indicating which parts of
the molecules descend from common ancestors, and which were added or deleted
during evolution.

Since the classical dynamic programming methods are exponential in the
number of sequences, the practical solution is to limit the search. The Clustal
family of MSA algorithms [7], for example, aligns all pairs of sequences and

38 Marco Correia, Fábio Madeira, Pedro Barahona, and Ludwig Krippahl

then builds the MSA by progressively aligning the closest sequences with the
consensus sequence obtained from previous alignments. With no possibility of
backtracking, this greedy optimization is likely to stop at local optima, resulting
in some misalignment. Furthermore, the scoring function cannot consider the
complete MSA because the MSA is being built progressively. Some alternatives
(e.g. MUSCLE [8], MAFFT [9] and PROBCONS [10]) can redo previous align-
ments, repeatedly divide an alignment into two groups of aligned sequences and
then realigning the groups. Aside from these progressive methods in the Clustal
family (including T-Coffee[11], which uses a similar approach), there are alter-
natives based on probabilistic models (e.g. hidden Markov models (HMM) [12])
and genetic algorithms (e.g. SAGA [13]). HMM methods are based on a variant
of the character frequency profile matrices, taking into account position-specific
insertion and deletion (indel) probabilities. GA methods stochastically combine
and mutate candidate alignments through a directed evolutionary process by
providing a measure of fitness for individual alignments within the population,
but this is generally too slow for real applications [13].

However, in all cases there is the need to avoid most of the search space, com-
promising the quality of the final results. Also, the most used approaches are
restrictive in the scoring functions that can be used. For instance, one problem of
particular interest to us is the detection of protein coevolution by the correlation
of mutations in different positions. A MSA can show these correlations, indicat-
ing that those residues coevolved because of an important interaction. This can
have structural implications and is useful in predicting protein structure and
interaction. However, typically the MSA alignment scores assume that all muta-
tions are independent, an assumption that is false whenever there is coevolution,
and, in general, the MSA algorithms depend on such assumptions. For example,
it would be infeasible to simply add this score to a progressive algorithm like
ClustalW, which assembles the MSA one sequence at a time, since we need the
alignment to estimate the correlation.

Evidence for the need to improve the MSA generated automatically can be
found in the manual fixing of misalignments (“by eye”) often reported in the
literature, where researchers adjust the MSA according to their own criteria.
Manually refined alignments are generally considered superior to purely auto-
mated methods [14], taking into account structural and functional factors. The
assessment of MSA generally include the effectiveness of a particular heuristic
for the optimization of the scoring function and the accuracy relative to refer-
ence alignments [15]. One of the best databases of manually refined and curated
MSA, specifically designed for the evaluation and comparison of MSA software, is
BAliBASE [16]. BAliBASE provides manually refined alignments based on 3D
structural superpositions and implements two different alignment scores. The
sum-of-pairs (SP) score which is the percentage of correctly aligned pairs of
residues in the test alignment, relative to the reference alignment, to determine
the success in aligning some, if not all, of the sequences in an alignment. And
the column score (CS), the percentage of correctly aligned columns, which tests

Improving MSA with Constraint Programming and Local Search 39

the ability of the programs to align all of the sequences correctly at any given
position.

1.1 Our proposal

Some methods have been proposed to solve alignment problems using constraint
programming (CP) or related approaches, such as a CP problem in order to
introduce additional constraints in sequence alignments [17], as an integer linear
programming problem [18] or as a SAT problem [19]. Our proposal differs in
that we take advantage of the established methods, such as ClustalW, and then
repair the MSA using a CP approach, focusing on those regions that, being less
conserved, are more likely to include misalignments. In this way we can narrow
down the search space based on constraints such as not lowering the alignment
score, we can impose additional constraints, such as those based on structure
comparisons, and we can use a greater range of scoring functions than those
available to progressive methods. Furthermore, this approach is closer to the
established practice in the biological community of obtaining the MSA using
the automated methods and then refining it according to the additional consid-
erations. The main contribution of this paper is this framework for improving
the MSA by undoing mistakes made by the greedy heuristics and allowing other
scoring functions that may need to consider the MSA as a whole, such as mutual
information across different positions.

2 Method

The problem of correcting a region of a MSA may be formalized as a matrix of
n × p cells representing amino acid codes, where n is the number of sequences
to be aligned and p are possible positions for the amino acid residues. Gaps in
the sequence are represented by the special character “-” (fig.1).

S P V I - - - L

R - - I - - - S

S - - - - - - L

F N T T Q G G P

T - - - - - - -

F S K N - - - -

E T F G Q - - -

K S - - - - - T
Table 1. Multiple sequence alignment problem

Let ai,j represent the residue (or gap) at sequence i, position j, and si rep-
resent the sequence of amino acid residues at row i, i.e. si = 〈ai,1, . . . , ai,p〉. Let
the score associated with two residues a1,j ,a2,j in the same position j given by a

40 Marco Correia, Fábio Madeira, Pedro Barahona, and Ludwig Krippahl

function σA (a1,j , a2,j). From the individual amino acid scores we may compute
a score for the alignment of two sequences s1, s2,

σS (s1, s2) =
p∑

i=1

σA (a1,i, a2,i)− γ (s1, s2) (1)

The term γ (s1, s2) present in the formula above is called gap penalty and
accounts for the number of consecutive gaps in the sequences. The score of the
multiple alignment is then derived from the pairwise sequence alignment scores,

σ =
n∑

i=1

n∑
j=i+1

σS (si, sj)

The alignment correction problem is to find the alignment with the best score
by changing the positions of the gaps. Note that this procedure may increase or
decrease the number of consecutive gaps (for example the number of consecutive
gaps in the second sequence in fig.1 may be decreased from 2 to 1 by placing “I”
next to “R” or before “S”).

2.1 CP Model

The alignment correction problem may be naturally modeled in Constraint Pro-
gramming. A straightforward approach assigns a finite domain variable xi,j ∈ X
for each cell in the matrix, where its domain D (xi,j) = {′−′,′A′,′ C ′,′D′, . . .}
is the set of all possible amino acids plus the gap. Each sequence si may be
obtained by changing the position of the gaps. This constraint, which we call
validSequence, may be modeled by the inTable constraint [20] as follows,

validSequence(si)=inTable (〈xi,1, . . . , xi,p〉 , Ti) (2)

Each table Ti is created so that each row is obtained by placing the gaps in a
distinct position. The number of rows in table Ti is therefore Cp

gi
where gi is the

number of gaps in sequence si. Since the complexity of the propagation algorithm
for this constraint is linear on the size of the table this method works only for
small p. Fortunately, we may propagate this constraint using an algorithm that
is not exponential in p as follows.

For each sequence si we introduce a set XG
i of auxiliary finite domain vari-

ables, where a variable xG
i,k ∈ XG

i models the position of the k’th gap in the
sequence si, and hence 1 ≤ k ≤ gi . Similarly, we introduce a second set XA

i

of auxiliary finite domain variables, where a variable xA
i,k ∈ XA

i represents the
position of the k’th amino acid residue in the sequence si, which we denote as
si (k), with 1 ≤ k ≤ p− gi. Note that these two sets are strictly sorted, and par-
tition the set {1, . . . , p}. The validSequence constraint is therefore modeled
as follows,

Improving MSA with Constraint Programming and Local Search 41

validSequence (si) = ∀2≤k≤gi
xG

k−1 < xG
k

∧ ∀2≤k≤p−gi
xA

k−1 < xA
k

∧ distinct
(
XG

i ∪XA
i

)
∧ ∀1≤k≤gXi

[
xG

i,k

]
=′ −′

∧ ∀1≤k≤<p−gXi

[
xA

i,k

]
= si (k) (3)

For modeling the objective function we use formula 1, and apply function σA

over all pairs of finite domain variables x1,j , x2,j in the same column. This may
be accomplished by means of a table or element constraint over the table of
amino acid affinities. Finally, the gap penalty term γ (s1, s2) may be integrated
also using different models. If the validSequence constraint is implemented
by equation 2, then we can create an extra column in each row of a table Ti to
specify the number of consecutive gaps corresponding to the given sequence, and
project this number to a new finite domain variable ci by changing equation 2
to

validSequence(si)=inTable (〈xi,1, . . . , xi,p, ci〉 , Ti)

When using equation 3 to model the validSequence constraint, ci may be
obtained using reification and a sum constraint as follows,

ci =
gi∑

k=2

[
xG

i,k > xG
i,k−1 + 1

]
2.2 Search

We used a greedy variable and value heuristics for directing search quickly to-
wards a good solution. They are defined as

var (X) = arg max
xi,j

max
v1,v2∈D(xi,j)

q (xi,j , v1)− q (xi,j , v2)

val(xi,j) = arg max
v∈D(xi,j)

q (xi,j , v)

where q (xi,j , v) is a function which estimates the cost of assigning value v to
variable xi,j ,

q (xi,j , v) = qA (xi,j , v) + nqG (xi,j , v) (4)

and is composed of two terms. The first estimates the cost of this assignment
based on the set of amino acid residues already placed in column j, using function
σA,

qA (xi,j , v) =
n∑

k=1

{
σA (xk,j , v) ⇐ |D (xk,j)| = 1
0 ⇐ otherwise

The second term estimates the impact that this assignment will have on the
number of consecutive gaps and is -10 if it creates a new gap, 10 if it does not
open a new gap, and 0 if it is not known.

42 Marco Correia, Fábio Madeira, Pedro Barahona, and Ludwig Krippahl

The above heuristics were used to drive limited discrepancy search [21]. The
allowed discrepancy begins at 1 and is iteratively increased each time the search
space is exhausted so that completeness is still guaranteed. Additionally, since
the search space appears to have some steep local optima, we introduced a
small random perturbation term in formula 4, and restarted the solver after a
geometrically increasing slice of time.

2.3 Local Search

The same model was tested in constrained local search (COMET), with a greedy
hill-climbing heuristic optimizing the same score using the Gonnet substitution
matrix (the objective function) starting from a randomized transformation of
the MSA blocks. With a few exceptions the improvements on the score were not
as good as those obtained with the CP model and heuristics, but (like for CP)
better heuristics and meta-heuristics should improve the obtained scores. These
results should thus be regarded as initial, and subject to further work.

2.4 Experiments

To test our approach, we measured how much we could improve the standard
ClustalW MSA, both according to a scoring function and by comparing the
alignments to the reference alignments in BALiBASE. The procedure was thus
to start from the same set of sequences as those in a BALiBASE reference
alignment, obtain the ClustalW MSA and attempt to improve the alignment
on contiguous blocks of columns containing a mix of gaps and residues. This
ruled out regions that are well conserved and thus more likely to be correctly
aligned, and allowed us to focus on the regions of the MSA that could be adjusted
by shifting the gap positions. Our scoring function to improve the alignments
was the standard Gonnet substitution matrix [22], and the ClustalW alignments
were calculated with this matrix and the default gap penalties. The next step
was to apply the CP and Local Search algorithms to improving the alignment
score. However, one problem is that ClustalW uses a highly optimized scoring
function that, though based on the same substitution matrix we used, adjusts
the relative weights given to each sequence and also the gap penalties depending
on the neighboring residues [23]. This means that our improvement could come
either from actually correcting errors in the ClustalW alignment or due simply
to the slight differences in the scoring function.

To test this, we compared the ClustalW and corrected alignments with the
BALiBASE set of highly accurate alignments, manually curated by experts and
determined not only from sequence data but also from structural information.
Given that ClustalW uses a more sophisticated scoring function than our cur-
rent implementation, and since neither ClustalW nor our implementation is us-
ing structural data or other information available to the experts that created the
BALiBASE alignments, if it were the case that our score improvements were only
due to a difference in the scoring functions we would expect our corrections not

Improving MSA with Constraint Programming and Local Search 43

to improve the ClustalW alignments when compared to the BALiBASE align-
ments. In contrast, if, even with a simpler scoring function, our implementation
was improving the alignments by making them more similar to the BALiBASE
benchmark, this would mean that our approach was really correcting mistakes
made by ClustalW. We applied this procedure to 22 alignments for the CP im-
plementation and 24 for the local search implementation (a few were rejected
because they provided less than 10 columns for adjustment over the whole align-
ment). Running times ranged from a few seconds per alignment in the local
search implementation to several minutes for the CP implementation, which
was set to time out at two minutes for each block.

3 Results and Discussion

For the CP implementation, with the Gonnet substitution matrix score the aver-
age improvement for each column changed in the alignments (up to 233 columns,
in one case, but averaging 54 columns for the set of 22 MSAs) was slightly above
the average score attributed to the match of identical residues (106% of the
average identity match score in the substitution table). This means that our
improvement was the equivalent of gaining one additional identity match for
each column changed. In the comparison with the reference alignments using
the BALiBASE sum-of-pairs score, our implementation improved 77% (17 out
of 22) of the alignments tested tests using CP. This suggests that, even with
a simpler scoring function and no additional information such as structural or
functional data, the CP implementation improves the ClustalW alignment. The
average improvement for all 22 alignments was 11% in the BALiBASE sum-
of-pairs score. The local search implementation did not perform as well, with
an insignificant average improvement when compared to BALiBASE alignments
and improving only 14 out of 24 alignments. Nevertheless, our goal in this paper
was to show that improving MSA by correcting mistakes in less conserved re-
gions is a promising approach. At this stage CP seems to give better results, but
there is still work to be done optimizing the scoring functions and heuristics, and
the local search implementation takes only milliseconds to find solutions, against
several minutes for CP, so there is much room for improvement. In addition, this
gives us a flexible framework for using different scoring functions, not limited
to the peculiarities of the underlying alignment algorithm. Of special interest is
the inclusion of structural information, whether from determined structures or
prediction algorithms, and also scoring functions adapted to coevolution studies,
where the assumption of independent mutations does not hold.

Acknowledgements

This work was funded by Fundação para a Ciência e Tecnologia, MCTES, under
project PTDC/EIA-CCO/115999/2009.

44 Marco Correia, Fábio Madeira, Pedro Barahona, and Ludwig Krippahl

References

[1] Needleman SB and Wunsch CD. A general method applicable to the search for
similarities in [...] proteins. J. Mol. Biology 48 (3): 443–53 (1970)

[2] Smith TF, Waterman MS.: Identification of Common Molecular Subsequences. J.
Mol. Biol. 147, 195–197 (1981)

[3] Lipman, DJ; Pearson, WR. Rapid and sensitive protein similarity searches. Science
227 (4693): 1435–41 (1985)

[4] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol 215 (3): 403–410 (1990)

[5] Kececioglu, JD. The maximum weight trace problem in multiple sequence align-
ment. In Apostolico et al (eds.), Proc. 4th Symp. Comb. Patt. Matching, pp
106–119 (1993).

[6] Backofen R., Gilbert D., Bioinformatics and Constraints. In: Rossi F., van Beek,
P., Walsh T. (eds.) Handbook of Constraint Programming, Elsevier 2006.

[7] Chenna R, Sugawara H, Koike T et al. Multiple sequence alignment with the
Clustal series of programs. Nucleic Acids Res 31 (13): 3497–3500 (2003)

[8] Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high
throughput.Nucleic Acids Res. 32(5):1792-1797 (2004)

[9] Katoh K, Toh H. Recent developments in the MAFFT multiple sequence align-
ment program. Brief Bioinform 9: 286–298 (2008)

[10] Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: Probabilistic
consistency-based multiple sequence alignment. Genome Res 15: 330–340 (2005)

[11] Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and
accurate multiple sequence alignment. J. of mol. biol., 302(1), 205-17. (2000)

[12] Eddy, S. R. Profile hidden Markov models. Bioinformatics, 14(9), 755. Oxford
Univ Press (1998)

[13] SAGA: Sequence Alignment by Genetic Algorithm, C. Notredame, D.G. Higgins,
Nucleic Acid Research, Vol. 24, 1515-1524, (1996)

[14] Edgar, R. C., Batzoglou, S. Multiple sequence alignment. Current opinion in struc-
tural biology, 16(3), 368-73 (2006)

[15] Do, CB, Katoh K, Protein Multiple Sequence Alignment, Functional Proteomics
Methods in Molecular Biology, 2008, Volume 484, IV, 379-413

[16] Thompson, J. D., Plewniak, F., Poch, O. BAliBASE: a benchmark alignment
database [...]. Bioinformatics (Oxford, England), 15(1), 87-8 (1999)

[17] Will S., Bush A., Backofen R. Efficient Sequence Alignment with Side-Constraints
by Cluster Tree Elimination. Constraints 13(1-2): 110-129 (2008)

[18] Reinert K, Lenhof HP, Mutzel P, Mehlhorn K, Kececioglu JD, A Branch-and-Cut
Algorithm for Multiple Sequence Alignment, In Proc. of the 1st RECOMB (1997)

[19] Prestwich S, Higgins D. A SAT-Based Approach to Multiple Sequence Alignment.
In 9th Int. Conf. Princ. and Pract. of CP, pp. 940–944 (2003)

[20] Bessière C and Régin JC. Arc Consistency for General Constraint Networks: Pre-
liminary Results. IJCAI’97 pp 398—404 (1997)

[21] Harvey WD, Matthew LG. Limited Discrepancy Search, In C. S. Mellish (ed)
Proceedings of IJCAI’95; Vol. 1, pages 607–615 (1995)

[22] Gonnet GH, Cohen MA, Benner SA. Exhaustive matching of the entire protein
sequence database. Science, 256(5062):1443-5. (1992)

[23] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment [...]. Nucleic acids research, Vol. 22,
No. 22, pp. 4673-4680. (1994)

Petri Nets for Integrated Models of Metabolic
and Gene Regulatory Networks

Aljoscha Palinkas1 and Alexander Bockmayr2

1 DFG Graduiertenkolleg Computational Systems Biology,
2 DFG Research Center Matheon,

Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
Aljoscha.Palinkas@fu-berlin.de, Alexander.Bockmayr@fu-berlin.de

Abstract. Metabolic reactions and gene regulation are two closely re-
lated cellular processes. In integrated models, both are considered to-
gether. Metabolic and gene regulatory networks in isolation can be de-
scribed by Petri nets. Although an integrated Petri net model for tryp-
tophan synthesis has been proposed in the literature, a systematic and
general method is not available so far. The goal of this paper is to present
such a method, assuming that the stoichiometry of the metabolic reac-
tions is known, the gene regulatory network is described in the Thomas
formalism, and the interactions with the metabolism are given by logi-
cal conditions. For the gene regulatory network, the resulting Petri net
shows exactly the asynchronous unitary dynamics given by the Thomas
framework.

1 Introduction

Metabolism and gene regulation are closely related processes in the cell (see e.g.
[1]). On the one hand, genes regulate the synthesis of enzymes that catalyze
metabolic reactions. On the other hand, metabolites may modulate directly or
indirectly gene expression and activities.

In mathematical modeling, metabolism and gene regulation are often treated
separately. The reason is that methods available for the isolated systems usually
cannot be directly extended to integrated models. On the continuous side, ordi-
nary differential equation models face the problem of different time scales. On
the discrete side, various methods have been proposed that extend flux balance
analysis (FBA) for metabolic networks to incorporate effects from gene regu-
lation (rFBA [2], iFBA [3], idFBA [4], SR-FBA [5]). However, these methods
heavily depend on the steady-state assumption of FBA.

Among the different formalisms, Petri nets seem suitable for integrated mod-
els since they can naturally represent not only metabolic networks (e.g. [6, 7]),
but also dynamic models of gene regulatory networks (GRNs) [8] based on the
well-known Thomas formalism [9]. Sim̃ao et al. [10] built an integrated Petri
net model of tryptophan synthesis. They used a systematic translation of GRNs
to Petri nets proposed by Chaouiya et al. [8], where the GRN was assumed to

46 Aljoscha Palinkas and Alexander Bockmayr

be represented in a formalism called regulatory graphs. Next, biological knowl-
edge was applied in order to add appropriate interactions with the metabolic
part. However, no systematic method was given that would allow translating
integrated models in general.

In this paper, we present a new translation of GRNs to Petri nets. It is based
on the more common description of GRNs by Boolean expressions, as it has
been used for example for integrated models of E. coli [11], S. cerevisiae [12],
or B. subtilis [13]. Our translation has the advantage that the resulting Petri
net is minimal and that it can easily be extended to translate integrated models
which include also a metabolic part. The resulting Petri nets, however, are of
the same kind, i.e., if a GRN is given in both descriptions, then our translation
of the Boolean expressions would result in the same Petri net as the translation
from the regulatory graph following [8] (minor differences that do not affect the
behaviour are possible).

Regarding the size of the models, the Petri net of the GRN grows expo-
nentially in the number of interactions between the genes. But, this number is
usually limited and in most cases one gene from the GRN can be represented
by less than 10 nodes in the Petri net. A more serious issue is the size of the
reachability graph of the Petri net, which represents all the possible dynamics
and is essential for most kinds of analysis, e.g. model checking. Its size can grow
exponentially in the number of nodes as well as tokens.

So far, we used our algorithm only for rather small models, where the GRNs
did not have more than 8 genes. In these cases, it was most convenient to pur-
sue the translation by hand. A computer implementation for larger models is
currently under development.

2 Preliminaries on Petri Nets

We start with a short introduction into the Petri net formalism (for additional
details, see e.g. [14, 7]). The j-th column of a matrix A will be denoted by aj ,
the i-th row by ai, and the entry belonging to both by aj

i . With A> we denote
the transpose of A.

A Petri net is a bipartite directed graph with N-weighted edges. There are
two disjoint sets of nodes {p(1), . . . , p(k)} and {t(1), . . . , t(h)}, called places and
transitions respectively. Directed edges connect places and transitions, but never
two nodes of the same kind. Furthermore the places can hold tokens. The dy-
namics of a Petri net consists of tokens that are moved from one place to another
via the transitions and along the directed edges.

The formal definition of the directed graph, called Petri net structure, is
usually given by two (k×h)-matrices, the input matrix R and the output matrix
Q. In both matrices, the rows represent the places, the columns the transitions,
and the entries the weight of the edges. In the input matrix R, edges lead from
places to transitions, while in the output matrix Q, edges lead from transitions
to places. Zero entries indicate missing edges (see Fig. 1 and Fig. 2).

Integrated Models of Metabolic and Gene Regulatory Networks 47

The marking of the places with tokens can be described by a k-dimensional
vector m ∈ Nk. It changes when a transition fires, i.e., the transition consumes
tokens from the places along the inward edges and produces tokens along the
outward edges, according to the numbers given by the edge weights. If tokens that
are to be consumed are lacking on the corresponding places, the firing cannot
take place. Formally, a transition t(j) is enabled if m ≥ rj componentwise. If
a multiset of transitions is fired, this multiset can be represented by a Parikh-
vector x ∈ Nh, counting the number of occurrences of each transition. Firing of
this multiset leads to the new marking m′ = m + (R − Q)x. The matrix D :=
R − Q ∈ Nk×h is called the incidence matrix, which alone suffices to compute
the marking m′. However, the input matrix R is still needed to determine which
transitions are enabled. For our translation method, we will describe how to
obtain the columns of the matrices R and D.

Z

YX

2

4

Z

YX

2

4
fire!

Fig. 1. Example for the firing of a transition. The matrices are R = (2, 1, 0)> and
Q = (0, 0, 4)>. After one firing the transition is not enabled anymore, since the new
marking is m′ = m+ d1 = (3, 3, 0)> + (−2,−1, 4)> = (1, 2, 4)> 6≤ r1 = (2, 1, 0)>.

We need two additional notions [14, 8] that will play a central role further
on. A test-edge is an abbreviation for a pair of equally weighted edges that
connect the same two nodes in opposite directions. Test-edges implement further
constraints on the dynamics because they add conditions for transitions to be
enabled. In the incidence matrix they are invisible.

Complementary places is the name for a pair of places such that every token
leaving one place moves to the other one (see Fig. 4). In other words, in the
incidence matrix, the row for the first place is the negative of the row for the
second place. The sum Max of the tokens on complementary places thus remains
constant. Complementary places are needed to test for the absence of tokens: if
there are more than k tokens on one place it follows that the other place has less
than Max − k. We use this to represent inhibition in the GRN.

For the translation of a metabolic network, we only need the stoichiometric
matrix, which will be interpreted as the incidence matrix D of the Petri net. The
input and output matrix can then be obtained as R = |D|−D

2 and Q = |D|+D
2

(| · | is applied componentwise). While this is not true in general, it holds here
because a metabolic Petri net does not contain test-edges. We will come back
to this in Sect. 5 when dealing with integrated models where some reactions are

48 Aljoscha Palinkas and Alexander Bockmayr

constrained by gene regulation. Note that this translation only works if reversible
reactions are split into a forward and a backward reaction, see Fig. 2.

In the graphical representation, places correspond to circles, with small dots
inside indicating the tokens. Transitions correspond to rectangles. Edges have
the weight 1 unless another weight is indicated.

3A+B −→ 2C +D

C −→ H

D ←→ H

266664
−3 −0 −0 −0
−1 −0 −0 −0
−2 −1 −0 −0
−1 −0 −1 −1
−0 −1 −1 −1

377775
A
B
C
D
H

t1 t2 t3 t4
t1

A

B

C

D

t2

t4

t3 H

3 2

Fig. 2. Example of a metabolic network with three reactions. In the stoichiometric
matrix, the reversible reaction is already split up, so we can directly interpret it as the
incidence matrix of a Petri net structure (shown on the right).

3 Logical Networks

Gene regulatory networks are modeled as logical networks in the sense of the
Thomas formalism [9]. Basically these can be described by regulatory compo-
nents 1, . . . , k, which represent the genes. Each component i can take as value an
integer from 0 to Max i. An assignment of values from these ranges to all com-
ponents is called a state of the network and the set Z :=

∏k
i=1 {0, . . . ,Max i} is

the state space.
To define the dynamical behavior of the network, for each component a target

function fi : Z → {0, . . . ,Max i} determines a target value for the component i
when the network is in state z. We assume that the target functions fi are given
by Boolean expressions. Therefore, we first describe the states using Boolean
variables. For all i = 1, . . . , k and w = 1, . . . ,Max i we define the Boolean vari-
ables xi

w := [zi ≥ w]. Any state z ∈ Z gives an assignment of these variables,
which we denote by x(z). To describe a particular state it is not necessary to
define the assignment of all variables, because some implications hold. Consider
for example a network with two components and Max 1 = Max 2 = 2. Then
[z = (1, 2)] ⇔ x1

1 ∧ x̄1
2 ∧ x2

2, where the variable x2
1 is left out because it would

be redundant (since x2
2 ⇒ x2

1). If all states z such that fi(z) = w are described
each by a conjunction as above and then we take the disjunction of all these
conjunctions, we get a Boolean expression which we call ψi

w. By construction

Integrated Models of Metabolic and Gene Regulatory Networks 49

it has the property that [fi(z) = w] ⇔ ψi
w(x(z)). The target functions fi can

thereby be represented by the Boolean expressions ψi
w, for all i = 1, . . . , n and

w = 0, . . . ,Max i.

A B

C D

A B C D fA fB fC fD

0 0 0 0 1 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1
0 1 1 1 0 1 1 1
1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 0
1 0 1 0 1 1 1 0
1 0 1 1 1 0 1 0
1 1 0 0 0 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 0 1 0 0
1 1 1 1 0 1 1 0

MaxA,B,C,D = 1

ψA
1 = B

ψB
1 = B ∨D
ψC

1 = (A ∧B) ∨D
ψD

1 = A ∧ C

Fig. 3. Example of a logical network. The target function f is given by its table of
values, from which the Boolean expressions ψ can be derived as described before. They
are shown here in minimised DNF. For ψC

1 the construction gives a DNF with ten
minterms, one for each 1 in the fC-column. But, this number can be reduced to two.
In this case where all components are 2-valued, we have some simplifications: first, the
Boolean variables xA

1 , xB
1 , xC

1 , xD
1 can be abbreviated by A, B, C, D resp., and second,

the expressions ψ0 can be omitted because they are given by ψ1.

Given such a network, we may define different dynamics (see e.g. Richard
[15]). Here, we focus on the asynchronous unitary dynamics [9]. In each update,
one single component changes its value by ±1 such that it approaches the target
value. If no component can change its value, we are in a fixpoint and no updates
are possible. This dynamics can be represented in the state transition graph.

Definition 1. The (asynchronous unitary) state transition graph (STG) of the
network with target functions fi has as nodes the states z ∈ Z and there is an
edge from z to z′ iff there is an (asynchronous unitary) update that leads from
z to z′.

4 Petri Nets of Logical Networks

Chaouiya et al. [8] presented a method to translate so-called regulatory graphs
into Petri nets. We follow them in the way the resulting Petri net represents
the components of the logical network. Each gene is represented by a pair of
complementary places. The transitions are executing an unitary update if the
component is fired, i.e., they shift one token from one place to the other, thereby
changing the value of the component by ±1. Since the change of one component

50 Aljoscha Palinkas and Alexander Bockmayr

depends on the values of other components, there are test-edges connecting these
elementary building blocks with each other.

Most discrete models of regulatory networks are described by Boolean expres-
sions. In integrated models, the dependencies of reactions on gene expression can
be formulated with Boolean expressions, as done e.g. in the genome-scale E. coli
model by Covert et al. [11]. Therefore, we propose here a new translation method
that is working with Boolean expressions. These have the additional advantage
that their disjunctive normal form (DNF) can be minimised using e.g. the clas-
sical Quine-McCluskey method. Thus, we can get a Petri net that is minimal in
the number of transitions, which is not the case in the translation of Chaouiya
et al. [8]. Note that Steggles et al. [16] also used the minimisation of DNF to
build minimal Petri nets of logical networks, but of a very different kind (with
synchronous update).

positive place: A

negative place: Ā

Fig. 4. Elementary building block: this pair of complementary places represents a com-
ponent A of the logical network with MaxA = 3. Its current value is 1. In grey, the
test-edges are shown that will connect the components and therewith implement the
Boolean expressions defining the networks dynamics.

Suppose the logical network is described by the Boolean expressions ψi
w, for

i = 1, . . . , k and w = 0, . . . ,Max i. The target function fi can take Max i + 1
different values, but the update of component i is either an activation (+1) or
an inhibition (−1). Therefore, we consider the Boolean expressions

Φi
+1 :=

Max i∨
w=1

ψi
w ∧ x̄i

w and Φi
−1 :=

Max i−1∨
w=0

ψi
w ∧ xi

w+1

for activation and inhibition, respectively.
Next we need transitions that shift one token between the complementary

places of component i (see Fig. 4) whenever the state of the network fulfills Φi
+1

or Φi
−1. Evaluating these Boolean expressions will be achieved with test-edges

that can test each of the Boolean variables xi
w.

In order to have at most one transition enabled at each component (Fig. 4)
and to obtain a minimal number of transitions, we apply some equivalence trans-
formations. After, each conjunction (also called minterm) is translated into one

Integrated Models of Metabolic and Gene Regulatory Networks 51

transition according to the pseudocode below. The numbering of the places starts
with all positive places. The negative complementary places follow such that
p(k + j) is the negative complement of p(j), for all j = 1, . . . , k. For this al-
gorithm it is convenient to construct the incidence matrix D and the input
matrix R. As explained before, this pair gives a complete description of the
Petri net structure. In D, test-edges are not visible, so we only have to en-
code the actual shifting of tokens which, in our case, is just one token that is
shifted between the negative and positive place of one component. All other
edges are test-edges. For these we have to translate every minterm of the DNF
Φ into one transition and every literal of this minterm into one test-edge, con-
necting the transition with a place of another component. The test-edges at
one transition combine as a conjunction of the literals, since the transition
is only enabled if all test-edges return a positive result. Implementing a sep-
arate transition for each minterm yields the disjunction of these, since every
transition can be enabled independently of the others. Negative literals x̄j

w are
tested by checking if there are more than Maxj − w tokens on the negative
place of component j, which would imply that the value of j is less than w.

Algorithm 1:

n←− 1
for i← 1 to k do

for v ∈ {−1,+1} do
for κ conjunction of Φi

v do
create the 0-vectors rn, dn ∈ N2k

dn
i ←− v // edges that actually shift tokens
dn

k+i ←− −v // to change the value

for y literal of κ do
if y is positive literal xj

w then
rn
j ←− w // test-edges to positive, and

if y is negative literal x̄j
w then

rn
k+j ←−Maxj − w + 1 // to negative places

n←− n+ 1

Dynamics of the Resulting Petri Net

Several transitions may be enabled at one moment, but only one transition can
fire in each step. After the firing, some transitions might not be enabled anymore.
Similar to the STG of logical networks, we can represent all possible dynamics
in a directed graph. The Petri net consists solely of elementary building blocks
(Fig. 4). When component i of the logical network has maximal value Max i,
then the tokens in the corresponding elementary building block should sum up
to Max i. Any marking that fulfills this is called valid.

52 Aljoscha Palinkas and Alexander Bockmayr

Definition 2. The global reachability graph of the constructed Petri net has as
nodes all the valid markings and an edge from m to m′ iff at marking m there
is an enabled transition t(j) such that firing leads to m′ (formally: m ≥ rj and
m + dj = m′, where rj,dj are the j-th column of the input and output matrix,
respectively).

Analysing the full translation algorithm shows that the firing of any transition
leads to an asynchronous unitary update and that a transition is only enabled
if the target function implies this update. Conversely, for every update that is
prescribed by the target function, there is a transition that implements it. This
can be formally verified and leads to the following statement.

Theorem 1. The asynchronous unitary STG of a logical network and the global
reachability graph of the Petri net obtained by Algorithm 1 are isomorphic as
directed graphs.

5 Integration of Metabolism and Gene Regulation

We now extend Algorithm 1 to integrated models. We start with a formal defi-
nition that includes all information necessary for the translation.

Definition 3. An integrated model consists of metabolites M(1), . . . ,M(l), re-
actions R(1), . . . , R(h), and genes G(1), . . . , G(k). It is described by:

1. a GRN with all genes and some metabolites as components. The target
functions are given by Boolean expressions ψi

w for i = 1, . . . , N and w =
0, . . . ,Max i in the Boolean variables xj

w := [zj ≥ w].
2. the stoichiometric matrix S of the metabolic network.
3. for reaction R(i) there is a Boolean expression %i in the variables xj

w, defining
the conditions under which the reaction is enabled.

Some models for rFBA have exactly this form, see e.g. [11]. The Boolean
expressions %i reflect the knowledge about the enzymes that catalyse a reaction
and the genes that code for these enzymes. If information is incomplete or if we
do not want to include the regulating genes in our model, we set %i =true, thus
leaving the reaction unconstrained.

There are now two kinds of components: genes and metabolites. The classical
Petri net of metabolism as in Fig. 2 is not sufficient here, since metabolites can
have regulatory effects. To implement regulation in the GRN, we always have
to test for the absence of tokens. This can only be done with complementary
places as explained in Sect. 2. Therefore, both kinds of components will be
implemented as pairs of complementary places. For gene-components, the tokens
on the positive place represent the level of gene expression. For the metabolic
components, they represent the concentration.

For example, in the model of tryptophan synthesis by Sim̃ao et al. [10],
the genes of the operon trpEDCBA are expressed whenever neither trypto-
phan (TRP) nor transcription factor from the gene trpR are abundant. If all

Integrated Models of Metabolic and Gene Regulatory Networks 53

components are Boolean (Max i = 1) we can formulate this as ψtrpEDCBA
1 =

TRP ∧ trpR.
For the logical network in isolation, we first set the places and then just

apply Algorithm 1 to add transitions and edges. This implements the unitary
asynchronous dynamics defined by the Boolean expressions. The procedure for
the integrated model is given by the following extension:

1. A pair of complementary places is implemented for each component, whether
gene or metabolite.

2. Algorithm 1 is applied to implement all regulatory dynamics.
3. The Boolean expressions %i are translated into transitions, the stoichiometry

defines edges to other metabolites, whereas the conditions from %i implement
test-edges to places of genes.

An example of an integrated model

In Fig. 5, we give an example of a tiny integrated model, with metabolites
A, B, C and genes E, F , Z, Y . The fat arrows pointing to the reactions R1
and R2 stand for the enabling of these reactions by the genes which code for
enzymes. For reaction R1, the genes E and F produce isozymes so that we have
a logical OR in the corresponding reaction condition %1. The gene regulation
is given by expressions ψ as before. Maximal values are defined for metabolites
and genes. For the multivalued regulatory components B and C, we have the
Boolean variables xB

1 , xB
2 , xB

3 and xC
1 , xC

2 , xC
3 , xC

4 . But only xB
1 and xC

1 play
a role, so we abbreviate them as B, C respectively, as we did with the other,
2-valued components.

A

B

C

E

F

Y

Z

R1

R2

metabolism GRN

MaxE,F,Z,Y = 1

o

ψE
1 = Y

ψF
1 = C

ψZ
1 = C ∧ Y

ψY
1 = B

MaxA,B = 3

MaxC = 4
o

%1 = E ∨ F
%2 = Z

Fig. 5. An example of a tiny integrated model

Fig. 6 shows the Petri net obtained with our algorithm. Ignoring the dot-
ted test-edges, we see the Petri net of the metabolism (with complementary

54 Aljoscha Palinkas and Alexander Bockmayr

places) and the Petri net of the GRN as isolated systems. Reaction R1 has two
transitions corresponding to the two minterms in %1.

F

F̄

E

Ē
Z

Z̄
Y

Ȳ

C

C̄
R2

B

B̄

R1

R1′

A

Ā

4

4

3

Fig. 6. Petri net of the tiny model

Pseudocode for the integrated Petri net

In the Petri net of an integrated model as in Def. 3, the total number of compo-
nents is N := l + k. The Petri net thus has 2N places, where the first N places
are the positive ones and p(N + j) is the negative place complementary to p(j),
for all j = 1, . . . , N . Again we assume all places to be already implemented. The
code below adds the transitions and edges by creating columns dn of the inci-
dence and rn of the input matrix. Note that the numbering of the genes starts
with l+ 1 because the metabolites come first. The first part of the code is again
Algorithm 1. In the new part, the stoichiometric matrix is included. As before
each minterm of the conditions %j is implemented by a transition. Test-edges are

Integrated Models of Metabolic and Gene Regulatory Networks 55

translated as before. For shifting metabolite tokens according to the stoichiom-
etry, the columns of the stoichiometric matrix S have to be included in D. For
the complementary negative places the negative of the S-column is inserted. The
input part of these shifts has to be implemented in R as well.

Algorithm 2:

n←− 1
for i← l + 1 to N do

for v ∈ {−1,+1} do
for κ conjunction of Φi

v do
create the 0-vectors rn, dn ∈ N2N

dn
i ←− v // edges that actually shift tokens
dn

N+i ←− −v // to change the value
for y literal of κ do

if y is positive literal xj
w then

rn
j ←− w // test-edges to positive, and

if y is negative literal x̄j
w then

rn
N+j ←−Maxj − w + 1 // to negative places

n←− n+ 1

for i← 1 to h do
for κ conjunction from %i do

create the 0-vectors rn, dn ∈ N2N

for j ← 1 to l do
dn

j ←− si
j // here the stoichiometric

dn
N+j ←− −si

j // matrix is inserted

rn
j ←− (

∣∣si
j

∣∣− si
j)/2 // (R = |D|−D

2)

rn
N+j ←− −(

∣∣si
j

∣∣− si
j)/2

for y literal of κ do
if y is positive literal xj

w then
rn
j ←− w // test-edges will implement

if y is negative literal x̄j
w then

rn
N+j ←−Maxj − w + 1 // the conditions %i

n←− n+ 1

6 Use of the Petri Net Model and Further Research

Sim̃ao et al. [10] studied the reachability graphs of their Petri net starting from
different initial markings. They identified fixpoints, cyclic attractors and inter-
preted them biologically. Their reachability graphs had the very small size of
120 markings.

56 Aljoscha Palinkas and Alexander Bockmayr

In general, even for small Petri nets, the reachability graph will be huge and
can be handled computationally only for limited model size. We experimented
with a slightly larger tryptophan model than in [10], with seven regulatory com-
ponents (+3) and two tryptophan pathways (+1). The reachability graphs had
already about 105 nodes and identification of attractors seemed not sufficient to
draw interesting conclusions.

Here, model checking seems to be a well suited tool to answer specific ques-
tions about the dynamics of the Petri net model. It is also powerful enough to
handle much larger reachability graphs.

Petri nets are very flexible objects. For example, by assigning a rate to each
transition, we get a continuous time Markov chain, which allows applying prob-
abilistic model checking or stochastic simulation.

As already mentioned, the genome-scale model of E. coli [11] is given in a
form that can be translated to a Petri net using our method. However, the reach-
ability graph would be much too big to be computed in practice. Further research
is needed to develop analysis methods that are suitable for such networks.

References

[1] C.H. Yeang. Integration of Metabolic Reactions and Gene Regulation. Molecular
Biotechnology, 47:70–82, 2011.

[2] M.W. Covert, C.H. Schilling, and B. Palsson. Regulation of gene expression in
flux balance models of metabolism. Journal of theoretical biology, 213(1):73–88,
2001.

[3] M.W. Covert, N. Xiao, T.J. Chen, and J.R. Karr. Integrating metabolic, tran-
scriptional regulatory and signal transduction models in Escherichia coli. Bioin-
formatics, 24(18):2044, 2008.

[4] J.M. Lee, E.P. Gianchandani, J.A. Eddy, and J.A. Papin. Dynamic analysis of
integrated signaling, metabolic, and regulatory networks. PLoS computational
biology, 4(5):e1000086, 2008.

[5] T. Shlomi, Y. Eisenberg, R. Sharan, and E. Ruppin. A genome-scale computa-
tional study of the interplay between transcriptional regulation and metabolism.
Molecular systems biology, 3(1), 2007.

[6] V.N. Reddy, M.N. Liebman, and M.L. Mavrovouniotis. Qualitative analysis of
biochemical reaction systems. Computers in biology and medicine, 26(1):9–24,
1996.

[7] I. Koch. Petri Nets – A Mathematical Formalism to Analyze Chemical Reaction
Networks. Molecular Informatics, 29(12):838–843, 2010.

[8] C. Chaouiya, A. Naldi, E. Remy, and D. Thieffry. Petri net representation of
multi-valued logical regulatory graphs. Natural Computing, pages 1–24, 2010.

[9] R. Thomas and M. Kaufman. Multistationarity, the basis of cell differentiation
and memory. II. Logical analysis of regulatory networks in terms of feedback
circuits. Chaos, 11(1):180–195, 2001.

[10] E. Sim̃ao, E. Remy, D. Thieffry, and C. Chaouiya. Qualitative modelling of regu-
lated metabolic pathways: application to the tryptophan biosynthesis in E. Coli.
Bioinformatics, 21(suppl 2), 2005.

[11] M.W. Covert, E.M. Knight, J.L. Reed, M.J. Herrgard, and B.O. Palsson. Inte-
grating high-throughput and computational data elucidates bacterial networks.
Nature, 429(6987):92–96, 2004.

Integrated Models of Metabolic and Gene Regulatory Networks 57

[12] M.J. Herrg̊ard, B.S. Lee, V. Portnoy, and B.Ø. Palsson. Integrated analysis of
regulatory and metabolic networks reveals novel regulatory mechanisms in Sac-
charomyces cerevisiae. Genome research, 16(5):627, 2006.

[13] A. Goelzer, F.B. Brikci, I. Martin-Verstraete, P. Noirot, P. Bessières, S. Aymerich,
and V. Fromion. Reconstruction and analysis of the genetic and metabolic reg-
ulatory networks of the central metabolism of Bacillus subtilis. BMC systems
biology, 2(1):20, 2008.

[14] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 2002.

[15] A. Richard. Negative circuits and sustained oscillations in asynchronous automata
networks. Advances in Applied Mathematics, 44(4):378–392, 2010.

[16] L.J. Steggles, R. Banks, O. Shaw, and A. Wipat. Qualitatively modelling and
analysing genetic regulatory networks: a Petri net approach. Bioinformatics,
23(3):336, 2007.

A Constraint Program For Subgraph
Epimorphisms with Application to Identifying

Model Reductions in Systems Biology

Steven Gay, François Fages, Thierry Martinez, Sylvain Soliman

EPI Contraintes, INRIA Paris-Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France.

Steven.Gay@inria.fr

Abstract. This paper presents a constraint program for checking whe-
ther one graph can be obtained from another graph by using node dele-
tions and node mergings. This NP-complete problem is equivalent to the
existence problem of a subgraph epimorphism between two graphs, This
differs from the well-known subgraph isomorphism problem by the exis-
tence of merge in addition to delete operations. Subgraph epimorphisms
allow us to identify biologically meaningful reduction relationships be-
tween biochemical reaction graphs in large model repositories such as
biomodels.net. This concept thus offers a computational tool for studying
model reductions in systems biology by considering solely the structure
of biochemical networks.

1 Introduction

Our interest in the concept of subgraph epimorphism stems from the study of
model reductions in systems biology, where large systems of biochemical reac-
tions can be naturally represented by bipartite digraphs of species and reactions
[1, 2]. In this setting, one can define a very general notion of model reduction
as a particular form of graph transformation and use it to compare models in
systems biology model repositories [3]. For instance, the classical reduction of
Michaelis-Menten consists in reducing a system of three reactions, where an en-
zyme E binds in a reversible manner to a substrate S to form a complex ES and
release a product P , to a single reaction catalyzed by the enzyme, as depicted
by the following graphs:

E c ES

d
S

p P

S c P

E

The reduced graph can be obtained from the detailed graph by a sequence of
delete and merge operations on either species or reaction nodes. These transfor-
mations are typically justified in chemistry by considering: (i) reaction deletions

60 Steven Gay, François Fages, Thierry Martinez, and Sylvain Soliman

for slow reverse reactions, (ii) reaction mergings for reaction chains with a lim-
iting reaction, (iii) molecular species deletions for species in excess and (iv)
molecular mergings for quasi-steady state approximations.

This operational view of graph reduction is equivalent to the existence of an
induced subgraph (corresponding to delete operations) epimorphism (i.e. surjec-
tive homomorphism, corresponding to merge operations) from a source graph to
a reduced graph. Subgraph epimorphisms (SEPI) differ from minors [4] by the
possibility to merge non adjacent nodes, by creating a loop when merging two
adjacent nodes and by the impossibility to delete an arc without merging the
nodes.

In this paper, after a presentation of the basic definitions and properties, we
describe the constraint model and search strategy we use to compute subgraph
epimorphisms in the biomodels.net repository. This benchmark consists in 241
curated models of up to several hundreds of molecular species.

2 Model Reduction

2.1 Reaction Graphs

One classical way of representing a systems biology model is to see it as a set of
chemical reactions, which leads to the use of Petri Nets.

Here we chose to use the underlying directed graph. It is a bipartite graph,
and we call it a reaction graph:

Definition 21 Formally, a reaction graph G is a bipartite directed graph, that
is a triple G = (S,R,A), where S is the set of species nodes, R is the set of
reaction nodes, and A ⊆ S ×R ∪R× S.

Now something a (biologist) modeller may want to do is to check whether
some model is a reduced version of another model. On a larger scale, the mod-
eller wants to get a hierarchy of models where each model is a refinement or a
simplification of the surrounding ones.

One way to relate two models is to define graph editing operations which
make it possible to transform one reaction graph into another.

A simple thing to do when trying to reduce models is to consider that two
species are variants and treat them as equivalents, and to merge every interaction
any of the two species had into a new species.

The same merging operation can be generalized for reactions.
Another natural operation is node deletion. It may be useful for instance

to remove intermediate species, or species whose concentration is constant, or
reactions that have become trivial after a molecular merging, or reverse reac-
tions that occur in a much slower rate than their forward counterpart. Model
refinement proceeds with the dual operations of node addition and splitting and
is thus also covered by this approach.

Model Reductions in Systems Biology 61

2.2 Graph Edition Operations and Model Reduction

Here we generalize the reduction to arbitrary digraphs. There are two operations:
node deletion and node merging.

Definition 22 (Delete) Let G = (V,A) be a graph and u ∈ V . The result of
the deletion of u in G is the induced subgraph du(G) = G↓V \{u}.

The merge operation removes two nodes from a graph and replaces them
with a new one inheriting all incident arcs.

Definition 23 (Merge) Let G = (V,A) be a graph and u, v ∈ V such that
u 6= v. The result of the merge of u and v in G is the graph mu,v(G)=(V ′, A′)
such that V ′ = V \ {u, v} ∪ {uv}, and A′ = A ∩ (V ′ × V ′) ∪ {(uv,w) | (u,w) ∈
A or (v, w) ∈ A} ∪ {(w, uv) | (w, u) ∈ A or (w, v) ∈ A}.

We now define a model reduction as a finite string of delete/merge operations.
The problem of interest is now: given two graphs G and G′, is there a reduc-

tion from G to G′?
First, let us find a way to express a reduction as a one-step operation.

2.3 Subgraph Epimorphisms

Notice that the subgraph isomorphism problem is equivalent to the existence of
a string of deletions between two graphs.

There is a way to define a deletion/merging string as a kind of morphism:

Definition 24 Let G = (N,A) and G′ = (N ′, A′) be two graphs.
A morphism from G to G′ is a function µ from N to N ′, such that ∀(x, y) ∈

A, (µ(x), µ(y)) ∈ A′.
An epimorphism from G to G′ is a morphism that is surjective on (both the

nodes and the arcs of) G′.

As shown below, graph epimorphisms relate graphs that can be obtained by
only merge operations. To account for node deletions, we consider:

Definition 25 Let G = (N,A) and G′ = (N ′, A′) be two graphs. A subgraph
morphism µ from G to G′ is a morphism from a subgraph induced by a subset
of nodes of G, to G′: N0 −→ N ′, with N0 ⊆ S, such that ∀(x, y) ∈ A ∩ N0 ×
N0, (µ(x), µ(y)) ∈ A′.

A subgraph epimorphism (SEPI for short) from G to G′ is a subgraph mor-
phism that is surjective.

Given these definitions, it can be proved that:

Theorem 26 ([3]) Let G = (N,A) and G′ = (N ′, A′) be two graphs. There
exists a subgraph epimorphism µ from G to G′ if and only if there exists a finite
sequence of delete and merge operations that, when applied to G, yield a graph
isomorphic to G′.

When testing for a reduction from G to G′, the question is now to find
whether there exists a SEPI from G to G′.

62 Steven Gay, François Fages, Thierry Martinez, and Sylvain Soliman

3 Constraint Program

In another paper with Christine Solnon being currently reviewed, we prove that
the SEPI problem is NP-complete. This means that there does not exist an
efficient algorithm for solving all problem instances in polynomial time, if we
admit the conjecture P 6= NP .

Nevertheless, the practical instances of such problems may well be solved
by efficient algorithms and it is the purpose of this section to describe a con-
straint program for the SEPI problem. For this work, we developed a GNU-
prolog [5] program dedicated to our particular subgraph epimorphism problems,
using finite domain constraints and a simple search strategy for enumerating all
solutions by backtracking.

3.1 Constraint Model

The mathematical definition of subgraph epimorphisms given in the previous
section can be encoded quite directly in an executable constraint model.

Graph morphisms can be modeled quite naturally by introducing one variable
per node of the source graph, with, as domain, one (integer) value per node of
the target graph. A variable assignment thus represents a mapping from the
source nodes to the target nodes [6].

In this representation, the morphism condition itself, stating that the arcs
must be preserved by the mapping, can be written using the primitive tabular
constraint of GNU-Prolog

fd relation(integer list list, variable list)
This constraint states that the tuple of variables in the second argument (here
two variables representing the image of an arc in the source graph) is equal to
one element of the list in the first argument (representing all the arcs of the
target graph).

The surjectivity property could be represented using the primitive cardinality
constraint fd at least one applied to the arcs of the target graph. However, a
more efficient modeling was found by introducing antecedent variables for the
target arc variables, i.e. one variable associated with each target arc with initial
domain the set of source arcs, constrained to take as values only the source arcs
that are antecedents of the associated target arcs. To achieve this, we use the
constraint

fd element var(Ante, ArcImagesList, TargetArc)
which states that the Ante-th element in the ArcImagesList is equal to Tar-

getArc. For each arc in the target graph, this constraint is actually used on the
first and second nodes of the arc to state that the antecedent variables correspond
to an arc in the source graph.

The subgraph condition can be modelled using a dummy value ⊥ for deleted
nodes, as formalized by the following property:

Proposition 31 ([3]) Let G = (N,A) and G′ = (N ′, A′) be two graphs. Let
G′′ = (N ′′, A′′), with N ′′ = N ′]{⊥}, and A′′ = A′] ({⊥}×N ′)] (N ′×{⊥})]
({⊥} × {⊥}).

Model Reductions in Systems Biology 63

Then there is a SEPI from G to G′ iff there is a graph morphism from G to
G′′ that is surjective on N ′ and A′.

For computing SEPI’s in this modeling, a dummy value is thus added to the
domain of the source graph node variables, and the surjectivity is enforced on
the non-dummy arcs only.

3.2 Search Strategy

It may seem that given the model, we have to enumerate both source node
variables and antecedent arc variables. Actually, enumerating only one of the
sets is enough.

Suppose we have tried to enumerate the source node variables, and failed.
Then, there is clearly no SEPI from the source graph to the target graph.

If on the contrary the enumeration succeeded, then there is obviously a mor-
phism. Is it surjective ? Since every antecedent variable has a non-empty domain,
we know that every pair of antecedents of the corresponding target pair of nodes
comes from an arc in the source graph.

Thus, an enumeration of the source node variable is enough to enforce arc
surjectivity. However, compared to enumerating the antecedents variables be-
forehand, this choice of variables checks the surjectivity quite late.

Now, suppose we have enumerated only the antecedent variables, and failed.
Once again, it is obvious that there is no SEPI from the source graph to the
target graph.

If the enumeration succeeded, then some source node variables have been
determined by the process, i.e. their domain have a single value. Suppose we put
the ⊥ value (coded by 0) for every source node variable that has not been deter-
mined. Then, it can be proved that the valuation of the source node variables is a
SEPI from the source graph to the target graph. Indeed, the valuation is always
a morphism because of the way dummy values are used, and the antecedent arc
variables being determined, it is surjective on the arcs.

This proves that enumerating antecedent arc variables is enough (provided
we fill the remaining variables with ⊥). This “antecedents first” strategy works
best in practice.

3.3 GNU-Prolog Code

The original GNU-Prolog program for reaction graphs used in BIOCHAM [7]
is too long to be shown here. Here is a simplified GNU-Prolog program for
computing SEPIs according to the previous constraint model. For brevity, it
supposes that the target graph has no isolated nodes. This allows us to enforce
surjectivity on arcs only, as in this case it entails surjectivity on nodes.

epi_sub_graph(SourceNodeCount, SourceArcs,
TargetNodeCount, TargetArcs, NodeImages) :-

length(NodeImages, SourceNodeCount),

64 Steven Gay, François Fages, Thierry Martinez, and Sylvain Soliman

fd_domain(NodeImages, 0, TargetNodeCount),
findall(X,
(X = [0, 0] ;
for(Node, 1, TargetNodeCount),
(X = [0, Node]; X = [Node, 0])),

DummyArcs),
append(TargetArcs, DummyArcs, AllTargetArcs),
morphism_constraint(SourceArcs, NodeImages, AllTargetArcs),
source_arcs(SourceArcs, NodeImages, ArcImages0, ArcImages1),
surjectivity_constraint(TargetArcs, ArcImages0,

ArcImages1, Antecedents),
fd_labeling(Antecedents, []), fd_labeling(NodeImages, []).

morphism_constraint([], _NodeImages, _AllTargetArcs).
morphism_constraint([[N0, N1] | Arcs], NodeImages, AllTargetArcs) :-

nth(N0, NodeImages, I0), nth(N1, NodeImages, I1),
fd_relation(AllTargetArcs, [I0, I1]),
morphism_constraint(Arcs, NodeImages, AllTargetArcs).

source_arcs([], _NodeImages, [], []).
source_arcs([[N0, N1] | Arcs], NodeImages,

[I0 | Arcs0], [I1 | Arcs1]) :-
nth(N0, NodeImages, I0), nth(N1, NodeImages, I1),
source_arcs(Arcs, NodeImages, Arcs0, Arcs1).

surjectivity_constraint([], _ArcImages0, _ArcImages1, []).
surjectivity_constraint([[N0, N1] | Arcs], ArcImages0,

ArcImages1, [I | Antecedents]) :-
fd_element_var(I, ArcImages0, N0),
fd_element_var(I, ArcImages1, N1),
surjectivity_constraint(Arcs, ArcImages0,

ArcImages1, Antecedents).

4 Evaluation

The reduction relations between all pairs of models of the biomodels.net repos-
itory have been computed (with a time out of 20 minutes per problem) and the
results reported in [3].

Some matchings between unrelated model classes were found. These biolog-
ically false positive matchings typically arise with small models that formally
appear as reductions of large models without any biological meaning. These
false positives arise in less than 9% of the total inter-class pairs, and in 1.2% of
the tests after the removal of the small models.

Apart from these cases, biologically meaningful model reductions were au-
tomatically discovered between models of MAPK signaling, cell cycle, circadian

Model Reductions in Systems Biology 65

clock, calcium oscillation etc. For instance, the matchings found between the
models of the MAPK cascade are depicted in Figure 1.

009_Huan

010_Khol

011_Levc

027_Mark

029_Mark 031_Mark

026_Mark

028_Mark 030_Mark 049_Sasa

146_Hata

Fig. 1. Matchings found between all models of the MAPK cascade (Schoeberl’s model
14 and Levchenko’s model with scaffold 19 are not represented here, they do not map
each other but can be mapped to small models).

This class contains the family of models of [8] numbered 26 to 31 in biomod-
els.net.In this family, models 27, 29 and 31 are the simpler ones: they have few
molecules because the catalyses are represented with only one reaction. The epi-
morphism exhibited from model 31 to 27 corresponds to the splitting of two
variants of MAPKK in 31. Model 29 distinguishes between the sites of phos-
phorylation of Mp, yielding a model with two molecules MpY and MpT. The
subgraph epimorphism found from 29 to 27 corresponds to the deletion of one
variant of Mp. Conversely, this distinction prevents the existence of an epimor-
phism from 31 or 27 to 29.

Models 26, 28 and 30 have more detailed catalysis mechanisms and differ as
previously by the phosphorylation sites of Mp.

However, some epimorphisms from big models to small ones may have no
biological meaning. This comes from the absence of constraint on the nodes that
can be merged, and the relatively high number of arcs in Markevich’s small mod-
els where most molecules are catalysts. Still, model 26 (with non-differentiated
Mp) does not reduce to model 29 since that model indeed distinguishes MpY
and MpT variants.

Now, concerning 3-step MAPK cascade models, the models 9 and 11 of [9] and
Levchenko et al. respectively are detected as isomorphic. Indeed, they only differ
by molecule names and parameter values. They do not reduce to 28 and 30, which
are models that do not differentiate sites of phosphorylation. They do not reduce
to 26 either, which uses a more detailed mechanism for dephosphorylations.

Model 10 is another 3-step MAPK with no catalysts for dephosphorylations.
It has the particularity to be cyclic, that is, the last level’s most phosphorylated

66 Steven Gay, François Fages, Thierry Martinez, and Sylvain Soliman

molecule catalyzes the phosphorylations of the first level. This is shown here as
a reduction of the previous models obtained by merging the output of the third
level with the catalyst of the first level.

Finally, models 49 and 146 are bigger than the others and can easily be
matched by them. There were a few comparisons for which no result was found
before the timeout.

5 Conclusion

The constraint model presented here to solve the SEPI NP-complete problem
is very simple, and still it yields computation times of a few seconds for most
cases in the biomodels.net repository of biochemical networks. However some
optimizations, such as redundant constraints, should result in even better be-
haviour for bigger instances. Furthermore, the handling of labels and annotations
attached to molecular species nodes would drastically reduce the search space
for the labeling.

Future work includes another harder problem to tackle, the problem of great-
est common epimorphic subgraph, i.e. model intersection, and its dual of smallest
common epimorphic supergraph, i.e. model union. Given two graphs G and G′,
what are the greatest (smallest) graphs G′′ such that both G and G′ reduce to
(resp. are reductions of) G′′ by SEPIs ? Such graphs may however be not unique.

References

[1] Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in
metabolic pathways. In Hunter, L., Searls, D.B., Shavlik, J.W., eds.: Proceedings
of the 1st International Conference on Intelligent Systems for Molecular Biology
(ISMB), AAAI Press (1993) 328–336

[2] Hofestädt, R.: A petri net application to model metabolic processes. Systems
Analysis Modelling Simulation 16 (October 1994) 113–122

[3] Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating
models in systems biology. Bioinformatics 26(18) (2010) i575–i581 special issue
ECCB’10.

[4] Lovász, L.: Graph minor theory. Bulletin of the American Mathematical Society
43(1) (2006) 75–86

[5] Diaz, D.: GNU Prolog user’s manual. (1999–2003)
[6] le Clément, V., Deville, Y., Solnon, C.: Constraint-based graph matching. In: 15th

International Conference on Principles and Practice of Constraint Programming
(CP 2009). Volume 5732 of Lecture Notes in Computer Science., Lisbon, Portugal,
Springer-Verlag (2009) 274–288

[7] Fages, F., Jovanovska, D., Rizk, A., Soliman, S.: BIOCHAM v3.2 Reference Man-
ual. INRIA. (2010)

[8] Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability
arising from multisite phosphorylation in protein kinase cascades. Journal of Cell
Biology 164(3) (February 2005) 353–359

[9] Huang, C.Y., Ferrell, Jr., J.E.: Ultrasensitivity in the mitogen-activated protein
kinase cascade. PNAS 93(19) (September 1996) 10078–10083

A New Local Move Operator for Reconstructing Gene
Regulatory Networks

Jimmy Vandel and Simon de Givry

INRA - BIA, Toulouse, France,
jimmy.vandel@toulouse.inra.fr

Abstract. The discovery of regulatory networks is an important aspect in the
post genomic research. Among structure learning approaches we are interested
in local search methods in the Bayesian network framework. We propose a new
local move operator to escape more efficiently from local maxima in the search
space of directed acyclic graphs. This operator allows to overtake the acyclic
constraint of Bayesian networks and authorizes local moves previously banned
with classic operators. First results show improvements of learnt network quality.
Our algorithm uses Comet language providing abstraction for local search and
constraint programming.

Keywords: structure learning, Bayesian networks, local search, Comet language,
gene regulation inference, genetical genomics.

1 Introduction

Inferring gene regulatory networks (GRN) from microarray data is a challenging prob-
lem, in particular because the sample size is typically small compared to the thousands
of genes that compose the network. Currently, integrative approaches are developed to
combine several sources of information in order to improve prediction quality. One of
these approaches consists in using genetical genomic data combining gene expressions
and sequence polymorphisms observed by genetic markers [1] [2](Chap. 4).

Among the many existing frameworks used to infer GRN, we choose probabilistic
graphical models and more specifically static Bayesian Networks (BN) [3]. Learning
BN structures from data is a NP-hard problem [4] and several approaches have been
proposed to solve it. One of them consists in exploring the space of BN structures using
local search methods and evaluating each structure with a specific scoring criterion in
order to select the structure which maximizes the score.

In Section 2 we present Bayesian network and a new operator called ”iterative swap
cycle” (ISC) for local search algorithms. Then we report in Section 3 our preliminary
work using this operator inside the Comet local search platform and give some positive
results on simulated genetical genomic data.

2 Bayesian network and local search methods

A Bayesian network [3] denoted by B = (G,PG) is composed of a directed acyclic graph
G = (X,E) with nodes representing p random discrete variables X = {X1, . . . , Xp},

68 Jimmy Vandel and Simon de Givry

linked by a set of directed edges E, and a set of conditional probability distributions
PG = {P1, . . . , Pp} defined by the topology of the graph: Pi = �(Xi|Pa(Xi)) where
Pa(Xi) = {X j ∈ X | −−−−−−→(X j, Xi) ∈ E} is the set of parent nodes of Xi in G. A Bayesian
network B represents a joint probability distribution on X such that:

�(X) =

p∏
i=1

�(Xi|Pa(Xi)) (1)

The conditional probability distributions PG are determined by a set of parameters,
θ, via the equation:

�(Xi = k|Pa(Xi) = j) = θi jk

where k is a value of Xi, and j is a value configuration of the parent set Pa(Xi). Given
the structure G, parameters θi jk can be estimated by following the maximum likelihood
principle.

Learning the structure of a Bayesian network consists in finding a DAG G maxi-
mizing �(G|D) where D represents the observed data. We use in our study the popular
Bayesian Dirichlet criterion to maximize the score:

BDeu(G) =

p∏
i=1

qi∏
j=1

Γ(αi j)
Γ(ni j + αi j)

ri∏
k=1

Γ(ni jk + αi jk)
Γ(αi jk)

with ni jk, the number of occurrences of the configuration (Xi = k, Pa(Xi) = j) in
the n samples, ni j =

∑ri
k=1 ni jk and Dirichlet hyper-parameters αi jk = α

ri∗qi
where α is

the equivalent sample size parameter, ri is the domain size of variable Xi and qi =∏
X j∈Pa(Xi) r j, is the product of the parental domains of Xi.

In a GRN context with genetical genomic data the set of discrete random variables
X is composed of one variable per gene-activity, denoted Gi, and one variable for each
genetic marker, denoted Mi, ∀i ∈ {1, . . . , p} with p the number of genes. We assume
each gene Gi is co-located with a single genetic marker Mi. Each marker may explain
the variation of its associated gene activity or the variations of other regulated genes.
An example is given in Figure 1.

Fig. 1. Example of 3-genes network with regula-
tions from gene 2 to gene 1 and 3. We assume a
marker order (M1,M2,M3) on a single chromo-
some.

Heuristic local search algorithms are widely used to learn Bayesian network struc-
tures as hill-climbing search, simulated-annealing, MCMC, genetic algorithms, ant colony
optimization [5] and dozens more with additional refinements [6]. These methods are

Inference of Gene Regulatory Networks 69

often compared in previous papers with different datasets and results but if these meth-
ods tend to develop sophisticated algorithms to select at each step the best neighbor,
only few of them tried new local operators to define this neighborhood [7, 8, 9]. Other
approaches working on larger neighborhoods collapse a set of DAGs into a unique rep-
resentative configuration. For instance, they explore the search space of total variable
orderings (an optimal DAG compatible with the order is then easier to deduce) [10, 11],
or the search space of Markov-equivalent partially-oriented DAGs [12, 13, 14]. Classi-
cal operators are addition, deletion and reversal of a directed edge, but these operators
lead to reach quickly local maxima, even if some metaheuristic principles like Tabu
list or simulated-annealing reduce this drawback. Furthermore the acyclic constraint of
Bayesian networks is often considered as a hard constraint to define the neighborhood
of a graph. We propose a new operator called ISC (Iterative Swap Cycle) to potentially
overcome this constraint.

G1

G4

G3G2

G6 G5

G7
→

G1

G4

G3G2

G6 G5

G7

Fig. 2. Modification of 7-gene network structure after an ISC operation.

Let us consider the situation in Figure 2. We call ∆Gi,G j the BDeu score variation
when we add variable Gi as parent of G j with other parents fixed, this variation is pos-
itive if the score increases when we add the arc Gi → G j and negative otherwise. We
define the swap operator as follow, swapping an edge Gi → G j with Gk produces the
simultaneous deletion of Gi → G j and the addition of Gk → G j. Given the initial
structure in Figure 2, to swap G2 → G3 with G7 will be forbidden with classical oper-
ators because of the acyclic constraint even if ∆G7,G3 is high. The idea of ISC operator
is to add G7 → G3 anyway and if needed to break the cycle created by this addition.
First we remove an edge of this cycle minimizing ∆ value (in this example we assume
G4 → G6), if this deletion plus the swap operation do not decrease the score of the
graph (∆G7,G3 −∆G2,G3 −∆G4,G6 > 0) the move is validated. Otherwise we choose another
parent (not included in the considered cycle) for node G6 maximizing ∆ value (here we
add G5 → G6) that we can consider as a swap of G4 → G6 with G5. If another cycle
is created during this swap, we iterate a new cycle break operation. Finally we iterate
until the initial cycle is broken (means no sub-cycles were created) or the score of the
modified graph cannot be greater than the initial score. We only validate local moves if
all the cycles are broken and if the modified graph increases the score.

70 Jimmy Vandel and Simon de Givry

If several cycles are created by the same edge addition, we break each of them, one
after another by applying ISC operator for each one.

The main idea of ISC operator is to try, each time we want to add a forbidden edge
Gi → G j, to break the cycles by deleting or swapping a parent for one node of the
cycles and to iterate this operation to solve potential cycles created during the swap. A
forbidden edge could appear when we try to swap an edge as in our previous example
but also after an addition or reversal of an edge. So ISC operator is applicable for add,
reverse and swap operators.

3 On going work

We use the Comet software [15] to implement iterated hill-climbing search. Comet is a
specific language which provides useful concepts for implementing local search meth-
ods like invariant, objective and constraint functions. In our implementation we encode
BDeu score using cache for up to two parents and incremental cycle detection (using
incremental topological ordering [16]) using user-defined invariants on a graph which
means that each modification on the graph is automatically propagates on the score and
cyclicity test, allowing an easier way to develop new neighborhood operators and new
search algorithms. We do not use any constraint features of Comet but invariants in
Comet offer incrementality for free. For each node we keep in memory the neighbor-
hood defined by all operators applicable on this node with associated score variations
and potential cyclic situations, which saves computations and helps to quickly update
cyclic situations.

We did not implement ISC operator yet, but we developed its simplified version
called nISC (non Iterative Swap Cycle). nISC is similar to ISC but does not iterate on
potential cycle creations, it try to delete or swap only one edge of the cycle produced
by classical operator to break it. If deleting or swapping an edge does not break the
cycle or create another cycle, the classical operation is tagged as invalid and cannot be
applied in this configuration. This operator is more simple and less time consuming than
ISC but allows to overcome some cycle situations. We show in Figure 3 BDeu scores
reached (with α = 1) and time requirement of 1000 runs of hill climbing search starting
from a random structure (2 randomly selected parents per node) in five configurations.
These configurations differ by the set of authorized operators during the search among
classical ones (A:addition, D:deletion and R:reversal) and the swap operator (S:swap).
The last configuration represents the results with nISC extension (*:nISC) for addition,
reversal and swap operators (deletion of an edge cannot create a cycle). Our test network
is composed of 2 000 nodes (1 000 genes and 1 000 markers) and 300 samples from
DREAM5 challenge (SysGenA300 Network1) [17]. In order to deal with large datasets,
we restrict the list of candidate parents as done in [18].

We see in Figure 3 that the scores increase as more operators are used but in coun-
terpart slows down the search.

If the reversal operation increases a little the mean score, we see a significant im-
provement when we use the swap operator. These results show that swapping an edge
allows a deeper structure modification than reversing it although both are composed of
an addition and a deletion. Furthermore variance of scores is reduced with the swap

Inference of Gene Regulatory Networks 71

operator. Efficiency of the swap operator is simply explained by the fact that initial
structures could allocate for one node G j, a medium quality parent Gi (∆Gi,G j > 0).
However if a better parent Gk exists for this node ∆Gk ,G j > ∆Gi,G j but both Gi and Gk

cannot be parents at the same time we would need to swap Gi by Gk. So we first need
to remove Gi but this operation will decrease the score and will not be considered in a
hill-climbing search or with low probability in a simulated-annealing algorithm.

Applying nISC with the four operators allows to increase once more the mean score
reached and to reduce variance which suggest that trying to overcome cycles allows to
escape from local optima more and to achieve similar quality structures. But this more
intensive search is much more time consuming even if the current implementation could
be improved. Trade off between search time and quality of the learnt structure still need
to be investigated.

A+D A+D+R A+D+S A+D+R+S A*+D+R*+S*
BDeu scores (in log10)

mean -360 415 -360 349 -358 885 -358 826 -358 417
variance (103) 25.936 26.681 4.446 4.763 2.713

Mean Time (seconds) 22.2 28.2 36.6 40.2 153

Fig. 3.

Our first results show large difficulty for local search algorithms to escape from
local maxima with classical operators. A difficulty which can explain poor results we
obtained with the simulated annealing method [19], even if a progressive decrease of the
temperature can move the search in a promising area, but when temperatures become
too low the algorithm quickly suffers from restrictive operators and falls in a local max-
imum. For this reason instead of developing highly complex metaheuristics, we decide
to explore new operators to define larger neighborhoods.

References

[1] R. Jansen and J. Nap, “Genetical genomics : the added value from segregation,” Trends in
genetics, vol. 17, no. 7, pp. 388–391, 2001.

[2] S. Das, D. Caragea, W. H. Hsu, and S. M. Welch, eds., Handbook of Research on Com-
putational Methodologies in Gene Regulatory Networks. Hershey, New York: IGI Global,
2010.

[3] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[4] D. Chickering and D. Heckermann, “Learning bayesian networks is NP-complete,” In
learning from data: Al and Statistics, 1996.

[5] R. Daly and Q. Shen, “Learning bayesian network equivalence classes with ant colony
optimization,” Journal of Artificial Intelligence Research, vol. 35, pp. 391–447, 2009.

[6] E. Salehi and R. Gras, “An empirical comparison of the efficiency of several local search
heuristics algorithms for bayesian network structure learning,” in Learning and Intelligent
OptimizatioN Workshop (LION 3), 2009.

72 Jimmy Vandel and Simon de Givry

[7] L. de Campos, J. Fernandez-Luna, and J. Puerta, “Local search methods for learning
bayesian networks using a modified neighborhood in the space of dags,” in Advances in
Artificial Intelligence IBERAMIA 2002, vol. 2527, pp. 182–192, 2002.

[8] A. Moore and W. Wong, “Optimal reinsertion: A new search operator for accelerated and
more accurate bayesian network structure learning,” in Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML ’03), pp. 552–559, AAAI Press, 2003.

[9] A. Holland, M. Fathi, M. Abramovici, and M. Neubach, “Competing fusion for bayesian
applications,” in Proc. of the 12th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), pp. 378–385,
2008.

[10] G. Cooper and E. Hersovits, “A bayesian method for the induction of probabilistic networks
from data,” Machine Learning, vol. 9, pp. 309–347, 1992.

[11] M. Teyssier and D. Koller, “Ordering-based search: A simple and effective algorithm for
learning bayesian networks,” in Proceedings of the Twenty-first Conference on Uncertainty
in AI (UAI), pp. 584–590, 2005.

[12] D. Chickering and D. Maxwell, “Learning equivalence classes of bayesian-network struc-
tures,” J. Mach. Learn. Res., vol. 2, pp. 445–498, 2002.

[13] S. Acid and L. M. de Campos, “Searching for bayesian network structures in the space of
restricted acyclic partially directed graphs,” J. Artif. Int. Res., vol. 18, pp. 445–490, 2003.

[14] D. Fierens, J. Ramon, M. Bruynooghe, and H. Blockeel, “Learning directed probabilistic
logical models: ordering-search versus structure-search,” Annals of Mathematics and Arti-
ficial Intelligence, vol. 54, pp. 99–133, 2008.

[15] L. Michel and P. V. Hentenryck, “A constrained-based architecture for local search,” in
17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2002.

[16] D. J. Pearce and P. H. J. Kelly, “A dynamic topological sort algorithm for directed acyclic
graphs,” J. Exp. Algorithmics, vol. 11, 2007.

[17] “Dream5, systems genetics challenges.” http://wiki.c2b2.columbia.edu/dream/index.php/D5c3,
2010.

[18] A. Goldenberg and A. Moore, “Tractable learning of large bayes net structures from sparse
data,” in Proceedings of the twenty-first international conference on Machine learning,
ICML ’04, pp. 44–51, 2004.

[19] D. Chickering, D. Heckerman, and D. Geiger, “Learning bayesian networks: search meth-
ods and experimental results,” AI + Stats, 1995.

Author Index

Barahona, Pedro, 37
Best, Michael, 27
Bhattarai, Kabi, 27
Bockmayr, Alexander, 45
Brozzi, Alessandro, 1

Campeotto, Federico, 27
Correia, Marco, 37

Dal Palù, Alessandro, 27
Dang, Hung, 27
De Givry, Simon, 67
Dovier, Agostino, 27

Eiter, Thomas, 3

Fages, François, 59
Fioretto, Ferdinando, 27
Fogolari, Federico, 27

Gay, Steven, 59

Krennwallner, Thomas, 3
Krippahl, Ludwig, 37

Le, Trung, 27

Madeira, Fábio, 37
Martinez, Thierry, 59

Palinkas, Aljoscha, 45
Pontelli, Enrico, 27

Redl, Christoph, 3

Soliman, Sylvain, 59

Theil Have, Christian, 17

Vandel, Jimmy, 67

