PERUGIA, GALN 2009

UN ALGORITMO PER IL CALCOLO DI RADICI PRIMARIE DI MATRICI

Ivan Gerace, **Federico Greco** & Bruno Iannazzo

Università degli Studi di Perugia

17 febbraio 2009

RADICI PRIMARIE E PRINCIPALI

Sia p un intero positivo e sia A una matrice non-singolare in $\mathbb{C}^{n \times n}$. Consideriamo l'equazione matriciale

$$X^p = A$$
.

DEFINIZIONE

Una soluzione $X \in \mathbb{C}^{n \times n}$ dell'equazione $X^p = A$

- è una **radice** *p***-esima primaria** di *A* se *X* è esprimibile come polinomio di *A*;
- è una **radice** *p***-esima principale** di *A* se *X* è primaria ed i suoi autovalori appartengono al settore del piano complesso

$$S_p = \{z \in \mathbb{C} \setminus \{0\} : |\arg(z)| \le \pi/p\}.$$

RISULTATI NOTI E APPLICAZIONI

RISULTATI NOTI:

- Una matrice A con s autovalori distinti ha esattamente p^s radici p-esime primarie.
- Se nessun autovalore di A è un numero reale non positivo, allora A ha una sola radice p-esima principale indicata con $A^{1/p}$. In particolare, se A è reale, allora $A^{1/p}$ è reale.

RISULTATI NOTI E APPLICAZIONI

RISULTATI NOTI:

- Una matrice A con s autovalori distinti ha esattamente p^s radici p-esime primarie.
- Se nessun autovalore di A è un numero reale non positivo, allora A ha una sola radice p-esima principale indicata con $A^{1/p}$. In particolare, se A è reale, allora $A^{1/p}$ è reale.

APPLICAZIONI del calcolo di radici primarie di matrici:

- Calcolo di altre funzioni matriciali quali Settore, Logaritmo e Media;
- (Finanza) Modellizzazioni del rischio di credito (Credit Risk Model).

ALGORITMI CONOSCIUTI (PER MATRICI PIENE)

1. ALGORITMI CHE USANO LA DECOMPOSIZIONE DI SCHUR

Björck-Hammarling[1983]	$\operatorname{caso} p = 2\operatorname{ed} A \in \mathbb{C}^{n \times n}$
Higham[1986]	caso $p = 2$ ed $A \in \mathbb{R}^{n \times n}$ (utiliz-
	zando l'aritmetica reale)
Smith[2003]	caso p intero positivo (con aritme-
	tica appropriata)

ALGORITMI CONOSCIUTI (PER MATRICI PIENE)

1. ALGORITMI CHE USANO LA DECOMPOSIZIONE DI SCHUR

Björck-Hammarling[1983]	$\operatorname{caso} p = 2\operatorname{ed} A \in \mathbb{C}^{n \times n}$
Higham[1986]	caso $p = 2$ ed $A \in \mathbb{R}^{n \times n}$ (utiliz-
	zando l'aritmetica reale)
Smith[2003]	caso p intero positivo (con aritme-
	tica appropriata)

2. ALGORITMI CHE USANO ITERAZIONI MATRICIALI

Hoskins-Walton[1979]	caso A definita positiva
Iannazzo[2006]	caso p generico, A qualsiasi
Guo-Higham[2006]	caso p generico, A qualsiasi
Zietak-Laskiewicz[2009]	Miglioramenti nell'algoritmo

ALGORITMI CONOSCIUTI: CONFRONTO

Algoritmo	Stabilità al- l'indietro	Operazioni	Memoria
Schur		$O(pn^3)$	$O(pn^2)$
Iterazione	?	$O(n^3 \log p)$	$O(n^2)$

ALGORITMI CONOSCIUTI: CONFRONTO

Algoritmo	Stabilità al- l'indietro	Operazioni	Memoria
Schur		$O(pn^3)$	$O(pn^2)$
Iterazione	?	$O(n^3 \log p)$	$O(n^2)$

Iterazioni matriciali minor numero di operazioni minor quantità di memoria

- Decomposizione di Schur stabili all'indietro.
- Smith[2003] (Schur) calcola tutte le radici primarie con lo stesso costo.

PROBLEMA

Input: Un intero positivo p e una matrice $A \in \mathbb{R}^{n \times n}$ non-singolare.

Output: Una matrice X, radice p-esima primaria di A.

PROBLEMA

Input: Un intero positivo p e una matrice $A \in \mathbb{R}^{n \times n}$ non-singolare.

Output: Una matrice *X*, radice *p*-esima primaria di *A*.

• Si determina attraverso il metodo di Schur una matrice (quasi)-triangolare superiore $T \in \mathbb{R}^{n \times n}$ tale che $T = Q^*AQ$, per qualche $Q \in \mathbb{R}^{n \times n}$ ortogonale;

PROBLEMA

Input: Un intero positivo p e una matrice $A \in \mathbb{R}^{n \times n}$ non-singolare.

Output: Una matrice *X*, radice *p*-esima primaria di *A*.

- Si determina attraverso il metodo di Schur una matrice (quasi)-triangolare superiore $T \in \mathbb{R}^{n \times n}$ tale che $T = Q^*AQ$, per qualche $Q \in \mathbb{R}^{n \times n}$ ortogonale;
- ② Si determina una radice p-esima primaria U della matrice T;

6/31

PROBLEMA

Input: Un intero positivo p e una matrice $A \in \mathbb{R}^{n \times n}$ non-singolare.

Output: Una matrice *X*, radice *p*-esima primaria di *A*.

- Si determina attraverso il metodo di Schur una matrice (quasi)-triangolare superiore $T \in \mathbb{R}^{n \times n}$ tale che $T = Q^*AQ$, per qualche $Q \in \mathbb{R}^{n \times n}$ ortogonale;
- ② Si determina una radice p-esima primaria U della matrice T;
- **3** La soluzione cercata è $X = QUQ^*$

X è reale se A non ha autovalori negativi.

Sia $T \in \mathbb{R}^{n \times n}$ (quasi)-triangolare superiore. Per risolvere l'equazione matriciale

$$U^p = T$$

si definiscono ricorsivamente le seguenti p matrici:

$$\begin{cases} R^{(1)} = U \\ R^{(k)} = U \cdot R^{(k-1)} = U^k, & \text{per } k = 2, \dots, p. \end{cases}$$

Sia $T \in \mathbb{R}^{n \times n}$ (quasi)-triangolare superiore. Per risolvere l'equazione matriciale

$$U^p = T$$

si definiscono ricorsivamente le seguenti p matrici:

$$\begin{cases} R^{(1)} = U \\ R^{(k)} = U \cdot R^{(k-1)} = U^k, & \text{per } k = 2, \dots, p. \end{cases}$$

- $R^{(p)} = U^p = T$ è la matrice nota in partenza;
- Le matrici $R^{(k)}$ per k = 1, ..., p 1 devono essere calcolate;
- $R^{(1)} = U$ è la matrice cercata.

STEP 1

Sia l il numero dei suoi blocchi diagonali di T. Si calcolano e si memorizzano i blocchi diagonali $R_{ji}^{(1)} = U_{jj}$, per j = 1, ..., l.

STEP 1

Sia l il numero dei suoi blocchi diagonali di T. Si calcolano e si memorizzano i blocchi diagonali $R_{ii}^{(1)} = U_{jj}$, per j = 1, ..., l.

- U ha la stessa struttura di T perché è funzione di T.
- T_{jj} può indicare un blocco 1×1 o un blocco 2×2 .
- Se T_{jj} è un blocco 1×1 , allora U_{jj} è (una) radice p-esima. Se T_{jj} è un blocco 2×2 , allora

$$U_{jj} = \alpha I_2 + \beta/\mu(T_{jj} - \theta I_2),$$
 per opportuni $\alpha, \beta, \mu, \theta \in \mathbb{R}$.

 Per avere la radice principale devo scegliere la radice principale di ciascun blocco. Con scelte diverse si ottengono tutte le radici primarie.

STEP 2

Per $k = 1, \dots, p-1$, si calcolano e si memorizzano i blocchi diagonali

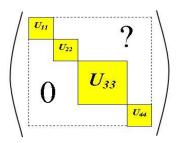
$$R_{jj}^{(k)} = U_{jj}^k = (U_{jj})^k, \quad \text{per } j = 1, \dots, l.$$

STEP 2

Per $k = 1, \dots, p-1$, si calcolano e si memorizzano i blocchi diagonali

$$R_{jj}^{(k)} = U_{jj}^k = (U_{jj})^k, \quad \text{per } j = 1, \dots, l.$$

Al termine dello STEP 2 sono noti i blocchi diagonali di ogni $R^{(k)} = U^k$



STEP 3

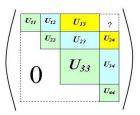
Per k = 1, ..., p-1, si calcolano e si memorizzano i blocchi $R_{ij}^{(k)} = U_{ij}^k$ che appartengono alla prima sopradiagonale.

Si ripete la stessa operazione per la (j-i)-esima sopradiagonale, per $(j-i)=2,\ldots,l-1$.

STEP 3

Per k = 1, ..., p-1, si calcolano e si memorizzano i blocchi $R_{ij}^{(k)} = U_{ij}^k$ che appartengono alla prima sopradiagonale.

Si ripete la stessa operazione per la (j - i)-esima sopradiagonale, per $(j - i) = 2, \dots, l - 1$.



Blocchi noti dopo STEP 3 per (j - i) = 1 e dopo STEP 3 per (j - i) = 2

COME AVVIENE LO STEP 3

Il blocco $R_{ij}^{(1)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

$$\sum_{q=0}^{p-1} U_{ii}^q R_{ij}^{(1)} U_{jj}^{p-1-q} = T_{ij} - \sum_{k=1}^p U_{ii}^{p-k} B_{ij}^{(k)}$$

 $B_{ij}^{(k)} = \sum_{\xi=i+1}^{J-1} R_{i\xi}^{(1)} R_{\xi j}^{(k-1)}$ è funzione di blocchi appartenenti a sopradiagonali

precedentemente calcolate.

Ad esempio, nel caso (j - i) = 1, $B_{ij}^{(k)}$ è il blocco nullo.

COME AVVIENE LO STEP 3

Il blocco $R_{ij}^{(1)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

$$\sum_{q=0}^{p-1} U_{ii}^q R_{ij}^{(1)} U_{jj}^{p-1-q} = T_{ij} - \sum_{k=1}^p U_{ii}^{p-k} B_{ij}^{(k)}$$

 $B_{ij}^{(k)} = \sum_{\xi=i+1}^{j-1} R_{i\xi}^{(1)} R_{\xi j}^{(k-1)}$ è funzione di blocchi appartenenti a sopradiagonali

precedentemente calcolate.

Ad esempio, nel caso (j - i) = 1, $B_{ij}^{(k)}$ è il blocco nullo.

Per k = 2, ..., p - 1, il blocco $R_{ij}^{(k)}$ si calcola così:

$$\mathbf{R}_{ij}^{(k)} = \sum_{q=0}^{k-1} U_{ii}^q \mathbf{R}_{ij}^{(1)} U_{jj}^{k-1-q} + \sum_{q=0}^{k-1} U_{ii}^q B_{ij}^{(k-q)}.$$

ALGORITMO DI SMITH: COSTO

STEP	Operazione eseguita	ops	mem
1-2	Calcolo e memorizzazione degli $R_{jj}^{(k)}$	O(pn)	O(pn)
3	Calcolo dei $B_{ij}^{(k)}$	$O(pn^3)$	
3	Calcolo dei p termini e risoluzione delle	$O(pn^2)$	
	$O(n^2)$ equazioni di Sylvester		
3	Calcolo e memorizzazione degli $R_{ij}^{(k)}$	$O(pn^2)$	$O(pn^2)$

ALGORITMO DI SMITH: COSTO

STEP	Operazione eseguita	ops	mem
1-2	Calcolo e memorizzazione degli $R_{jj}^{(k)}$	O(pn)	O(pn)
3	Calcolo dei $B_{ij}^{(k)}$	$O(pn^3)$	
3	Calcolo dei p termini e risoluzione delle	$O(pn^2)$	
	$O(n^2)$ equazioni di Sylvester		
3	Calcolo e memorizzazione degli $R_{ij}^{(k)}$	$O(pn^2)$	$O(pn^2)$

COSTO TOTALE ALGORITMO:

PUNTI	ops	memoria
1 e 3	$O(n^3)$	$O(n^2)$
2	$O(pn^3)$	$O(pn^2)$

OSSERVAZIONI SU SMITH[2003]

Supponiamo di voler risolvere

$$X^{2^k}=A.$$

Se applichiamo Smith[2003] per $p = 2^k$ abbiamo un totale di $O(2^k n^3)$ operazioni.

OSSERVAZIONI SU SMITH[2003]

Supponiamo di voler risolvere

$$X^{2^k}=A.$$

Se applichiamo Smith[2003] per $p = 2^k$ abbiamo un totale di $O(2^k n^3)$ operazioni.

Se applichiamo k volte Smith[2003] per p = 2 abbiamo un totale di $O(kn^3) = O(n^3 \log p)$ operazioni, come nel caso del miglior algoritmo iterativo.

Nel caso $X^p = A$ con p primo questa osservazione non può essere ripetuta. Questo spinge a cercare un algoritmo che usi il metodo di Schur e abbia un totale di $O(n^3 \log p)$ operazioni per ogni p.

ALGORITMO GGI

PROBLEMA

Input: Un intero positivo p e una matrice $A \in \mathbb{R}^{n \times n}$ non-singolare.

Output: Una matrice X, radice p-esima primaria di A.

ALGORITMO GGI

PROBLEMA

Input: Un intero positivo p e una matrice $A \in \mathbb{R}^{n \times n}$ non-singolare.

Output: Una matrice X, radice p-esima primaria di A.

- Si determina attraverso il metodo di Schur una matrice (quasi)-triangolare superiore $T \in \mathbb{R}^{n \times n}$ tale che $T = Q^*AQ$, per qualche $Q \in \mathbb{R}^{n \times n}$ ortogonale;
- ② Si determina una radice p-esima primaria U dell'equazione $U^p = T$ attraverso il calcolo di al più $2\lfloor \log_2 p \rfloor$ matrici intermedie;
- **1** La soluzione cercata è $X = QUQ^*$

ALGORITMO GGI; SCHEMA PUNTO 2

STEP 1-2

Sia l il numero dei blocchi diagonali di T. Per $q=1,\ldots,p-1$, si calcolano e si memorizzano i blocchi diagonali

$$U_{jj}^q = (U_{jj})^q, \quad \text{per } j = 1, \dots, l.$$

ALGORITMO GGI; SCHEMA PUNTO 2

STEP 1-2

Sia l il numero dei blocchi diagonali di T. Per $q=1,\ldots,p-1$, si calcolano e si memorizzano i blocchi diagonali

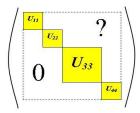
$$U_{jj}^q = (U_{jj})^q, \quad \text{per } j = 1, \dots, l.$$

STEP 3

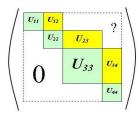
Si calcolano e si memorizzano i blocchi della prima sopradiagonale di U e di $O(\log_2 p)$ matrici intermedie che ora definiremo.

Si ripete la stessa operazione per la (j-i)-esima sopradiagonale, per $(j-i)=2,\ldots,l-1$.

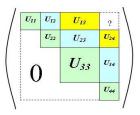
ALGORITMO GGI; SCHEMA PUNTO 2



STEP 1-2



STEP 3 per
$$(j - i) = 1$$



STEP 3 per (j - i) = 2

DECOMPOSIZIONE DI p IN BASE 2

p lo possiamo scrivere in modo unico come $\sum_{h=0}^{m} 2^{c_h}$, per

- $c_0 = |\log_2 p|$
- $m \ge 0$
- c_1, \ldots, c_m oppotuni interi tali che $\lfloor \log_2 p \rfloor > c_1 > \ldots > c_m \geq 0$.

DECOMPOSIZIONE DI p IN BASE 2

p lo possiamo scrivere in modo unico come $\sum_{h=0}^{m} 2^{c_h}$, per

- $c_0 = |\log_2 p|$
- $m \ge 0$
- c_1, \ldots, c_m oppotuni interi tali che $\lfloor \log_2 p \rfloor > c_1 > \ldots > c_m \geq 0$.

ESEMPI

• $8 = 2^3$. In questo caso m = 0 e $c_0 = 3$.

DECOMPOSIZIONE DI p IN BASE 2

p lo possiamo scrivere in modo unico come $\sum_{h=0}^{m} 2^{c_h}$, per

- $c_0 = |\log_2 p|$
- $m \ge 0$
- c_1, \ldots, c_m oppotuni interi tali che $\lfloor \log_2 p \rfloor > c_1 > \ldots > c_m \geq 0$.

ESEMPI

- $8 = 2^3$. In questo caso m = 0 e $c_0 = 3$.
- $11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0$. In questo caso m = 2, $c_0 = 3$, $c_1 = 1$, e $c_2 = 0$.

CALCOLO DEL BLOCCO $V_{ij}^{(0)} = U_{ij}$; CASO $p = 2^{c_0}$

Consideriamo dapprima il caso $p = 2^{c_0}$.

Definiamo ricorsivamente le matrici intermedie:

$$\begin{cases} V^{(0)} = U \\ V^{(k)} = V^{(k-1)} \cdot V^{(k-1)} = U^{2^k} \end{cases}$$

per
$$k = 1, ..., c_0$$
.

CALCOLO DEL BLOCCO $V_{ij}^{(0)} = U_{ij}$; CASO $p = 2^{c_0}$

Consideriamo dapprima il caso $p = 2^{c_0}$.

Definiamo ricorsivamente le matrici intermedie:

$$\begin{cases} V^{(0)} = U \\ V^{(k)} = V^{(k-1)} \cdot V^{(k-1)} = U^{2^k} \end{cases} \text{ per } k = 1, \dots, c_0.$$

- Le matrici sono $c_0 = \lfloor \log_2 p \rfloor$, invece delle 2^{c_0} usate da Smith[2003];
- $V^{(c_0)} = U^p = T$ è la matrice nota in partenza;
- Le matrici $V^{(k)}$, per $k = 0, \dots, c_0 1$, devono essere calcolate;
- $V^{(0)} = U$ è la matrice cercata.

Calcolo del blocco $V_{ij}^{(0)}=U_{ij}$; caso $p=2^{c_0}$

CASO p = 8

In questo caso $c_0 = 3$. Le matrici intermedie sono le seguenti:

$$\begin{split} V^{(0)} &= U \\ V^{(1)} &= V^{(0)} \cdot V^{(0)} = U^2 \\ V^{(2)} &= V^{(1)} \cdot V^{(1)} = U^4 \\ V^{(3)} &= V^{(2)} \cdot V^{(2)} = U^8 = T \end{split}$$

Sono sufficienti 3 matrici interemdie invece delle 7 usate da Smith[2003].

CALCOLO DEL BLOCCO $V_{ij}^{(0)} = U_{ij}$; CASO $p = 2^{c_0}$

[GGI, 2009]: Consideriamo la (j - i)-esima sopradiagonale. Il blocco $V_{ij}^{(0)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

$$\sum_{q=0}^{p-1} U_{ii}^q V_{ij}^{(0)} U_{jj}^{p-1-q} = T_{ij} - \sum_{(r;s;t) \in A_{c_0}} U_{ii}^r B_{ij}^{(s)} U_{jj}^t.$$

CALCOLO DEL BLOCCO $V_{ij}^{(0)} = U_{ij}$; CASO $p = 2^{c_0}$

[GGI, 2009]: Consideriamo la (j - i)-esima sopradiagonale. Il blocco $V_{ij}^{(0)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

$$\sum_{q=0}^{p-1} U_{ii}^q V_{ij}^{(0)} U_{jj}^{p-1-q} = T_{ij} - \sum_{(r;s;t) \in A_{c_0}} U_{ii}^r B_{ij}^{(s)} U_{jj}^t.$$

• $B_{ij}^{(s)} = \sum_{\xi=i+1}^{j-1} V_{i\xi}^{(s-1)} V_{\xi j}^{(s-1)}$ è funzione di blocchi appartenenti a sopradiagonali precedentemente calcolate.

CALCOLO DEL BLOCCO $V_{ij}^{(0)} = U_{ij}$; CASO $p = 2^{c_0}$

[GGI, 2009]: Consideriamo la (j - i)-esima sopradiagonale. Il blocco $V_{ij}^{(0)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

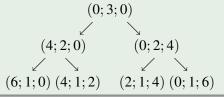
$$\sum_{q=0}^{p-1} U_{ii}^q V_{ij}^{(0)} U_{jj}^{p-1-q} = T_{ij} - \sum_{(r;s;t) \in A_{c_0}} U_{ii}^r B_{ij}^{(s)} U_{jj}^t.$$

- $B_{ij}^{(s)} = \sum_{\xi=i+1}^{j-1} V_{i\xi}^{(s-1)} V_{\xi j}^{(s-1)}$ è funzione di blocchi appartenenti a sopradiagonali precedentemente calcolate.
- A_{c_0} è un insieme di $2^{c_0} 1$ terne più facile da visualizzare che da descrivere.

Calcolo del blocco $V_{ii}^{(0)}=U_{ij}$; caso $p=2^{c_0}$

CASO p = 8; $(c_0 = 3)$

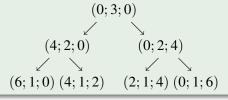
L'insieme A_3 è fatto così: (NB: $r + 2^s + t = 2^3$, $\forall (r, s, t) \in A_3$)



CALCOLO DEL BLOCCO $V_{ii}^{(0)}=U_{ij};$ CASO $p=2^{c_0}$

CASO p = 8; $(c_0 = 3)$

L'insieme A_3 è fatto così: (NB: $r + 2^s + t = 2^3$, $\forall (r, s, t) \in A_3$)



REGOLE per A_{c_0} :

- $(0; c_0; 0) \in A_{c_0};$
- Se $(r; s; t) \in A_{c_0}$ e s > 1, allora $(r + 2^{s-1}; s 1; t) \in A_{c_0}$ e $(r; s 1; t + 2^{s-1}) \in A_{c_0}$.

CALCOLO DEL BLOCCO $V_{ij}^{(0)} = U_{ij}$; CASO $p = \sum 2^{c_h}$

Passiamo al caso $p = \sum_{h=0}^{m} 2^{c_h}$.

Definiamo ricorsivamente le matrici intermedie:

$$\begin{cases} V^{(0)} = U \\ V^{(k)} = V^{(k-1)} \cdot V^{(k-1)} = U^{2^k} \\ W^{(0)} = V^{(c_0)} \\ W^{(h)} = W^{(h-1)} \cdot V^{(c_h)} = U^{p-2^{c_{h+1}} - \dots - 2^{c_m}} \\ \end{cases} \text{ per } k = 1, \dots, c_0.$$

 $V^{(0)},\ldots,V^{(c_0)}=U^{2^{c_0}}$ sono come nel caso 2^{c_0} . Successivamente si moltiplica $W^{(0)}=V^{(c_0)}$ per $V^{(c_1)},\ldots,V^{(c_m)}$.

CALCOLO DEL BLOCCO $V_{ij}^{(0)}=U_{ij}$; CASO $p=\sum 2^{c_h}$

$$\begin{cases} V^{(0)} = U \\ V^{(k)} = V^{(k-1)} \cdot V^{(k-1)} = U^{2^k} \end{cases} \quad \text{per } k = 1, \dots, c_0.$$

$$\begin{cases} W^{(0)} = V^{(c_0)} \\ W^{(h)} = W^{(h-1)} \cdot V^{(c_h)} = U^{p-2^{c_{h+1}} - \dots - 2^{c_m}} \end{cases} \quad \text{per } h = 1, \dots, m.$$

- Le matrici sono $c_0 + m = O(\log_2 p)$, invece delle p usate da Smith[2003];
- $W^{(m)} = U^p = T$ è la matrice nota in partenza;
- Tutte le $V^{(k)}$ etutte le $W^{(h)}$ devono essere calcolate;
- $V^{(0)} = U$ è la matrice cercata.

CALCOLO DEL BLOCCO $V_{ii}^{(0)} = U_{ij}$; CASO $p = \sum 2^{c_h}$

Caso p = 11

In questo caso m = 2, $c_0 = 3$, $c_1 = 1$, e $c_2 = 0$. Segue che

$$\begin{split} V^{(0)} &= U \\ V^{(1)} &= V^{(0)} \cdot V^{(0)} = U^2 \\ V^{(2)} &= V^{(1)} \cdot V^{(1)} = U^4 \\ V^{(3)} &= V^{(2)} \cdot V^{(2)} = U^8 = W^{(0)} \\ W^{(1)} &= W^{(0)} \cdot V^{(c_1)} = V^{(3)} \cdot V^{(1)} = U^{10} \\ W^{(2)} &= W^{(1)} \cdot V^{(c_2)} = W^{(1)} \cdot V^{(0)} = U^{11} = T \end{split}$$

Sono sufficienti 5 matrici interemdie invece delle 10 usate da Smith[2003].

Calcolo del blocco $V_{ij}^{(0)} = \overline{U_{ij}};$ caso $p = \sum 2^{c_h}$

[GGI, 2009]: Consideriamo la (j - i)-esima sopradiagonale. Il blocco $V_{ij}^{(0)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

$$\sum_{q=0}^{p-1} U_{ii}^{q} V_{ij}^{(0)} U_{jj}^{p-1-q} = T_{ij} - \sum_{h=1}^{m} C_{ij}^{(h)} U_{jj}^{p-2^{c_0}-\dots-2^{c_h}} +$$

$$- \sum_{\{h:c_h \neq 0\}} U_{ii}^{p-2^{c_h}-\dots-2^{c_m}} \left[\sum_{(r;s;t) \in A_{c_h}} U_{ii}^{r} B_{ij}^{(s)} U_{jj}^{t} \right] U_{jj}^{2^{c_{h+1}}+\dots+2^{c_m}}.$$

CALCOLO DEL BLOCCO $V_{ii}^{(0)} = U_{ij}$; CASO $p = \sum 2^{c_h}$

[GGI, 2009]: Consideriamo la (j-i)-esima sopradiagonale. Il blocco $V_{ij}^{(0)} = U_{ij}$ si determina risolvendo l'equazione di Sylvester:

$$\sum_{q=0}^{p-1} U_{ii}^{q} V_{ij}^{(0)} U_{jj}^{p-1-q} = T_{ij} - \sum_{h=1}^{m} C_{ij}^{(h)} U_{jj}^{p-2^{c_0}-\dots-2^{c_h}} +$$

$$- \sum_{\{h:c_h \neq 0\}} U_{ii}^{p-2^{c_h}-\dots-2^{c_m}} \left[\sum_{(r;s;t) \in A_{c_h}} U_{ii}^{r} B_{ij}^{(s)} U_{jj}^{t} \right] U_{jj}^{2^{c_h+1}+\dots+2^{c_m}}.$$

- Gli insiemi A_{c_h} ed i blocchi $B_{ij}^{(s)}$ già li conosciamo.
- Anche $C_{ij}^{(h)} = \sum_{\xi=i+1}^{j-1} W_{i\xi}^{(h-1)} V_{\xi j}^{(c_h)}$ è funzione di blocchi appartenenti a sopradiagonali precedentemente calcolate.

ALGORITMO GGI: COME AVVIENE LO STEP 3

Si determinano i blocchi $V_{ij}^{(0)} = U_{ij}$ appartenenti alla prima sopradiagonale risolvendo l'equazione di Sylvester.

ALGORITMO GGI: COME AVVIENE LO STEP 3

Si determinano i blocchi $V_{ij}^{(0)} = U_{ij}$ appartenenti alla prima sopradiagonale risolvendo l'equazione di Sylvester.

Si determinano $V_{ij}^{(k)}$, per $k = 1, \ldots, c_0$ e $W_{ij}^{(h)}$, per $h = 1, \ldots, c_{m-1}$. Per esempio, posto $p' = p - 2^{c_{h+1}} - \ldots - 2^{c_m}$,

$$\begin{split} \boldsymbol{W_{ij}^{(h)}} &= \sum_{q=0}^{p'-1} U_{ii}^{q} \boldsymbol{V_{ij}^{(0)}} U_{jj}^{p'-1-q} + \sum_{h'=1}^{h} C_{ij}^{(h')} U_{jj}^{p'-2^{c_0}-\dots-2^{c_{h'}}} + \\ &+ \sum_{\{h': c_{h'} \neq 0\}} U_{ii}^{p'-2^{c_{h'}}-\dots-2^{c_{h}}} \left[\sum_{(r; s; t) \in A_{c_{h'}}} U_{ii}^{r} \boldsymbol{B}_{ij}^{(s)} U_{jj}^{t} \right] U_{jj}^{2^{c_{h'}+1}+\dots+2^{c_{h}}}. \end{split}$$

Poi si passa alla sopradiagonale successiva.

Osservazioni sul calcolo di $V_{ij}^{(0)} = U_{ij}^{-1}$

Nell'equazione di Sylvester

$$\sum_{q=0}^{p-1} U_{ii}^{q} V_{ij}^{(0)} U_{jj}^{p-1-q} = T_{ij} - \sum_{h=1}^{m} C_{ij}^{(h)} U_{jj}^{p-2^{c_0}-\dots-2^{c_h}} +$$

$$- \sum_{\{h:c_h \neq 0\}} U_{ii}^{p-2^{c_h}-\dots-2^{c_m}} \left[\sum_{(r;s;t) \in A_{c_h}} U_{ii}^{r} B_{ij}^{(s)} U_{jj}^{t} \right] U_{jj}^{2^{c_h+1}+\dots+2^{c_m}},$$

il termine noto ha O(p) addendi perché la prima sommatoria ha m addendi e la seconda sommatoria ha al più p-m-1 addendi

$$\sum_{\{h:c_h\neq 0\}} |A_{c_h}| \leq \sum_{h=0}^m |A_{c_h}| = \sum_{h=0}^m (2^{c_h} - 1) = \sum_{h=0}^m 2^{c_h} - (m+1) = p - m - 1.$$

ALGORITMO GGI: COSTO

CTED	Onomogiono osognito	200	m.am.
STEP	Operazione eseguita	ops	mem
1-2	Calcolo e memorizzazione degli U_{jj}^q	O(pn)	O(pn)
3	Calcolo dei $B_{ij}^{(k)}$ e dei $C_{ij}^{(h)}$	$O(n^3 \log_2 p)$	
3	Calcolo dei <i>p</i> termini e risoluzione	$O(pn^2)$	
	delle $O(n^2)$ equazioni di Sylvester		
3	Calcolo e memorizzazione dei $V_{ij}^{(k)}$	$O(n^2 \log_2 p)$	$O(n^2 \log_2 p)$
	e dei $W_{ij}^{(h)}$		

ALGORITMO GGI: COSTO

STEP	Operazione eseguita	ops	mem
1-2	Calcolo e memorizzazione degli U_{jj}^q	O(pn)	O(pn)
3	Calcolo dei $B_{ij}^{(k)}$ e dei $C_{ij}^{(h)}$	$O(n^3 \log_2 p)$	
3	Calcolo dei p termini e risoluzione	$O(pn^2)$	
	delle $O(n^2)$ equazioni di Sylvester		
3	Calcolo e memorizzazione dei $V_{ij}^{(k)}$	$O(n^2 \log_2 p)$	$O(n^2 \log_2 p)$
	e dei $W_{ij}^{(h)}$		

COSTO TOTALE ALGORITMO:

PUNTI	ops	memoria	
1 e 3	$O(n^3)$	$O(n^2)$	
2	$O(n^3 \log_2 p + pn^2)$	$O(n^2 \log_2 p + pn)$	

COSTO: CONFRONTO CON GLI ALTRI ALGORITMI

Algoritmo	Stabilità al- l'indietro	Operazioni	Memoria
Schur Smith		$O(pn^3)$	$O(pn^2)$
Schur GGI	?	$O(n^3 \log_2 p + pn^2)$	$O(n^2 \log_2 p + pn)$
Iterazione	?	$O(n^3 \log p)$	$O(n^2)$

GGI vs. Smith: sperimentazioni al volo

MATRICI TEST: A matrice 4×4 con 3 blocchi diagonali B matrice 10×10 con 6 blocchi diagonali

Matrice	p	GGI			Smith	
		tempo	residuo	tempo	residuo	
A	73	0.1710	$2.70 \cdot 10^{-13}$	0.3750	$2.70 \cdot 10^{-13}$	
A	277	0.2500	$1.02 \cdot 10^{-12}$	3.3590	$1.02 \cdot 10^{-12}$	
A	1009	0.6250	$3.99 \cdot 10^{-12}$	42.700	$3.99 \cdot 10^{-12}$	
В	73	0.2810	$7.48 \cdot 10^{-13}$	1.4370	$7.51 \cdot 10^{-13}$	

PROSSIMO PASSO: Controllo della Stabilità all'indietro.

Questa non è l'ultima slide