Versatile weighting strategies for a citation-based research evaluation model

Gianna M. Del Corso, Francesco Romani joint work with Dario A. Binii

Dipartimento di Informatica, Università di Pisa, Italy

Due Giorni di ALN, 16-17 Febbraio 2009

- 1 The Problem
- 2 Common metrics
- 3 The model
- Weighting strategies

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

Difficult to give an in-depth evaluation of the research
Use indirect indicators of quality

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

Difficult to give an in-depth evaluation of the research Use indirect indicators of quality

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

Difficult to give an in-depth evaluation of the research Use indirect indicators of quality

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

Difficult to give an in-depth evaluation of the research

Use indirect indicators of quality

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

Difficult to give an in-depth evaluation of the research Use indirect indicators of quality

Most of "automatic" methods rely on citation analysis

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- but also some pros
- Peer review is not always practicable
- There are plausible assumptions underlying the use of citation analysis as a heuristic
- Simple and objective

Most of "automatic" methods rely on citation analysis

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- .. but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - I here are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?

... but also some pros

- Peer review is not always practicable
- There are plausible assumptions underlying the use of citation analysis as a heuristic
- Simple and objective

Most of "automatic" methods rely on citation analysis

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?

... but also some pros

- Peer review is not always practicable
- There are plausible assumptions underlying the use of citation analysis as a heuristic
- Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?

... but also some pros

- Peer review is not always practicable
- There are plausible assumptions underlying the use of citation analysis as a heuristic
- Simple and objective

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

Ranking of Journals

Citation Statistics: Impact Factor, AMS MR, Citeseer,...

PageRank-like techniques: Eigenfactor, SCImago, RedJasper, ...

Ranking of Journals

Citation Statistics: Impact Factor, AMS MR, Citeseer,...

PageRank-like techniques: Eigenfactor, SCImago, RedJasper, ...

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process.

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process

Ranking of Authors

- Top author if she publishes in "top" journals
- More accurate measures h-index, m-index, g-index, g_1 -index.
- Count the number of distinct authors who are citing me.

Ranking of Authors

- Top author if she publishes in "top" journals
- More accurate measures h-index, m-index, g-index, g_1 -index.
- Count the number of distinct authors who are citing me.

Ranking of Authors

- Top author if she publishes in "top" journals
- More accurate measures h-index, m-index, g-index, g_1 -index.
- Count the number of distinct authors who are citing me.

[ETNA 08, JCAM 09]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

[ETNA 08, JCAM 09]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

[ETNA 08, JCAM 09]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

[ETNA 08, JCAM 09]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

We have seen there are different aims of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

We have seen there are different aims of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

We have seen there are different aims of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different aims of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different aims of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different aims of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

	J	А	Р
J	citation	publication	publication
Α	publication	co-authorship	authorship
Р	publication	authorship	citation

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

	J	Α	P
J	citation	publication	publication
Α	publication	co-authorship	authorship
Р	publication	authorship	citation

Each paper can be described by means of

- List of authors
- Name of the journal
- List of references

Each paper can be described by means of

- N. C.I.
- Name of the journal
- List of references

List of authors

Each paper can be described by means of

- N. C.I.
- Name of the journal
- List of references

List of authors

Each paper can be described by means of

- Name of the journal
- List of references

List of authors

C is a $n_p \times n_P$ binary matrix describing the citation process

$$C(p_i, p_j) = 1$$
 iff p_i cites p_j

K is a $n_A \times n_P$ binary matrix describing authorship

$$K(a, p) = 1$$
 if author a has written paper p

F binary matrix $n_J \times n_P$

$$F(j, p) = 1$$
 if journal j publishes paper p

The system is represented by the matrix

$$S = \begin{bmatrix} FCF^T & FK^T & F \\ KF^T & KK^T & K \\ F^T & K^T & C \end{bmatrix}$$

$$S = \begin{bmatrix} FCF^T & FK^T & F \\ KF^T & KK^T & K \\ F^T & K^T & C \end{bmatrix}$$

The matrices in the first column contribute to the ranking of journals

Weighting strategies

$$S = \begin{bmatrix} FCF^T & FK^T & F \\ KF^T & KK^T & K \\ F^T & K^T & C \end{bmatrix}$$

The matrices in the second column contribute to the ranking of authors

The system is represented by the matrix

$$S = \begin{bmatrix} FCF^{T} & FK^{T} & F \\ KF^{T} & KK^{T} & K \\ F^{T} & K^{T} & C \end{bmatrix}$$

The matrices in the third column contribute to the ranking of papers

Let P be a stochastic matrix "obtained" from S.

Working with a stochastic matrix guarantees that the amount of importance in the system is neither created nor destroyed.

Let

$$\pi = [\pi_J, \pi_A, \pi_P]$$

be the Perron vector of P, that is

$$\pi^T = \pi^T P,$$

The rank value of each subject is the value of the corresponding entry in π .

Let P be a stochastic matrix "obtained" from S.

Working with a stochastic matrix guarantees that the amount of importance in the system is neither created nor destroyed.

Let

$$\pi = [\pi_J, \pi_A, \pi_P]$$

be the Perron vector of P, that is

$$\pi^T = \pi^T P,$$

The rank value of each subject is the value of the corresponding entry in π .

Let P be a stochastic matrix "obtained" from S.

Working with a stochastic matrix guarantees that the amount of importance in the system is neither created nor destroyed.

Let

$$\pi = [\pi_J, \pi_A, \pi_P]$$

be the Perron vector of P, that is

$$\pi^T = \pi^T P,$$

The rank value of each subject is the value of the corresponding entry in π .

Let P be a stochastic matrix "obtained" from S.

Working with a stochastic matrix guarantees that the amount of importance in the system is neither created nor destroyed.

Let

$$\pi = [\pi_J, \pi_A, \pi_P]$$

be the Perron vector of *P*, that is

$$\pi^T = \pi^T P$$
,

The rank value of each subject is the value of the corresponding entry in π .

4 D > 4 B > 4 B > 4 B >

Existence and uniqueness of the Perron vector is forced into P.

We make the nine blocks row-stochastic

We combine them into a larger stochastic matrix adding weights.

Existence and uniqueness of the Perron vector is forced into P.

We make the nine blocks row-stochastic

We combine them into a larger stochastic matrix adding weights.

Existence and uniqueness of the Perron vector is forced into P.

We make the nine blocks row-stochastic

We combine them into a larger stochastic matrix adding weights.

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} & \gamma_{1,3}A_{1,3} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} & \gamma_{2,3}A_{2,3} \\ \gamma_{3,1}A_{3,1} & \gamma_{3,2}A_{3,2} & \gamma_{3,3}A_{3,3} \end{bmatrix}$$

```
\pi_{J} = \gamma_{1,1}\pi_{J}A_{1,1} + \gamma_{2,1}\pi_{A}A_{2,1} + \gamma_{3,1}\pi_{P}A_{3,} 

\pi_{A} = \gamma_{1,2}\pi_{J}A_{1,2} + \gamma_{2,2}\pi_{A}A_{2,2} + \gamma_{3,2}\pi_{P}A_{3,} 

\pi_{P} = \gamma_{1,3}\pi_{J}A_{1,3} + \gamma_{2,3}\pi_{A}A_{2,3} + \gamma_{3,3}\pi_{P}A_{3,}
```


$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} & \gamma_{1,3}A_{1,3} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} & \gamma_{2,3}A_{2,3} \\ \gamma_{3,1}A_{3,1} & \gamma_{3,2}A_{3,2} & \gamma_{3,3}A_{3,3} \end{bmatrix}$$

$$\begin{array}{ll} \pi_J &= \gamma_{1,1} \pi_J A_{1,1} + \gamma_{2,1} \pi_A A_{2,1} + \gamma_{3,1} \pi_P A_{3,1} \\ \pi_A &= \gamma_{1,2} \pi_J A_{1,2} + \gamma_{2,2} \pi_A A_{2,2} + \gamma_{3,2} \pi_P A_{3,2} \\ \pi_P &= \gamma_{1,3} \pi_J A_{1,3} + \gamma_{2,3} \pi_A A_{2,3} + \gamma_{3,3} \pi_P A_{3,3} \end{array}$$

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} & \gamma_{1,3}A_{1,3} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} & \gamma_{2,3}A_{2,3} \\ \gamma_{3,1}A_{3,1} & \gamma_{3,2}A_{3,2} & \gamma_{3,3}A_{3,3} \end{bmatrix}$$

$$\pi_{J} = \gamma_{1,1}\pi_{J}A_{1,1} + \gamma_{2,1}\pi_{A}A_{2,1} + \gamma_{3,1}\pi_{P}A_{3,1}
\pi_{A} = \gamma_{1,2}\pi_{J}A_{1,2} + \gamma_{2,2}\pi_{A}A_{2,2} + \gamma_{3,2}\pi_{P}A_{3,2}
\pi_{P} = \gamma_{1,3}\pi_{J}A_{1,3} + \gamma_{2,3}\pi_{A}A_{2,3} + \gamma_{3,3}\pi_{P}A_{3,3}$$

The three class model

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} & \gamma_{1,3}A_{1,3} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} & \gamma_{2,3}A_{2,3} \\ \gamma_{3,1}A_{3,1} & \gamma_{3,2}A_{3,2} & \gamma_{3,3}A_{3,3} \end{bmatrix}$$

$$\pi_{J} = \gamma_{1,1}\pi_{J}A_{1,1} + \gamma_{2,1}\pi_{A}A_{2,1} + \gamma_{3,1}\pi_{P}A_{3,1}$$

$$\pi_{A} = \gamma_{1,2}\pi_{J}A_{1,2} + \gamma_{2,2}\pi_{A}A_{2,2} + \gamma_{3,2}\pi_{P}A_{3,2}$$

$$\pi_{P} = \gamma_{1,3}\pi_{J}A_{1,3} + \gamma_{2,3}\pi_{A}A_{2,3} + \gamma_{3,3}\pi_{P}A_{3,3}$$

The weights γ_{ij} can be used to tune how much of their importance each player transfers to the subject.

Let

$$\mu_J = \sum_{i=1}^{n_J} \pi_i, \quad \mu_A = \sum_{i=n_J+1}^{n_J+n_A} \pi_i, \quad \mu_P = \sum_{i=n_J+n_A+1}^{n_J+n_A+n_P} \pi_i,$$

be the "energy" of each class

From the Coupling Theorem $\mu=[\mu_J,\mu_A,\mu_P]$, is such that $\mu^T=\mu^T\,\Gamma.$

How to choose Γ?

From the Coupling Theorem $\mu=[\mu_J,\mu_A,\mu_P]$, is such that $\mu^T=\mu^T\,\Gamma.$

How to choose Γ ?

Uniform weights, i.e.

$$\Gamma = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right],$$

we get $\mu = 1/3[1, 1, 1]$.

If $\mu=1/3\,[1,1,1]$, the mean value of a generic subject in a class is

$$\mathcal{M}_C = 1/3 \frac{1}{n_C}, \quad C \in J, A, P$$

In practical situation $n_J << n_A << n_P$, hence

$$\mathcal{M}_J >> \mathcal{M}_A >> \mathcal{M}_P$$
.

Journals are much more important than papers and authors!

If $\mu = 1/3 [1, 1, 1]$, the mean value of a generic subject in a class is

$$\mathcal{M}_C = 1/3 \frac{1}{n_C}, \quad C \in J, A, P$$

In practical situation $n_J \ll n_A \ll n_P$, hence

$$\mathcal{M}_J >> \mathcal{M}_A >> \mathcal{M}_P$$
.

Journals are much more important than papers and authors!

If $\mu = 1/3 [1, 1, 1]$, the mean value of a generic subject in a class is

$$\mathcal{M}_C = 1/3 \frac{1}{n_C}, \quad C \in J, A, P$$

In practical situation $n_J \ll n_A \ll n_P$, hence

$$\mathcal{M}_J >> \mathcal{M}_A >> \mathcal{M}_P$$
.

Journals are much more important than papers and authors!

Balancing weights

We want to find a possible Γ such that

$$\mathcal{M}_J = \mathcal{M}_A = \mathcal{M}_P$$
.

It is easy to prove that

$$\Gamma = \frac{1}{N} \begin{bmatrix} n_J & n_A & n_P \\ n_J & n_A & n_P \\ n_J & n_A & n_P \end{bmatrix}$$

is such that

$$\mu = 1/N\left[n_J, n_A, n_P\right]$$

and hence $\mathcal{M}_J = \mathcal{M}_A = \mathcal{M}_P$.

Balancing weights

We want to find a possible Γ such that

$$\mathcal{M}_J = \mathcal{M}_A = \mathcal{M}_P.$$

It is easy to prove that

$$\Gamma = \frac{1}{N} \begin{bmatrix} n_J & n_A & n_P \\ n_J & n_A & n_P \\ n_J & n_A & n_P \end{bmatrix}$$

is such that

$$\mu = 1/N[n_J, n_A, n_P],$$

and hence $\mathcal{M}_J = \mathcal{M}_A = \mathcal{M}_P$.

The rank value of each subject is obtained combining too many ingredients!

