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Abstract. Substitutability and interchangeability in constraint satisfac-
tion problems (CSPs) have been used as a basis for search heuristics, so-
lution adaptation and abstraction techniques. In this paper, we consider
how the same concepts can be extended to soft constraint satisfaction
problems (SCSPs).
We introduce two notions: threshold α and degradation δ for substi-
tutability and interchangeability, (αsubstitutability/interchangeability

and δsubstitutability/interchangeability respectively). We show that
they satisfy analogous theorems to the ones already known for hard
constraints. In αinterchangeability, values are interchangeable in any
solution that is better than a threshold α, thus allowing to disregard
differences among solutions that are not sufficiently good anyway. In
δinterchangeability, values are interchangeable if their exchange could
not degrade the solution by more than a factor of δ.
We give efficient algorithms to compute (δ/α)interchangeable sets of
value for a large class of SCSPs.

1 Introduction

Substitutability and interchangeability in CSPs have been introduced by
Freuder ([1]) in 1991 with the intention of improving search efficiency for solving
CSP.

Interchangeability has since found other applications in abstraction frame-
works ([2, 3, 1, 4]) and solution adaptation ([5, 6]). One of the difficulties with
interchangeability has been that it does not occur very frequently.

In many practical applications, constraints can be violated at a cost, and
solving a CSP thus means finding a value assignment of minimum cost. Various
frameworks for solving such soft constraints have been proposed [7, 8, 9, 10,
11, 12, 13, 14]. The soft constraints framework of c-semirings [12, 14] has been
shown to express most of the known variants through different instantiations of
its operators, and this is the framework we are considering in this paper.



The most straightforward generalization of interchangeability to soft CSP
would require that exchanging one value for another does not change the qual-
ity of the solution at all. This generalization is likely to suffer from the same
weaknesses as interchangeability in hard CSP, namely that it is very rare.

Fortunately, soft constraints also allow weaker forms of interchangeabil-
ity where exchanging values may result in a degradation of solution quality
by some measure δ. By allowing more degradation, it is possible to increase
the amount of interchangeability in a problem to the desired level. We define
δ
substitutability/interchangeability as a concept which ensures this quality. This
is particularly useful when interchangeability is used for solution adaptation.

Another use of interchangeability is to reduce search complexity by group-
ing together values that would never give a sufficiently good solution. In

αsubstitutability/interchangeability, we consider values interchangeable if they
give equal solution quality in all solutions better than α, but possibly different
quality for solutions whose quality is ≤ α.

Just like for hard constraints, full interchangeability is hard to com-
pute, but can be approximated by neighbourhood interchangeability which
can be computed efficiently and implies full interchangeability. We define the
same concepts for soft constraints, and prove that neighborhood implies full
(δ/α)substitutability/interchangeability. We give algorithms for neighborhood
(δ/α)substitutability/interchangeability, and we prove several interesting and
useful properties of the concepts.

Finally, we give two examples where (δ/α)interchangeability is applied to
solution adaptation in configuration problems with two different soft constraint
frameworks: delay and cost constraints, and show its usefulness in these practical
contexts.

2 Background

2.1 Soft CSPs

Several formalization of the concept of soft constraints are currently available.
In the following, we refer to the one based on c-semirings [14, 15, 12, 16], which
can be shown to generalize and express many of the others [17, 18].

A soft constraint may be seen as a constraint where each instantiations of
its variables has an associated value from a partially ordered set which can be
interpreted as a set of preference values. Combining constraints will then have
to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (×) and comparison (+) of tuples
of values and constraints. This is why this formalization is based on the concept
of c-semiring, which is just a set plus two operations.

Semirings. A semiring is a tuple 〈A,+,×,0,1〉 such that:

– A is a set and 0,1 ∈ A;
– + is commutative, associative and 0 is its unit element;
– × is associative, distributes over +, 1 is its unit element and 0 is its absorbing

element.



A c-semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 is its
absorbing element and × is commutative. Let us consider the relation ≤S over
A such that a ≤S b iff a+ b = b. Then it is possible to prove that (see [12]):

– ≤S is a partial order;
– + and × are monotone on ≤S ;
– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a+ b = lub(a, b).

Moreover, if × is idempotent, then: + distribute over ×; 〈A,≤S〉 is a complete
distributive lattice and × its glb. Informally, the relation ≤S gives us a way to
compare semiring values and constraints. In fact, when we have a ≤S b, we will
say that b is better than a. In the following, when the semiring will be clear from
the context, a ≤S b will be often indicated by a ≤ b.

Constraint Problems. Given a semiring S = 〈A,+,×,0,1〉 and an ordered set
of variables V over a finite domain D, a constraint is a function which, given an
assignment η : V → D of the variables, returns a value of the semiring.

By using this notation we define C = η → A as the set of all possible con-
straints that can be built starting from S, D and V .

Note that in this functional formulation, each constraint is a function (as
defined in [16]) and not a pair (as defined in [15, 12]). Such a function involves
all the variables in V , but it depends on the assignment of only a finite subset
of them. We call this subset the support of the constraint.

Consider a constraint c ∈ C. We define his support as supp(c) = {v ∈ V |
∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association
v := d1 (that is the operator [ ] has precedence over application).

A soft constraint satisfaction problem is a pair 〈C, con〉 where con ⊆ V
and C is a set of constraints: con is the set of variables of interest for the
constraint set C, which however may concern also variables not in con. Note
that a classical CSP is a SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉. Fuzzy CSPs [19] can instead be modeled in the
SCSP framework by choosing the c-semiring SFCSP = 〈[0, 1],max,min, 0, 1〉.
Many other “soft” CSPs (Probabilistic, weighted, . . . ) can be modeled by
using a suitable semiring structure (Sprob = 〈[0, 1],max,×, 0, 1〉, Sweight =
〈R,min,+, 0,+∞〉, . . . ).

Fig. 1 shows the graph representation of a fuzzy CSP. Variables and con-
straints are represented respectively by nodes and by undirected (unary for c1

and c3 and binary for c2) arcs, and semiring values are written to the right of the
corresponding tuples. The variables of interest (that is the set con) are repre-
sented with a double circle. Here we assume that the domain D of the variables
contains only elements a and b.
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Fig. 1: A fuzzy CSP.

Combining and projecting soft constraints. Given the set C, the combination
function ⊗ : C× C→ C is defined as (c1 ⊗ c2)η = c1η ×S c2η.

In words, combining two constraints means building a new constraint involv-
ing all the variables of the original ones, and which associates to each tuple of
domain values for such variables a semiring element which is obtained by mul-
tiplying the elements associated by the original constraints to the appropriate
subtuples. It is easy to verify that supp(c1 ⊗ c2) ⊆ supp(c1) ∪ supp(c2).

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over V −{v},
written c ⇓(V−{v}) is the constraint c′ s.t. c′η =

∑

d∈D cη[v := d]. Informally,
projecting means eliminating some variables from the support. This is done by
associating to each tuple over the remaining variables a semiring element which is
the sum of the elements associated by the original constraint to all the extensions
of this tuple over the eliminated variables. In short, combination is performed
via the multiplicative operation of the semiring, and projection via the additive
one.

Solutions. The solution of an SCSP P = 〈C, con〉 is the constraint Sol(P ) =
(
⊗

C) ⇓con. That is, we combine all constraints, and then project over the
variables in con. In this way we get the constraint with support con which is
“induced” by the entire SCSP. Note that when all the variables are of interest
we do not need to perform any projection.

For example, the solution of the fuzzy CSP of Fig. 1 associates a semiring
element to every domain value of variable x. Such an element is obtained by
first combining all the constraints together. For instance, for the tuple 〈a, a〉
(that is, x = y = a), we have to compute the minimum between 0.9 (which is
the value assigned to x = a in constraint c1), 0.8 (which is the value assigned
to 〈x = a, y = a〉 in c2) and 0.9 (which is the value for y = a in c3). Hence,
the resulting value for this tuple is 0.8. We can do the same work for tuple
〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8,
〈c, b〉 → 0.2 and 〈c, c〉 → 0.2. The obtained tuples are then projected over variable
x, obtaining the solution 〈a〉 → 0.8, 〈b〉 → 0.1 and 〈c〉 → 0.8.

2.2 Interchangeability

Interchangeability in constraint networks has been first proposed by Freuder
[20] to capture equivalence among values of a variable in a discrete constraint



satisfaction problem. Value v = a is substitutable for v = b if for any solution
where v = a, there is an identical solution except that v = b. Values v = a and
v = b are interchangeable if they are substitutable both ways.

Fig. 2 shows a CSP (taken from [21]) that illustrates interchangeability.
PSfrag replacements
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Fig. 2: An example of CSP with interchangeable values.

Full Interchangeability considers all constraints in the problem and checks if
a values a and b for a certain variable v can be interchanged without affecting
the global solution. In the CSP in Fig. 2, d, e and f are fully interchangeable for
v4. This is because we inevitably have v2 = d, which implies that v1 cannot be
assigned d in any consistent global solution. Consequently, the values d, e and f
can be freely permuted for v4 in any global solution.

There is no efficient algorithm for computing full interchangeability, as it
may require computing all solutions. The localized notion of Neighbourhood In-
terchangeability considers only the constraints involving a certain variable v. In
this notion, a and b are neighbourhood interchangeable if for every constraint
involving v, for every tuple that admits v = a there is otherwise an identical
tuple that admits v = b, and vice-versa. In Fig. 2, e and f are neighbourhood
interchangeable for v4.

Freuder showed that neighbourhood interchangeability always implies full
interchangeability and can therefore be used as an approximation. He also pro-
vided an efficient algorithm for computing neighborhood interchangeability [20],
and investigated its use for preprocessing CSP before searching for solutions [22].

3 Interchangeability in Soft CSPs

In soft CSPs, there are not any crisp notion of consistency. In fact, each tuple
is a possible solution, but with different level of preference. Therefore, in this
framework, the notion of interchangeability become finer: to say that values a
and b are interchangeable we have also to consider the assigned semiring level.

More precisely, if a domain element a assigned to variable v can be substi-
tuted in each tuple solution with a domain element b without obtaining a worse
semiring level we say that b is full substitutable for a.

Definition 1 (Full Substitutability (FS)). Consider two domain values b
and a for a variable v, and the set of constraints C; we say that b is Full Sub-



stitutable for a on v (b ∈ FS v(a)) if and only if
⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

When we restrict this notion only to the set of constraints Cv that involve
variable v we obtain a local version of substitutability.

Definition 2 (Neighborhood Substitutability (NS)). Consider two do-
main values b and a for a variable v, and the set of constraints Cv involving
v; we say that b is neighborhood substitutable for a on v (b ∈ NS v(a)) if and
only if

⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

When the relations hold in both directions, we have the notion of
Full/Neighborhood interchangeability of b with a.

Definition 3 (Full and Neighborhood Interchangeability (FI and NI )).
Consider two domain values b and a, for a variable v, the set of all constraints C
and the set of constraints Cv involving v. We say that b is Full interchangeable
with a on v (FI v(a/b)) if and only if b ∈ FS v(a) and a ∈ FS v(b), that is

⊗

Cη[v := a] =
⊗

Cη[v := b].

We say that b is Neighborhood interchangeable with a on v (NI v(a/b)) if and
only if b ∈ NS v(a) and a ∈ NS v(b), that is

⊗

Cvη[v := a] =
⊗

Cvη[v := b].

This means that when a and b are interchangeable for variable v they can be
exchanged without affecting the level of any solution.

Two important results that hold in the crisp case can be proved to be
satisfied also with soft CSPs: transitivity and extensivity of interchangeabil-
ity/substituability.

Theorem 1 (Extensivity: NS =⇒ FS and NI =⇒ FI ). Consider two
domain values b and a, for a variable v, the set of constraints C and the set of
constraints Cv involving v. Then neighborhood (substituability) interchangeability
implies full (substituability) interchangeability.

Theorem 2 (Transitivity: b ∈ NS v(a), a ∈ NS v(c) =⇒ b ∈ NS v(c)). Con-
sider three domain values a, b and c, for a variable v. Then,

b ∈ NS v(a), a ∈ NS v(c) =⇒ b ∈ NS v(c).

Similar results hold for FS ,NI and FI .

As an example of interchangeability and substitutability consider the fuzzy
CSP represented in Fig. 1. The domain value c is neighborhood interchangeable
with a on x (NI v(a/b)); in fact, c1 ⊗ c2η[x := a] = c1 ⊗ c2η[x := c] for all η.

The domain values c and a are also neighborhood substitutable for b on x
({a, c} ∈ NS v(b)). In fact, for any η we have c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := c]
and c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := a].



3.1 Degradations and Thresholds

In soft CSPs, any value assignment is a solution, but may have a very bad
preference value. This allows broadening the original interchangeability concept
to one that also allows degrading the solution quality when values are exchanged.
We call this δinterchangeability, where δ is the degradation factor.

When searching for solutions to soft CSP, it is possible to gain efficiency by
not distinguishing values that could in any case not be part of a solution of
sufficient quality. In αinterchangeability, two values are interchangeable if they
do not affect the quality of any solution with quality better than α. We call α
the threshold factor.

Both concepts can be combined, i.e. we can allow both degradation and limit
search to solutions better than a certain threshold (δαinterchangeability).

By extending the previous definitions we can define thresholds and degrada-
tion version of full/neighbourhood substitutability/interchangeability.

Definition 4 (δFull Substitutability (δFS)). Consider two domain values b

and a for a variable v. Value b is δFull Substitutable for a on v (b ∈
δ
FS v(a))

if and only if for all assignments η,

⊗

Cη[v := a]×S δ ≤S

⊗

Cη[v := b]

Definition 5 (αFull Substitutability (αFS)). Consider two domain values b
and a, for a variable v, the set of constraints C and a semiring level α; we say
that b is αfull substitutable for a on v (b ∈ αFS v(a)) if and only if

⊗

Cη[v := a] ≥ α =⇒
⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

Similarly all the notion of δ/αNeighborhood Substitutability (δ/αNS ) and

of
δ
/αFull/Neighborhood Interchangeability (

δ
/αFI /NI ) can be defined (just

considering the relation in both directions and changing C with Cv).
As an example consider Fig. 1. The domain values c and b for variable y

are 0.2Neighborhood Interchangeable. In fact, the tuple involving c and b only
differ for the tuple 〈b, c〉 that has value 0.1 and for the tuple 〈b, b〉 that has value
0. Since we are interested only to solutions greater than 0.2, these tuples are
excluded from the match.

The meaning of degradation assume instead different meanings when instan-
tiated to different semirings:

1. fuzzy CSP: b ∈
δ
FS v(a) gets instantiated to:

min(minc∈C(cη[v := a]), δ) ≤ minc∈C(cη[v := b])

which means that changing v := a to v := b does not make the solution worse
than before or worse than δ. In the practical case where we want to only
consider solutions with a quality better than δ, this means that substitution
will never put a solution out of this class.



2. weighted CSP: b ∈
δ
FS v(a) gets instantiated to:

∑

c∈C

cη[v := a] + δ ≥
∑

c∈C

cη[v := b]

which means that the penalty for the solution does not increase by more than
a factor of δ. This allows for example to express that we would not want to
tolerate more than δ in extra cost. Note, by the way, that ≥S translates to
≤ in this version of the soft CSP.

3. probabilistic CSP: b ∈
δ
FS v(a) gets instantiated to:

(
∏

c∈C

cη[v := a]) · δ ≤
∏

c∈C

cη[v := b]

which means that the solution with v = b is not degraded by more than a
factor of δ from the one with v = a.

4. crisp CSP: b ∈
δ
FS v(a) gets instantiated to:

(
∧

c∈C

cη[v := a]) ∧ δ ⇒ (
∧

c∈C

cη[v := b])

which means that when δ = true, whenever a solution with v = a satisfies
all constraints, so does the same solution with v = b. When δ = false, it is
trivially satisfied (i.e. δ is too loose a bound to be meaningful).

3.2 Properties of Degradations and Thresholds

As it is very complex to determine full interchangeability/substitutability, we
start by showing the fundamental theorem that allows us to approximate
δ
/αFS/FI by

δ
/αNS/NI :

Theorem 3 (Extensivity). δneighbourhood substitutability implies δfull sub-
stitutability and αneighbourhood substitutability implies αfull substitutability.

This theorem is of fundamental importance since it gives us a way to approx-
imate full interchangeability by neighborhood interchangeability which is much
less expensive to compute.

Theorem 4 (Transitivity using thresholds and degradations). Consider
three domain values a, b and c, for a variable v. Then,

b ∈
δ1NS v(a), a ∈

δ2NS v(c) =⇒ b ∈
δ1×δ2NS v(c) and

b ∈ α1
NS v(a), a ∈ α2

NS v(c) =⇒ b ∈ α1+α2
NS v(c)

Similar results holds for FS ,NI ,FI .

In particular when α1 = α2 = α and δ1 = δ2 = δ we have:

Corollary 1 (Transitivity and equivalence classes). Consider three do-
main values a, b and c, for a variable v. Then,



– Threshold interchangeability is a transitive relation, and partitions the set of
values for a variable into equivalence classes, that is

b ∈ αNI v(a), a ∈ αNI v(c) =⇒ b ∈ αNI v(c)

– If the ×S-operator is idempotent, then degradation interchangeability is a
transitive relation, and partitions the set of values for a variable into equiv-
alence classes, that is

b ∈
δ
NI v(a), a ∈

δ
NI v(c) =⇒ b ∈

δ
NI v(c)

By using degradations and thresholds we have a nice way to decide when
two domain values for a variable can be substituable/interchangeable. In fact,
by changing the α or δ parameter we can obtain different results.

In particular we can show that an extensivity results for the parameters hold.
In fact, it is straightforward to notice that if two value are δ

αsubstitutable, they

have to be also δ′

α′substitutable for any δ′ ≤ δ and α′ ≥ α.

Theorem 5 (Extensivity for α and δ). Consider two domain values a and
b, for a variable v, two thresholds α and α′ s.t. α ≤ α′ and two degradations δ
and δ′ s.t. δ ≥ δ′. Then,

a ∈
δ
NS v(b) =⇒ a ∈

δ′

NS v(b) and a ∈ αNS v(b) =⇒ a ∈ α′NS v(b)

Similar results holds for FS ,NI ,FI .

As a corollary when threshold and degradation are 0 or 1 we have some
special results.

Corollary 2. When α = 1 and δ = 0, we obtain the non approximated versions
of NS. When α = 0 and δ = 1, all domain values are substitutable.

∀a, b, a ∈
1
NS v(b) and a ∈

0
NS v(b) ⇐⇒ a ∈ NS(b)

∀a, b, a ∈
0
NS v(b) and a ∈

1
NS v(b) ⇐⇒ a ∈ NS(b)

Similar results holds for FS ,NI ,FI .

3.3 Computing δ/α-substitutability/interchangeability

As it is very complex to determine full interchangeability/substitutability,
the result of Theorem 1 is fundamental since it gives us a way to approx-
imate full substituability/interchangeability by neighbourhood substituabil-
ity/interchangeability which is much less costly to compute.

The most general algorithm for neighborhood substituabil-
ity/interchangeability in the soft CSP framework is to check for each pair
of values whether the condition given in the definition holds or not. This
algorithm has a time complexity exponential in the size of the neighbourhood



and quadratic in the size of the domain (which may not be a problem when
neighbourhoods are small).

Better algorithms can be given when the times operator of the semiring
is idempotent. In this case, instead of considering the combination of all the
constraint Cv involving a certain variable v, we can check the property we need
(NS/NI and their relaxed version

δ
αNS/NI ) on each constraint itself.

Theorem 6. Consider two domain values b and a, for a variable v, and the set
of constraints Cv involving v. If the times operator of the semiring is idempotent
we have:

– if ∀c ∈ Cv we have cη[v := a] ≤S cη[v := b], then b ∈ NS v(a);

– if ∀c ∈ Cv we have cη[v := a]×S δ ≤S cη[v := b], then b ∈
δ
NS v(a);

– if ∀c ∈ Cv we have cη[v := a] ≥ α =⇒ cη[v := a] = cη[v := b], then
b ∈ αNS v(a).

By using Theorem 6 (and Corollary 1 for δ/αNS ), we can less expensively
find domain values that are substituable/interchangeable. Algorithm 1 describes
an algorithm that can be used to find domain values that are neighborhood
interchangeable.

1: Create the root of the discrimination tree for variable v
2: Let Cv = {c ∈ C | v ∈ supp(c)}
3: Let Dvi

= {the set of domain values dvi
for variable vi}

4: for all dvi
∈ Dvi

do
5: for all c ∈ Cv do
6: for all assignments ηc to variables in supp(c) do
7: compute the semiring level β = cηc[vi := dvi

],
8: if there exists a child node corresponding to 〈c = ηc, β〉 then
9: move to it,

10: else
11: construct such a node and move to it.
12: Add vi, {dvi

} to annotation of the node,
13: Go back to the root of the discrimination tree.

Algorithm 1: Algorithm to compute neighbourhood interchangeable sets.

The algorithm is really similar to that defined by Freuder in [20] and when we
consider the semiring for classical CSPs SCSP = 〈{false, true},∨,∧, false, true〉
the same result is computed. In fact, when only binary constraints are used,
instead of selecting a constraint c ∈ C = {c | vi ∈ supp(c)}, we can just select a
variable vj ∈ Neigh({vi}) (as in the original algorithm).

To compute the relaxed versions of NI , the algorithm has to be slightly
modified as follows. For αNI , the algorithm needs to only consider tuples whose
semiring value is lower than α, as shown in Algorithm 2. For δNI , the algorithm
needs to only consider tuples that can cause a degradation by more than δ, as
shown in Algorithm 3.



...
6: for all assignments ηc to variables in supp(c) s.t. α ≤S cηc[vi := dvi

] do
7: compute the semiring level β = cηc[vi := dvi

],

...

Algorithm 2: Algorithm to compute neighbourhood α-interchangeable sets.

...
6: for all assignments ηc to variables in supp(c) do
7: compute the semiring level β = cηc[vi := dvi

],
8: if there exists a child node corresponding to 〈c = ηc, β

′, β̄〉 with β̄ ≤
β ∧ β × δ ≤ β′ then

9: move to it and change the label as 〈c = ηc, glb(β
′, β), β̄ + (β × δ)〉,

10: else
11: construct the node 〈c = ηc, β, β × δ〉 and move to it.
...

Algorithm 3: Algorithm to compute neighbourhood δ-interchangeable sets.

4 Applications

M:{s,m,l} E:{s,l,d}

T:{a,m} A:{y,n}

C1

C2

C4
C3

Fig. 3: Example of a CSP modeling car configuration. It has 4 variables: M = model,
T = transmission, A = Air Conditioning, E = Engine.

Fig. 3 shows the graph representation of a CSP which might represent a car
configuration problem.

A product catalog might represent the available choices through a soft CSP.
With different choices of semiring, the CSP of Fig. 3 can represent different
problem formulations:

– Example1 - for optimizing the cost of the product, a representation as a
weighted CSP might be most appropriate. Here, the semiring models the
cost of the different options and their integration with the others, using the



semiring: < <+,min,+,+∞, 0 >. We might have the constraints:

C1 =

M
s m l

T a ∞ 5 3
m 2 3 50

C2 =

M
s m l

s 3 5 ∞
E l 30 3 3

d 5 5 ∞

C3 =

E
s l d

A y 5 2 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 5

and also unary constraints CM , CE , CT and CA that model the cost of the
components:

CM =
s m l
10 20 30

CE =
s l d
10 20 20

CT =
a m
15 10

CA =
y n
10 0

– Example2 - another optimization criterion might be the time it takes to build
the car. Delay is determined by the time it takes to obtain the components
and to obtain reserve the resources for the assembly process. For the delivery
time of the car, only the longest delay would matter. This could be modelled
by the semiring: < <+,min,max,+∞, 0 >, with the binary constraints:

C1 =

M
s m l

T a ∞ 3 4
m 2 4 ∞

C2 =

M
s m l

s 2 3 ∞
E l 30 3 3

d 2 3 ∞

C3 =

E
s l d

A y 5 4 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 3

and unary constraints CM , CE , CT and CA that model the time to obtain
the components:

CM =
s m l
2 3 3

CE =
s l d
3 2 3

CT =
a m
1 2

CA =
y n
3 0

Let’s now consider the variable E of the time optimization example, and
let’s compute

δ
/αNS/NI between its values. Fig. 4 shows how the occurrence of

δ/αNS change depending on δ and α degrees.
We can notice that when δ takes values 0 (the 1 of the optimization semiring)

small degradation is allowed in the CSP tuples when the values are substituted;
thus only value s can be substituted for value d. As δ increases in value (or
decreases from the semiring point of view) higher degradation of the solutions
is allowed and thus the number of substitutabilities increase with it.

In the second part of the Fig. 4 we can see that for α = 0 as there are no
solutions better than α, there no matter how one choose the values and thus all
the values are α-interchangeable. For a certain threshold (α = 4) values s and d
are αinterchangeable and value l can substitute values s and d. In this example
for an α ≥ 4 only s can substitute d. We calculate now the δ/αsubstitutability
between values of variable E for the weighted CSP example. Fig. 4 shows how
occurrence of δ/αsubstitutability among values of variable E change w.r.t. δ and
α. We can see that when δ takes high values of the semiring, small degradation



s l s s sl l l

 = 0  = 7  = 30  =  

s s s sl l l l

 = 0  = 4  = 14  =  

d d d d

d d d d

Fig. 4: Example of how δ-substitutability and α-substitutability varies in a soft CSP
over the values of variable E from Fig. 3.

s l s s sl l l

 = 0  = 5  = 27  =  

s s s sl l l l

 = 0  = 15  = 37  =  

d d d d

d d d d

Fig. 5: Example of how δ-substitutability and α-substitutability varies in a weighted
CSP over the values of variable E from Fig. 3.



in the solution is allowed. Thus for δ = 0 there is no substitutability between
the values of variable E. As δ decreases in the values of the semiring, here goes
to ∞ - the cost increases, there is more degradation allowed in the solution and
thus more δsubstitutability among the values of the variable E.

For high semiring values of α as there are no good solutions, all the values
are interchangeable. In the example in the Fig. 4 only value s is αsubstitutable
for value d of variable E.

We will illustrate now how to use Algorithm 2 to compute αinterchangeability
for the variable M of Fig. 3. Fig. 6 show the discrimination tree for values of
variable M when α = 3 and α = 6. We can see that values m and l for variable
M are 3interchangeable whilst there are no interchangeabilities for α = 6 .
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=  3 =  6
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Fig. 6: Example of a search of α-interchangeability computing by the use of discrimi-
nation trees.

5 Conclusions

Interchangeability in CSPs has found many applications for problem abstraction
and solution adaptation. In this paper, we have shown how the concept can be
extended to soft CSPs in a way that maintains the attractive properties already
known for hard constraints.

The two parameters α and δ allow us to express a wide range of practical
situations. The threshold α is used to eliminate distinctions that would not
interest us anyway, while the allowed degradation δ specifies how precisely we
want to optimize our solution. We are now conducting a detailed investigation on
how variation of these parameters affects interchangeability on random problems.
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