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Abstract. A formal definition of confidentiality is developed using soft
(rather than crisp) constraints. The goal is no longer considered as a
mere yes/no property as in the existing literature, but gains an extra
parameter, the security level. The higher the security level, the stronger
the goal. For example, different messages may enjoy different levels of
confidentiality, and the same message may enjoy different levels of confi-
dentiality for different principals. On this basis, the notion of indeliberate
confidentiality attack can be captured, whereby a principal learns some
message not meant for him because of someone else’s tampering. The
analysis of Lowe’s attack on the Needham-Schroeder protocol reveals a
new weakness.

1 Introduction

A major goal of security protocols is confidentiality, confirming that a message
remains undisclosed to malicious principals. However, it must be stressed that
different messages require “specific degrees of protection against disclosure” [11].
For example, a user password requires higher protection than a session key,
which is only used for a single protocol session. Intuitively, a password ought to
be “more confidential” than a session key.
Confidentiality has been essentially formalised as a mere “yes or no” property

thus far, so one can just claim that a key is confidential or not. The motivation
for our research was studying a finer formal notion for the goal. We have devel-
oped the notion of l-confidentiality, where l is the security level signifying the
strength with which the goal is met. The security level belongs to the career set
of a semiring, as we adopt semiring-based soft constraint programming. Each
principal assigns his own security level to each message — different levels to
different messages — expressing the principal’s trust on the message. This lets
us formalise that different levels of a goal are granted to different principals.



The framework presented here extends and supersedes an existing kernel [1,
2]. We can conduct a preliminary analysis to study in detail what goals the
protocol achieves in ideal conditions where no principal acts maliciously. If we
are interested, we can also conduct an empirical analysis to study what goals the
protocol achieves on a specific network configuration arising from the protocol
execution in the real world. We have observed that Lowe’s attack by C against
B (after A initiated with C) causes the byproduct that B unexpectedly receives
a nonce he is not entitled to know. It can be concluded that B indeliberately
mounted a confidentiality attack on the nonce. We have discovered that B can
later exploit that nonce to mount an attack against C. This outline anticipates
that our notation is uniform: there is not one attacker only, but all principals
who perform, either deliberately or not, some operation that is not admitted by
the protocol policy are attackers. Our use of a semiring is loosely inspired to
Denning’s use of a lattice to characterising secure flows of information through
computer systems [7]. The idea of using levels to formalise access rights is in fact
due to her. Denning too sees an attack whenever an object is assigned a label
worse than that initially specified, rather than relying on a single attacker.

In the following, we indicate by {|m|}K the ciphertext obtained encrypting
message m with key K, and avoid external brackets of concatenated messages.
We assume the reader to be familiar with the basic concepts of cryptography. Af-
ter an outline on semiring-based SCSPs (Section 2), our framework for protocol
analysis is described (Section 3). The paper continues with the presentation of
the crucial SCSPs for analysing security protocols (Section 4), and with the defi-
nitions concerning confidentiality (Section 5). Then, an empirical analysis of the
Needham-Schroeder protocol (Section 6) highlights the possible consequences of
an indeliberate confidentiality attack. Finally, some conclusions (Section 7) are
given.

2 Soft constraints

Several formalisations of the concept of soft constraints are currently available
[18, 8, 10]. In the following, we refer to that by Bistarelli et al., which is based on
c-semirings [4, 5]. It can be shown to generalise and express a number of other
approaches to soft constraints.

A soft constraint may be seen as a constraint where each instantiation of
its variables has an associated value from a partially ordered set. Combining
constraints will then have to take into account such additional values, and thus
the formalism has also to provide suitable operations for combination (×) and
comparison (+) of tuples of values and constraints. This is why this formalisation
is based on the concept of semiring, which is just a set plus two operations.

A semiring is a tuple 〈A,+,×,0,1〉 such that: 1. A is a set, the career set,
and 0,1 ∈ A; 2. + is commutative, associative and 0 is its unit element; 3. ×
is associative, distributes over +, 1 is its unit element and 0 is its absorbing
element.



A c-semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 as its
absorbing element and × is commutative. Let us consider the relation ≤S over
A such that a ≤S b iff a+ b = b. Then it is possible to prove that (see [4]): 1. ≤S

is a partial order; 2. + and × are monotone on ≤S ; 3. 0 is its minimum and 1 its
maximum; 4. 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a+ b = lub(a, b).
Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is a complete
distributive lattice and × its glb.
Informally, the relation ≤S gives us a way to compare (some of the) tuples

of values and constraints. In fact, when we have a ≤S b, we will say that b is
better than a. Below, ≤S will be abbreviated by ≤.
A constraint system is a tuple CS = 〈S,D,V〉 where S is a c-semiring, D is

a finite set (the domain of the variables) and V is an ordered set of variables.
Given a semiring S = 〈A,+,×,0,1〉 and a constraint system CS = 〈S,D,V〉, a
constraint is a pair 〈def , con〉 where con ⊆ V and def : D|con| → A. Therefore, a
constraint specifies a set of variables (the ones in con), and assigns to each tuple
of values of these variables an element of the semiring.
A soft constraint satisfaction problem (SCSP) is a pair 〈C, con〉 where con ⊆

V and C is a set of constraints: con is the set of variables of interest for the
constraint set C, which however may concern also variables not in con. Notice
that a classical constraint satisfaction problem (CSP) [14, 13] is an SCSP where
the chosen c-semiring is SCSP = 〈{false, true},∨,∧, false, true〉.
Fuzzy CSPs [8, 16, 17] can be modelled in the SCSP framework by choosing

the c-semiring: SFCSP = 〈[0, 1],max,min, 0, 1〉. Figure 1 shows the graph repre-
sentation of a fuzzy CSP. Variables and constraints are represented respectively
by nodes and by undirected (unary for c1 and c3 and binary for c2) arcs, and
semiring values are written to the right of the corresponding tuples. The vari-
ables of interest (that is the set con) are represented with a double circle. Here
we assume that the domain D of the variables contains only elements a and b.
In the following, we omit the double circle when all the variables are of interest.

X Y

PSfrag replacements

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1
〈b〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

c1

c2

c3

Fig. 1: A fuzzy CSP

Combining and projecting soft constraints. Given two constraints c1 =
〈def 1, con1〉 and c2 = 〈def 2, con2〉, their combination c1 ⊗ c2 is the constraint
〈def , con〉 defined by con = con1∪con2 and def (t) = def 1(t ↓

con
con1

)×def 2(t ↓
con
con2

),
where t ↓X

Y denotes the tuple of values over the variables in Y , obtained by pro-
jecting tuple t from X to Y . In words, combining two constraints means building
a new constraint involving all the variables of the original ones, and which asso-



ciates to each tuple of domain values for such variables a semiring element that
is obtained by multiplying the elements associated by the original constraints to
the appropriate subtuples.
Given a constraint c = 〈def , con〉 and a subset I of V, the projection of c

over I, written c ⇓I is the constraint 〈def
′, con′〉 where con′ = con ∩ I and

def ′(t′) =
∑

t/t↓con
I∩con

=t′ def (t). Informally, projecting means eliminating some

variables. This is done by associating to each tuple over the remaining variables
a semiring element that is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.
In short, combination is performed via the multiplicative operation of the

semiring, and projection via the additive operation.

Solutions. The solution of an SCSP problem P = 〈C, con〉 is the constraint
Sol(P) = (

⊗

C) ⇓con. That is, we combine all constraints, and then project over
the variables in con. In this way we get the constraint over con that is “induced”
by the entire SCSP. For example, each solution of the fuzzy CSP of Figure 1
consists of a pair of domain values (that is, a domain value for each of the two
variables) and an associated semiring element. Such an element is obtained by
looking at the smallest value for all the subtuples (as many as the constraints)
forming the pair. For example, for tuple 〈a, a〉 (that is, x = y = a), we have to
compute the minimum between 0.9 (which is the value for x = a), 0.8 (which is
the value for 〈x = a, y = a〉) and 0.9 (which is the value for y = a). Hence, the
resulting value for this tuple is 0.8.

3 Constraint Programming for Protocol Analysis

This section sets out by a gentle presentation of our framework and then de-
scribes it in more detail.
Using soft constraints requires the definition of a c-semiring. Our security

semiring (Section 3.1) is used to specify each principal’s trust on the security
of each message, that is each principal’s security level on each message. The
security levels range from the most secure (highest) level unknown to the least
secure (lowest) level public. Intuitively, if A’s security level on m is unknown,
then no principal (included A) knows m according to A, and, if A’s security
level on m is public, then all principals potentially know m according to A.
The lower A’s security level on m, the higher the number of principals that
A believes authorised to know m. For simplicity, we state no relation between
the granularity of the security levels and the number of principals authorised to
know m.
Using the security semiring, we define the network constraint system (Sec-

tion 3.2), which represents the computer network on which the security protocols
can be executed. The development of the principals’ security levels from manip-
ulation of the messages seen during the protocol sessions can be formalised as
a security entailment (Section 3.3), that is an entailment relation between con-
straints. Then, given a specific protocol to analyse, we represent its assumptions



in the initial SCSP (Section 4). All admissible network configurations arising
from the protocol execution as prescribed by the protocol designers can in turn
be represented in the policy SCSP (Section 4). We also explain how to represent
any network configuration arising from the protocol execution in the real world
as an imputable SCSP (Section 4).
Given a security level l, establishing whether our definitions of l-

confidentiality (Section 5) holds in an SCSP requires calculating the solution
of the imputable SCSP and projecting it on certain principals of interest. The
higher l, the stronger the goal.
By a preliminary analysis, we can study what goals the protocol achieves

in ideal conditions where no principal acts maliciously. We concentrate on the
policy SCSP, calculate its solution, and project it on a principal of interest. The
process yields the principal’s security levels, which allow us to study what goals
the protocol grants to that principal in ideal conditions, and which potential
attacks would be more serious than others for the principal. For example, an
attack on a message whose security level is private is more serious than an
attack on a message whose security level is public.
By an empirical analysis, we can study what goals the protocol achieves

on a specific network configuration arising from the protocol execution under
realistic threats. We concentrate on the corresponding imputable SCSP, calculate
its solution and project it on a principal of interest: we obtain the principal’s
security levels on all messages. Having done the same operations on the policy
SCSP, we can compare the outcomes. If some level from the imputable is lower
than the corresponding level from the policy, then there is an attack in the
imputable SCSP. In fact, some malicious operations contributing to the network
configuration modelled by the imputable SCSP have taken place so to lower some
of the security levels stated by the policy SCSP. It is important to stress that
any principal might have performed, either deliberately or not, those operations.

3.1 The Security Semiring

Let n be a natural number. We define the set L of security levels as follows:

L = {unknown, private, traded1, traded2, . . . , tradedn, public}

We introduce an additive operator, +sec, and a multiplicative operator,
×sec. To allow for a compact definition of the two operators, and to simplify
the following treatment, let us define a convenient double naming:
– unknown ≡ traded−1

– private ≡ traded0

– public ≡ tradedn+1

Let us consider an index i and an index j both belonging to the closed interval
[−1, n+ 1] of integers. We define +sec and×sec by the following axioms.
Ax. 1: tradedi +sec tradedj = tradedmax(i,j)

Ax. 2: tradedi ×sec tradedj = tradedmin(i,j)

The structure Ssec = 〈L,+sec,×sec, public, unknown 〉 can be easily verified
to be a c-semiring.



3.2 The Network Constraint System

We define a constraint system CSn = 〈Ssec,D,V〉 where:
– Ssec is the security semiring (Section 3.1);
– V is an unbounded set of variables.
– D is an unbounded set of values including the empty message {||} and all
atomic messages, as well as all messages recursively obtained by concatena-
tion and encryption.

We name CSn as network constraint system. The elements of V stand for the
network principals, and the elements of D represent all possible messages. Atomic
messages typically are principal names, timestamps, nonces and cryptographic
keys.
Notice that CSn does not depend on any protocols, for it merely portrays

a computer network on which any protocol can be implemented. Members of V
will be indicated by capital letters, while members of D will be in small letters.

3.3 Computing the Security Levels by Entailment

Recall that each principal associates his own security levels to the messages.
Those levels evolve while the principal participates in the protocol and performs
off-line operations such as encryption, concatenation, decryption, and splitting.
We define four rules to compute the security levels that each principal gives

to the newly generated messages. They are presented in Figure 2, where function
def is associated to a generic constraint projected on a generic principal A. Our
rules establish that the security level of a message gets somewhat lower each
time the message is manipulated by encryption or decryption. Different rules
could be studied if one wanted to capture other features.
We now define a binary relation between constraints.

Definition 1 (Relation `). Consider two constraints c1, c2 ∈ C such that
c1 = 〈def 1, con〉 and c2 = 〈def 2, con〉. The binary relation ` is such that c1 ` c2

iff def 2 can be obtained from def 1 by a number (possibly zero) of applications of
the computation rules for security levels (Figure 2).

Theorem 1 (Relation ` as entailment relation). The binary relation ` is
an entailment relation.

Proof hint. Relation ` enjoys the reflexivity and transitivity properties, which
characterise an entailment relation.

Following Theorem 1, we address the relation ` as security entailment. So, if
c1 ` c2, we say that c1 entails c2. We will use the security entailment to compute
the security levels that each principal associates to the messages he derives by
concatenation, splitting, encryption and decryption.

4 The Initial, Policy and Imputable SCSPs

The designer of a protocol must develop a policy to accompany the protocol.



Concatenation:
v1, v2 < unknown; def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3

def ({|m1, m2|}) = (v1 +sec v2)×sec v3

Splitting:
v3 < unknown; def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3

def (m1) = v1 ×sec v3; def (m2) = v2 ×sec v3

Encryption:

tradedl1
, tradedl2

< unknown;

def (m1) = tradedl1
; def (m2) = tradedl2

; def ({|m1|}m2
) = tradedl3

def ({|m1|}m2
) = (tradedl1+1 +sec tradedl2

)×sec tradedl3

Decryption:

tradedl2
, tradedl3

< unknown;

def (m1) = tradedl1
; def (m−1

2 ) = tradedl2
; def ({|m1|}m2

) = tradedl3

def (m1) = tradedl1
×sec tradedl2+1 ×sec tradedl3

Fig. 2: Computation rules for security levels

The Initial SCSP. The policy for a protocol P is a set of rules stating, among
other things, the preconditions necessary for the protocol execution, such as
which messages are public, and which messages are private for which principals.
It is intuitive to capture these policy rules by our security levels (Section 3.1).
Precisely, these rules can be translated into unary constraints for the network
constraint system. For each principal A ∈ V, we define a unary constraint that
states A’s security levels as follows. It associates security level public to those
messages that are known to all, typically principal names, timestamps and pub-
lic keys; level private to A’s initial secrets, such as keys (e.g., A’s long-term
key if P uses symmetric cryptography, or A’s private key if P uses asymmetric
cryptography, or A’s pin if P uses smart cards); level unknown to all remaining
domain values (including, e.g., the secrets that A will invent during the protocol
execution, or other principals’ initial secrets).

This procedure defines what we name initial SCSP for P, which specifies the
principals’ security levels when no session of P has yet started.

The Policy SCSP. The policy for a protocol P also specifies how the messages
that must be exchanged during a session between a pair of principals are formed.
The protocol designer typically writes a single step as A→ B : m, meaning that
principal A sends message m to principal B. Each principal is typically allowed
to participate in a number of protocol sessions inventing a number of secrets,
namely fresh messages. Assuming both these numbers to be unbounded but
finite, a finite number of events may take place [9]. These events consist of prin-



cipals’ inventing fresh messages, and principals’ sending messages constructed by
concatenation and/or encryption. So, when a new message is invented, the cor-
responding constraint is added to the store along with all constraints extracted
by security entailment. No message is intercepted because no malicious principal
is assumed to be active: A’s sending m to B implies that B, and B only, receives
it.

Build Policy SCSP(P)

1. p ← initial SCSP for P;
2. for each event ev allowed by the policy for P do

3. if ev = (A invents n, for some A and n) then

4. p ← p extended with unary constraint on A that assigns private

to n and unknown to all other messages;
5. if ev = (A sends m to B not intercepted, for some A, m and B)

then

6. let 〈def , con〉 = Sol(p) ⇓{A} ∧ def (m) = tradedi in

7. p ← p extended with binary constraint between A and B that
assigns tradedi to 〈{||}, m〉 and unknown to all other tuples;

8. return p;

Fig. 3: Algorithm to construct the policy SCSP for P

We read from the protocol policy each allowed step of the form A → B : m
and its informal description, which explains whether A invents m or part of
it. Then, we build the policy SCSP for P by the algorithm in Figure 3. The
algorithm adds new constraints to the initial SCSP according to the event that
is considered. If that event is a principal A’s inventing a message n, then a
unary constraint is added on variable A assigning security level private to the
domain value n (and unknown to all other values). If that event is a principal
A’s sending a message m to a principal B, then the semiring value, alias security
level, associated to message m over A is considered. This level is computed
by entailment (Section 3.3) whenever m is obtained by manipulation of other
messages (rather than m being e.g. a fresh nonce just invented with security
level private by the previous case of the algorithm). A binary constraint that
assigns the newly computed security level to the tuple 〈{||},m〉 (and unknown

to all other tuples) is now added to the current SCSP on the pair of variables A

and B.
This reasoning is repeated for each of the unbounded (but finite) number

of events allowed by the policy. When there are no more events to process, the
current SCSP is returned as policy SCSP for P, which is our formal model for
the protocol.

The Imputable SCSP. A real-world network history induced by a protocol P
must account for malicious activity by some principals. Each such history can be
viewed as a sequence of events of the forms: a principal’s inventing new messages,



a principal’s sending messages that are not intercepted, and a principal’s sending
messages that are intercepted. While the second event signifies that the intended
recipient of a message indeed gets the message, the third signifies that some
malicious principal prevents the delivery of the message that is sent.
We can model any network configuration at a certain point in any real-

world network history as an SCSP by modifying the algorithm given in Figure 3
as in Figure 4 (unmodified fragments are replaced by vertical dots). The new
algorithm takes as inputs a protocol P and a network configuration nc originated
from the protocol execution. The processing of the third type of event is added:
when a message is sent by A to B and is intercepted by another principal C, the
corresponding constraint must be stated on the pair A,C rather than A,B.

Build Imputable SCSP(P, nc)
...

7.1. if ev = (A sends m to B intercepted by C, for some A, m, B and C)
then

7.2. let 〈def , con〉 = Sol(p) ⇓{A} ∧ def (m) = tradedi in

7.3. p ← p extended with binary constraint between A and C that
assigns tradedi to 〈{||}, m〉 and unknown to all other tuples;

...

Fig. 4: Algorithm to construct an imputable SCSP for P (fragment)

The new algorithm outputs what we name an imputable SCSP for P. Clearly,
there exist an unbounded number of imputable SCSPs for P, each representing
a different network configuration. Both the initial SCSP and the policy SCSP
may be viewed as imputable SCSPs.

5 Formalising Confidentiality

“Confidentiality is the protection of information from disclosure to those not
intended to receive it” [15]. This definition is often simplified into one that is
easier to formalise in a model with a single attacker: a message is confidential if
it is not known to the attacker. The latter definition is somewhat weaker: if a
principal C who is not the attacker manages to learn a session key for A and B,
the latter definition holds but the former does not. By considering all principals
as potential attackers, we can capture the former definition.
We remark that a protocol may give different guarantees about its goals

to different principals, so our definition of confidentiality must depend on the
specific principal that is considered. Using the security levels, we develop uni-
form definitions of confidentiality and of confidentiality attack, which appear
to capture any policy requirement. Intuitively, if a principal’s security level on
a message is l, then the message is l-confidential for the principal because the



security level in fact formalises the principal’s trust on the security, that is con-
fidentiality, of the message.

Definition 2 (l-confidentiality). Given an imputable SCSP p and a principal
A, we say that there is l-confidentiality of m for A in p iff Sol(p) ⇓{A} (m) = l.

Preliminary analysis on confidentiality. By studying the policy SCSP for a given
protocol, we can conduct what we name a preliminary analysis of the protocol
goals. Here, we concentrate on confidentiality.
First, we calculate the solution of the policy SCSP, and project it on some

principal of interest A. Let us suppose that two messages m and m′ get security
levels l and l′ respectively, and that l′ < l. Thus, even if no principal acts
maliciously,m′ must be manipulated more thanm, so A trusts thatm will be less
at risk thanm′. We conclude that the protocol achieves a stronger confidentiality
goal on m than on m′ even if it is executed in ideal conditions. Therefore, losing
m to a malicious principal would be more serious than losing m′. We address a
principal’s loss of m as confidentiality attack on m.

Empirical analysis on confidentiality. By an empirical analysis, we consider a
specific real-world scenario arising from the execution of a protocol and build
the corresponding imputable SCSP p. If the imputable SCSP achieves a weaker
confidentiality goal of some message for some principal than the policy SCSP
does, then the principal has mounted, either deliberately or not, a confidentiality
attack on the message.

Definition 3 (Confidentiality attack).
Given a policy SCSP P, an imputable SCSP p for the same protocol, and a
principal A, we say that there is a confidentiality attack by A on m in p iff there
is l-confidentiality of m in P for A, l′-confidentiality of m in p for A, and l′ < l.

Therefore, there is a confidentiality attack by A on m in p iff Sol(P) ⇓{A}
(m) < Sol(P) ⇓{A} (m). The more an attack lowers a security level, the worse
that attack, so confidentiality attacks can be variously compared.

6 An empirical analysis of Needham-Schroeder

The protocol. Figure 5 presents the asymmetric Needham-Schroeder protocol,
which is so popular that it requires little comments.
The goal of the protocol is authentication: at completion of a session initiated

by A with B, A should get evidence to have communicated with B and, likewise,
B should get evidence to have communicated with A. Assuming that encryption
is perfect and that the nonces are truly random, authentication is achieved here
by confidentiality of the nonces. Indeed, upon reception of Na inside message
2, A would conclude that she is interacting with B, the only principal who
could retrieve Na from message 1. In the same fashion, when B receives Nb
inside message 3, he would conclude that A was at the other end of the network



1. A→ B : {|Na, A|}
Kb

2. B → A : {|Na,Nb|}
Ka

3. A→ B : {|Nb|}
Kb

Fig. 5: The asymmetric Needham-Schroeder protocol

because Nb must have been obtained from message 2, and no-one but A could
perform this operation.

Lowe discovers [12] that the protocol suffers the attack in Figure 6, whereby
a malicious principal C masquerades as a principal A with a principal B, after
A initiated a session with C. The attack, which sees C interleave two sessions,
indicates failure of the authentication of A with B, which follows from failure
of the confidentiality of Nb. The security levels of all other principals on the
nonces Na and Nb are unknown. So, by Definition 2, those nonces are unknown-
confidential for any principal different from A or B.

1. A→ C : {|Na, A|}
Kc

1′. C → B : {|Na, A|}
Kb

2′. B → A : {|Na,Nb|}
Ka

2. C → A : {|Na,Nb|}
Ka

3. A→ C : {|Nb|}
Kc

3′. C → B : {|Nb|}
Kb

Fig. 6: Lowe’s attack to the Needham-Schroeder Protocol

An empirical analysis. We start off by building the initial SCSP, whose fragment
for principals A and B is in Figure 7 (the following only features suitable SCSP
fragments pertaining to the principals of interest).

A B

PSfrag replacements

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka
−1〉 → private 〈Kb

−1〉 → private

Fig. 7: Fragment of the initial SCSP for Needham-Schroeder protocol



Then, we build the policy SCSP for the protocol by Build Policy SCSP.
Figure 8 presents the fragment pertaining to a single session between principals
A and B. The figure indicates that, while A’s security level on her nonce Na
was initially private, it is now lowered to traded1 by entailment because of the
binary constraint formalising step 2 of the protocol. Similarly, B’s security level
on Nb is now traded2 though it was originally private. The figure omits the
messages that are not relevant to the following discussion.

BA

PSfrag replacements

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka
−1〉 → private 〈Kb

−1〉 → private

〈Na〉 → private

〈Nb〉 → private

〈Nb〉 → traded1

〈Nb〉 → traded2

〈Na〉 → traded1

〈Na〉 → traded1

〈{||}, {|Na, a|}Kb〉 → traded1

〈{|Na, Nb|}Ka , {||}〉 → traded1

〈{||}, {|Nb|}Kb〉 → traded2

Fig. 8: Fragment of the policy SCSP for the Needham-Schroeder protocol

At this stage, we use Build Imputable SCSP to build the imputable SCSP
given in Figure 9. It formalises the network configuration defined by Lowe’s at-
tack. The solution of this SCSP projected on variable C is a constraint that
associates security level traded4 to the nonce Nb. Following Definition 2, Nb is
traded4-confidential for C in this SCSP. Hence, by Definition 3, there is a delib-
erate confidentiality attack by C on Nb in this problem, because Nb got level
unknown in the policy SCSP. This leads to Lowe’s attack.
We discover another attack in the same problem. The problem solution pro-

jected on variable B associates security level traded2 to the nonce Na, which
instead got level unknown in the policy SCSP. This signifies that B has learnt
a nonce that he was not allowed to learn by policy, that there is an indeliberate
confidentiality attack by B on Na. Notice that the two attacks are uniformly
formalised.
As a consequence of the former attack, Lowe reports that, if B is a bank, C

can steal money from A’s account as follows

C → B : {|Na,Nb, “Transfer£1000 from A’s account to C’s”|}
Kb

and the bank B would honour the request believing it came from the account
holder A. As a consequence of the attack we have discovered, if A is a bank, B
can steal money from C’s account as follows

B → A : {|Na,Nb, “Transfer£1000 from C’s account to B’s”|}
Ka
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Fig. 9: Fragment of the Imputable SCSP corresponding to Lowe’s attack

and the bank A would honour the request believing it came from the account
holder C. In practice, it would be sufficient that B realises what Na is for the
latter crime to succeed.
There are also less serious attacks. The nonce Na is traded3-confidential

for A in this SCSP, while it was traded1-confidential in the policy SCSP. The
discrepancy highlights that the nonce has been handled differently from the
policy prescription — in fact C reused it with B. Also, Nb’s security level for A

is traded3 instead of traded1 as in the policy SCSP. Similar considerations apply
to Nb, whose security level for B is traded4 instead of traded2. This formalises
C’s abusive use of the nonce.

7 Conclusions

We have developed a new framework for analysing security protocols, based on
a recent kernel [1, 2]. Soft constraint programming allows us to conduct a fine
analysis of the confidentiality that a protocol attempts to achieve. Using the
security levels, we can formally claim that a configuration induced by a protocol
achieves a certain level of confidentiality. That configuration may be ideal if
every principal behaves according to the protocol, as formalised by the policy
SCSP; or, it may arise from the protocol execution in the real world, where some



principal may have acted maliciously, as formalised by an imputable SCSP. We
might even compare the forms of the same goal as achieved by different protocols.

We have discovered a new attack on the asymmetric Needham-Schroeder
protocol — once C masquerades as A with B, principal B indeliberately gets
hold of a nonce that was not meant for him. At this stage, B might decide to
exploit this extra knowledge, and begin to act maliciously. Our imputable SCSP
modelling the scenario reveals that B’s security level on the nonce is lower than
that allowed by the policy.

While mechanical analysis was outside our aims, we have implemented a me-
chanical checker for l-confidentiality on top of the existing Constraint Handling
Rule (CHR) framework [3]. For example, when we input the policy SCSP for the
Needham-Schroeder protocol and the imputable SCSP corresponding to Lowe’s
attack, the checker outputs

checking(principal(a))

checking(principal(b))

attack(n_a, policy_level(unknown), attack_level(traded_1))

checking(principal(c))

attack(enk(k(a),pair(n_a,n_b)), policy_level(unknown),

attack_level(traded_1))

attack(n_b, policy_level(unknown), attack_level(traded1))

The syntax seems to be self-explanatory. Line two reveals the new attack
we have found on B, who has lowered his security level on Na from unknown

to traded1. Likewise, line three denounces that not only has C got hold of the
nonce Nb but also of the message {|Na,Nb|}

Ka
(which was meant for A and not

for B) that contains it.

At this stage, integrating our framework with model-checking tools appears
to be a straightforward exercise. The entailment relation must be extended by a
rule per each of the protocol messages in order to compute their security levels.
Hence, our constraints would be upgraded much the way multisets are rewritten
in the work by Cervesato et al. [6] (though they only focus on a single attacker
and their properties are classical yes/no properties). Then, once suitable size
limits are stated, the imputable SCSPs could be exhaustively generated and
checked against our definitions of confidentiality.
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cazioni innovative per la società dell’informazione and by CSP with the project
SeTAPS.



References

1. G. Bella and S. Bistarelli. Protocol Analysis using Soft Constraints. Invited talk
at S.R.I. Security group, Menlo Park, USA, February 2001.

2. G. Bella and S. Bistarelli. Soft Constraints for Security Protocol Analysis: Confi-
dentiality. In I. V. Ramakrishnan, editor, Proc. of the 3rd International Symposium
on Practical Aspects of Declarative Languages (PADL’01), volume 1990 of LNCS,
pages 108–122. Springer-Verlag, 2001.

3. S. Bistarelli, T. Fruewirth, M. Marte, and F. Rossi. Soft Constraint Propagation
and Solving in CHR. In Proc. ACM Symposium on Applied Computing (SAC),
Madrid, Spain. ACM, mar 2002.

4. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM, 44(2):201–236, Mar 1997.

5. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Logic Pro-
gramming: Syntax and Semantics. ACM Transactions on Programming Languages
and System (TOPLAS), 23:1–29, jan 2001.

6. Iliano Cervesato, N. A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre
Scedrov. A Meta-Notation for Protocol Analysis. In Proc. CSFW, pages 55–69,
1999.

7. D.E. Denning. A Lattice Model of Secure Information Flow. Comm. of ACM,
19(5):236–242, 1976.

8. D. Dubois, H. Fargier, and H. Prade. The Calculus of Fuzzy Restrictions as a Basis
for Flexible Constraint Satisfaction. In Proc. of IEEE International Conference on
Fuzzy Systems, pages 1131–1136. IEEE Press, 1993.

9. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of Bounded
Security Protocols. In N. Heintze and E. Clarke, editors, Proc. FMSP’99, 1999.

10. E. C. Freuder and R. J. Wallace. Partial Constraint Satisfaction. AI Journal, 1992.
11. Evelyn Gray. American national standard t1.523-2001, telecom glossary 2000. pub-

lished on the Web at http://www.its.bldrdoc.gov/projects/telecomglossary2000,
2001.

12. G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Pro-
tocol. Information Processing Letters, 56(3):131–133, 1995.

13. A.K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8(1):99–118, 1977.

14. U. Montanari. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Science, 7:95–132, 1974. Also Technical Report,
Carnegie Mellon University, 1971.

15. B. C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Computer
Networks, from IEEE Communications Magazine, September, 1994. In William
Stallings, Practical Cryptography for Data Internetworks. IEEE Press, 1996.

16. Zs. Ruttkay. Fuzzy Constraint Satisfaction. In Proc. of 3rd IEEE International
Conference on Fuzzy Systems, pages 1263–1268, 1994.

17. T. Schiex. Possibilistic Constraint Satisfaction Problems, or “How to Handle Soft
Constraints?”. In Proc. of 8th Conference on Uncertainty in AI, pages 269–275,
1992.

18. T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), pages 631–637. Morgan Kaufmann, 1995.


