
Semiring-based soft constraints

Stefano Bistarelli1,2 and Francesca Rossi3

1 Dipartimento di Scienze, Università “G. d’Annunzio” di Chieti-Pescara, Italy,
bista@sci.unich.it,

2 IIT-CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it,

3 Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy
frossi@math.unipd.it

Abstract. The semiring-based formalism to model soft constraint has
been introduced in 1995 by Ugo Montanari and the authors of this pa-
per. The idea was to make constraint programming more flexible and
widely applicable. We also wanted to define the extension via a general
formalism, so that all its instances could inherit its properties and be
easily compared. Since then, much work has been done to study, extend,
and apply this formalism. This papers gives a brief summary of some of
these research activities.

1 Before soft constraints: a brief introduction to

constraint programming

Constraint programming [1, 42, 60, 74, 68] is a powerful paradigm for solving com-
binatorial search problems that draws on a wide range of techniques from ar-
tificial intelligence, computer science, databases, programming languages, and
operations research. Constraint programming is currently applied with success
to many domains, such as scheduling, planning, vehicle routing, configuration,
networks, and bioinformatics.

The basic idea in constraint programming is that the user states the con-
straints and a general purpose constraint solver solves them. Constraints are
just relations, and a constraint satisfaction problem (CSP) states which rela-
tions should hold among the given decision variables. For example, in scheduling
activities in a company, the decision variables might be the starting times and
the durations of the activities, as well as the resources needed to perform them,
and the constraints might be on the availability of the resources and on their
use for a limited number of activities at a time.

Constraint solvers take a real-world problem, represented in terms of decision
variables and constraints, and find an assignment of values to all the variables
that satisfies all the constraints. Constraint solvers search the solution space
either systematically, as with backtracking or branch and bound algorithms,
or use forms of local search which may be incomplete. Systematic methods of-
ten interleave search and inference, where inference consists of propagating the



information contained in one constraint to the neighboring constraints. Such in-
ference, usually called constraint propagation, may reduce the parts of the search
space that need to be visited.

Rather than trying to satisfy a set of constraints, sometimes people want to
optimize them. This means that there is an objective function that tells us the
quality of each solution, and the aim is to find a solution with optimal quality.
To solve such problems, techniques such as branch and bound are usually used.

The initial ideas underlying the whole constraint programming research area
emerged in the ’70s with several pioneering papers on local consistency, among
which the 1974 paper by Ugo Montanari [63], where for the first time a form
of constraint propagation, called path consistency, was defined and studied in
depth. Since then, the field has evolved greatly, and theoretical study has been
coupled with application work, that has shown the need for several extensions
of the classical constraint formalism. The introduction of semiring-based soft
constraints lies within this evolution thread.

In the classical notion of constraint programming, constraints are relations.
Thus a constraint can either be satisfied or violated. In the early ’90s, some
attempts had been made to generalize the notion of constraint to an object with
more than just two levels of satisfiability.

For example, fuzzy constraints [46, 69] allow for the whole range of satisfi-
ability levels between 0 and 1. Then, the quality of a solution is the minimum
level of satisfiability of the constraints for that solution. The aim is then to find
a solution whose quality is highest.

Because fuzzy constraints suffer from the so-called ”drowning effect” (where
the worst level of satisfiability ”drowns” all the others), lexicographic constraints
were introduced [49], to obtain a more discriminating ordering of the solutions,
where also solutions with the same worst level can be distinguished.

Another extension to classical constraints are the so-called probabilistic con-
straints [48], where, in the context of an uncertain model of the real world, each
constraint is associated to the probability of being present in the real problem.
Solutions are then associated to their conjoint probability (assuming indepen-
dence of the constraints), and the aim is to find a solution with the highest
probability.

In weighted constraints, instead, each constraint is given a weight, and the
aim is to find a solution for which the sum of the weights of the satisfied con-
straints is maximal. A very useful instance of weighted constraints are MaxCSPs,
where weights are just 0 or 1 (0 if the constraint is violated and 1 if it is satisfied).
In this case, we therefore want to satisfy as many constraints as possible.

While fuzzy, lexicographic, and probabilistic constraints were defined for
modeling purposes, that is, to model real-life situations that could not be faith-
fully modeled via classical constraints, weighted constraints and MaxCSPs were
mainly addressing over-constrained problems, where there are so many con-
straints that the problem has no solution. In fact, the aim is to satisfy as many
constraints as possible, possibly using priorities (modeled by the weights) to have
more discriminating power.



This second line of reasoning lead also to the definition of the first general
framework to extend classical constraints, called partial constraint satisfaction
[51]. In partial CSPs, over-constrained problems are addressed by defining a
metric over constraint problems, and by trying to find a solution of a problem
which is as close as possible to the given one according to the chosen metric.
MaxCSPs are then just an instance of partial CSPs, where the metric is based
on the number of satisfied constraints.

2 Semiring-based soft constraints: main idea and

properties

The idea of the semiring-based formalism [26, 27, 61, 7] was to further extend the
classical constraint notion, and to do it with a formalism that could encompass
most of the existing extensions, as well as other ones not yet defined, with the
aim to provide a single environment where properties could be proven once and
for all, and inherited by all the instances.

At the technical level, this was done by adding to the usual notion of a CSP
the concept of a structure representing the levels of satisfiability of the con-
straints. Such a structure is a set with two operations: one (written +) is used to
generate an ordering over the levels, while the other one (×) is used to define how
two levels can be combined and which level is the result of such combination.
Because of the properties required on such operations, this structure is similar to
a semiring: from here the terminology of ”semiring-based soft constraints”, that
is, constraints with several levels of satisfiability, and whose levels are (totally
or partially) ordered according to the semiring structure. Fuzzy, lexicographic,
probabilistic, weighted, and MaxCSPs are all instances of the semiring-based
framework. In general, problems defined according to the semiring-based frame-
work are called soft constraint satisfaction problems (SCSPs).

Figure 1 shows a weighted CSP as a graph. Variables and constraints are
represented respectively by nodes and by undirected arcs (unary for c1 and c3,
and binary for c2), and semiring values are written to the right of each tuple.
Here we assume that the domain of the variables contains only elements a, b and
c. An optimal solution of this problem is (X = b, Y = c), that has weight 7.

X Y

〈a〉 → 9
〈a〉 → 9

〈b〉 → 1
〈b〉 → 5

〈c〉 → 9
〈c〉 → 5

〈a, a〉 → 8

〈a, b〉 → 2

〈c, a〉 → 8

〈c, b〉 → 2

〈b, a〉 → ∞

〈b, b〉 → ∞

〈a, c〉 → 2

〈b, c〉 → 1

〈c, c〉 → 2

c1

c2

c3

Fig. 1. A weighted CSP.



In the same year in which semiring-based soft constraints were introduced
(1995), another general formalism to model constraints with several levels of
satisfiability was proposed: the so-called ”valued” constraints [72]. Valued con-
straints are very similar to semiring-based soft constraints, except that their
levels of satisfiability cannot be partially ordered [13].

The possibility of partially ordered set of levels of satisfiability can be useful
in several scenarios. When the levels are the result of the combination of several
optimization criterion, it is natural to have a Pareto-like approach in combining
such criteria, that naturally leads to a partial order. Also, even if we have just
one optimization criteria, we may want to insist in declaring some levels as
incomparable, because of what they model. In fact, the elements of the semiring
structure do not need to be numbers, but can be any objects that we want
to associate to a way of giving values of the variables of a constraints. If, for
example, the objects are all the subsets of a certain set, then we have a partial
order under subset inclusion.

One of the strengths of constraint programming is the ability to remove
local inconsistencies via constraint propagation. This techniques can be extended
to soft constraints. If some properties of the semiring structure (mainly the
idempotence of the combination operator) hold, this extension has the same
desirable properties as the classical notion. That is, it terminates, it returns
an equivalent problem, and it is independent on the order of the application
over constraints [22]. Otherwise, a different notion of constraint propagation
can be defined, which enjoys some of the properties but not all (for example,
independence does not hold any longer) [39, 40, 71, 21].

Some real-life situations cannot be modeled via soft constraints with idem-
potent operators. For this reason, a more general notion that does not assume
this property has been introduced in [75]. In this more general setting, semiring
valuations are useful, for example, when counting the number of solutions.

Another extension of the semiring-based framework has been proposed in [54],
where a metric space has been combined with semiring-based constraints to
capture distances between preference levels. In [59] the distance is then used to
define a notion of constraint relaxation.

It is known that non-binary classical constraints can always be modeled by
binary constraints, if enough new variables are introduced (primal representa-
tion) or if we use variables with tuple domains (dual representation). In [58] this
issue has been considered in the context of soft constraints, and it was shown
that any set of semiring-based soft constraints can be modeled via unary soft
constraints plus classical binary constraints.

3 Embedding soft constraints in programming paradigms

Classical constraints have been embedded in several programming paradigms,
such as logic programming and concurrent programming. This has lead to Con-
straint Logic Programming (CLP) [60, 55, 56] and Concurrent Constraint (cc)



programming [70]. Similar attempts have been done with semiring-based soft
constraints.

3.1 Soft CLP

To build applications with constraints, a language is needed where such con-
straints are easily embedded and handled as first class objects. This is why
soft constraints have been embedded in the Constraint Logic Programming
(CLP) [56] formalism. The resulting paradigm, called SCLP (for Semiring-based
CLP, or also Soft CLP) [29, 30], has the advantage of treating in a uniform way,
and with the same underlying machinery, all constraints that can be seen as
instances of the semiring-based approach. This leads to a high-level declara-
tive programming formalism where real-life problems involving constraints of all
these kinds can be easily modeled and solved.

As usual for logic programming languages, three equivalent semantics have
been defined for SCLP: model-theoretic, fix-point, and operational, which are
conservative extensions of the corresponding ones for LP. Additionally, the de-
cidability of the semantics of SCLP programs have been investigated: if a goal
has a semiring value greater than or equal to a certain value in the semiring,
then we can discover this in finite time. Moreover, for SCLP programs without
functions, the problem is completely decidable: the semantics of a goal can be
computed in finite and bounded time.

The SCLP framework has been implemented [53] on top of an existing
CLP(FD) language. The resulting language, called CLP(FD,S), is parametric
with respect to the semiring S, and can handle semiring-based soft constraints
over S in problems where variables have finite domains.

3.2 Soft cc

Semiring-based soft constraints have also been embedded in concurrent lan-
guages. The framework proposed in [31, 25] (called scc) extends the cc program-
ming framework [70] by using soft constraints instead of classical ones.

In cc programming, a set of agents share a store which contains constraints.
An agent can ask if a constraint is entailed by the store, or can tell (that is, add)
a new constraint to the store. In scc, the notions of ask and tell are parameterized
with respect to the level of consistency of the store or the semiring level of each
instance of the constraints present in the store. In this way, each tell and ask
agent is equipped with a preference (or consistency) threshold which is used to
determine their success, failure, or suspension, as well as to prune the search.

Scc programming has been also extended to deal with timed [20] and non-
monotonic [35] issues. The timed extension is based on the hypothesis of bounded

asynchrony: computation takes a bounded period of time and is measured by a
discrete global clock. Action prefixing is then considered as the syntactic marker
which distinguishes a time instant from the next one. In non-monotonic scc some
new actions provide the user with explicit non-monotonic operations: retract(c),
to remove constraint c from the current store; updateX(c), to transactionally



relax all the constraints of the store that deal with variables in set X, and then
add a constraint c; and nask(c), to test if constraint c is not entailed by the
store.

The framework has been implemented [43]. In particular, the soft constraint
constructs were adapted to and integrated within the propagation process of
Mozart [47].

Soft constraints have been embedded also in the Constraint Handling Rule
(CHR) framework, a formalism to specify constraint solvers and constraint prop-
agation algorithms via a set of rewriting rules [24, 19]. The obtained system al-
lows one to design and specify naturally soft constraint solvers, including soft
propagation algorithms.

4 Extending soft constraints to model other kinds of

preferences

Semiring-based soft constraints are a way to model preferences. However, prefer-
ences can be of various kinds, and semiring-based soft constraints, as originally
defined, are good at modeling only some of them.

For example, preferences can be quantitative or qualitative (e.g., “I like this at
level 10” versus “I like this more than that”). They can also be conditional (e.g.,
“If the main dish is fish, I prefer white wine to red wine”) or bipolar (e.g., “I like
fish a lot, and I slightly dislike meat”). Soft constraints can model directly and
naturally quantitative preferences, but are not as good at modeling qualitative,
conditional, or bipolar preferences. We will now summarize some approaches to
model these other kinds of preferences via extensions or adaptations of semiring-
based soft constraints.

4.1 Bipolar preferences

Bipolarity is an important topic in several fields, such as psychology and multi-
criteria decision making, and it has recently attracted interest in the AI commu-
nity, especially in argumentation and qualitative reasoning. Bipolarity in pref-
erence reasoning can be seen as the possibility to stating both degrees of satis-
faction (that is, positive preferences) and degrees of rejection (that is, negative
preferences).

Positive and negative preferences can be thought as two symmetric concepts,
and thus one can think that they can be dealt with via the same operators.
However, this may not model what one usually expects in real scenarios. For
example, when we have a scenario with two objects A and B, if we like both A
and B, then having both A and B should be more preferred than having just A
or B alone. On the other hand, if we don’t like A nor B, then the preference of
A and B together should be smaller than the preferences of A or B alone. That
is, the combination of positive preferences should produce a higher (positive)
preference, while the combination of negative preferences should give us a lower
(negative) preference.



When dealing with both kinds of preferences, it is natural to express also
indifference, which means that we express neither a positive nor a negative pref-
erence over an object. For example, we may say that we like peaches, we don’t
like bananas, and we are indifferent to apples. Then, a desired behavior of indif-
ference is that, when combined with any preference (either positive or negative),
it should not influence the overall preference. For example, if we like peaches and
we are indifferent to apples, a dish with peaches and apples should have overall
a positive preference.

Finally, besides combining preferences of the same type, we also want to
be able to combine positive with negative preferences. The most natural and
intuitive way to do so is to allow for compensation. Comparing positive against
negative aspects and compensating them with respect to their strength is one of
the core features of decision-making processes, and it is, undoubtedly, a tactic
universally applied to solve many real life problems. For example, if we have a
meal with meat (that we like very much) and wine (that we don’t like), then
what should be the preference of the meal? To know that, we should be able to
compensate the positive preference given to meat with the negative preference
given to wine. The expected result is a preference which is between the two,
and which should be positive if the positive preference is ”stronger” than the
negative one.

Semiring-based soft constraints can only model negative preferences, since
in this framework preference combination returns lower preferences. However,
this framework can be generalized to model also positive preferences. In [65]
this is done by defining a new algebraic structure to model positive preferences.
The two structures are then linked by setting the highest negative preference
to coincide with the lowest positive preference, to model indifference. Then, a
combination operator between positive and negative preferences is defined to
model preference compensation. To find optimal solutions of bipolar problems,
it is possible to adapt usual soft constraint propagation and branch and bound.

4.2 Conditional qualitative preferences

While soft constraints cannot model conditional qualitative preferences directly,
CP-nets [37] (Conditional Preference networks) can. CP-nets exploit conditional
preferential independence by structuring a user’s possibly complex preference
ordering with the ceteris paribus (that is, “all else being equal”) assumption. CP-
nets are sets of conditional ceteris paribus preference statements (cp-statements).
For instance, the statement “I prefer red wine to white wine if meat is served”
asserts that, given two meals that differ only in the kind of wine served, and
both containing meat, the meal with red wine is preferable to the meal with
white wine.

If we compare the expressive power of CP-nets and soft constraints, we may
see that classical constraints are at least as expressive as CP-nets in terms of
optimal solutions. In fact, it is possible to show that, given any CP-net, we
can obtain in polynomial time a set of classical constraints whose solutions are
the optimal outcomes of the CP-net [36]. However, if we are interested not just



in the optimal solutions, but in the whole solution ordering, CP-nets and soft
constraints are incomparable.

However, it is possible to approximate a CP-net ordering via soft constraints,
achieving tractability while sacrificing precision to some degree [45]. Different
approximations can be characterized by how much of the original ordering they
preserve, the time complexity of generating the approximation, and the time
complexity of comparing outcomes in the approximation. It is vital that such
approximations are information preserving; that is, what is ordered in the CP-
net is also ordered in the same way in the soft constraint problem. Another
desirable property of approximations is that they preserve the ceteris paribus
property.

The possibility of approximating CP-nets via soft constraints means that,
with only a soft constraint solver at hand, we can model and solve real-life
problems containing either qualitative and quantitative preferences.

5 Mastering the complexity of modeling and solving soft

constraint problems

In constraint problems we look for a solution, while in soft constraint problems
we look for an optimal solution. Thus, soft constraint problems are more difficult
to handle by a solver. To ease this difficulty, several AI techniques have been
exploited. Here we cite just three of them: abstraction, symmetry breaking, and
explanation generation.

Abstraction is used to work on a simplified version of the given problem, thus
hoping to have a significantly smaller search space, while explanation generation
is used to ease the understanding of the behavior of the solver. For example,
it is not always easy for a user to understand why there are no better solution
than the one returned. Symmetry breaking, instead, aims at simplifying the
problem by pruning part of the search space, via the elimination of symmetric
(or interchangeable) assignments.

An added difficulty in dealing with soft constraints comes also in the mod-
eling phase, where a user has to understand how to model faithfully his real-life
problem via soft constraints. Since soft constraints require the specification of
all the preferences inside the constraints, it may be too tedious for a user to do
this. Also, some users may prefer to not reveal all their preferences because of
privacy reasons. In both cases, we end up with a soft constraint problem where
some preferences are missing. To reason in this scenario, we may use techniques
like machine learning to complete the problem, or we may try to find an optimal
solution without completing the problem, or by eliciting only a small number of
missing preferences.

5.1 Abstraction

Although it is obvious that SCSPs are much more expressive than classical CSPs,
they are also more difficult to process and to solve. Therefore, sometimes it may



be too costly to find all, or even only one, optimal solution. Also, although
classical propagation techniques like arc-consistency can be extended to SCSPs,
even such techniques can be too costly to be used, depending on the size and
structure of the partial order associated to the SCSP. Finally, sometimes we may
not have a solver for the class of soft constraints we need to solve, while we may
have a solver for a ”simpler” class of soft constraints.

For these reasons, it may be reasonable to work on a simplified version of the
given soft constraint problem, trying however to not loose too much information.
Such a simplified version can be defined by means of the notion of abstraction,
which takes an SCSP and returns a new one which is simpler to solve. Here, as in
many other works on abstraction, “simpler” may have several meanings, like the
fact that a certain solution algorithm finds a solution, or an optimal solution, in
a fewer number of steps, or also that the abstracted problem can be processed
by a machinery which is not available in the concrete context.

To define an abstraction, we may use for example the theory of Galois in-
sertions [41]: given an SCSP (the concrete one), we may get an abstract SCSP
by just changing the associated semiring, and relating the two structures (the
concrete and the abstract one) via a Galois insertion. Note that this way of
abstracting constraint problems does not change the structure of the problem
(the set of variables remains the same, as well as the set of constraints), but just
the semiring values to be associated to the tuples of values for the variables in
each constraint [10].

Once we reason on the abstracted version of a given problem, we can bring
back to the original problem some (or possibly all) of the information derived in
the abstract context, and then continue the solution process on the transformed
problem, which is a concrete problem equivalent to the given one. The hope is
that, by following this route, we get to the final goal faster than just solving the
original problem.

Given any optimal solution of the abstract problem, we can find upper and
lower bounds for an optimal solution for the concrete problem. It is also possible
to define iterative hybrid algorithms which can approximate an optimal solution
of a soft constraint problem by solving a series of problems which abstract, in
different ways, the original problem. These are anytime algorithms since they
can be stopped at any phase, giving better and better approximations of an
optimal solution.

Experimental results show that this line is promising, for example when we
want to solve a fuzzy CSP but we just have a solver for classical constraints [33].

5.2 Symmetry breaking

The existence of symmetries in a problem has the effect of artificially increasing
the size of the search space that is explored by search algorithms. Therefore, a
typical approach is to break the symmetries in the problem so that only unique
solutions are returned. The significant advantage is that not only do we return
fewer solutions, but we also reduce the search effort required to find these solu-
tions by eliminating symmetric branches of the search tree.



In [23, 73] an approach is presented to deal with symmetry in the semiring-
based framework for soft constraints, and it is shown that breaking symmetries
in soft constraint satisfaction problems improves the efficiency of search. In [11,
12] interchangeability has been extended to the soft CSP framework by adding
a notion of threshold and degradation. With these extensions, values are con-
sidered interchangeable only by checking solutions with a semiring level better
than a given threshold (thus disregarding differences among solutions that are
not sufficiently good), or solutions whose exchange cannot degrade the current
solution by more than a given factor.

5.3 Explanations

One of the most important features of problem solving in an interactive setting
is the capacity of the system to provide the user with justifications, or explana-
tions, for its operations. Such justifications are especially useful when the user is
interested in what happens at any time during search, because he/she can alter
features of the problem to facilitate the problem solving process.

Basically, the aim of an explanation is to show clearly why a system acted
in a certain way after certain events. In the context of constraint problems,
explanations can be viewed as answers to user’s questions like the following:
Why isn’t it possible to obtain a solution? Why is there a conflict between these
values for these variables? Why did the system select this value for this variable?
In soft constraint problems, explanation should certainly take preferences into
account.

In addition to providing explanations, interactive systems should be able to
show the consequences, or implications, of an action to the user, which may be
useful in deciding which choice to make next. In this way, they can provide a
sort of “what-if” kind of reasoning, which guides the user towards good future
choices. Implications can be viewed as answers to questions like the following:
What would happen if this variable could only take on these values? What would
happen if this value were added to the domain of this variable? Fortunately,
in soft constraint problems this capacity can be implemented with the same
machinery that is used to give explanations.

A typical example of an interactive system where constraints and preferences
may be used, and where explanations can be very useful, are configurators. A
configurator is a system which interacts with a user to help him/her to configure
a product. A product can be seen as a set of component types, where each type
corresponds to a certain finite number of concrete components, and a set of com-
patibility constraints among subsets of the component types. A user configures
a product by choosing a concrete component for each component type, such that
all the compatibility constraints as well as personal preferences are satisfied. For
example, in a car configuration problem, a user may prefer red cars, but may
also not want to completely rule out other colors. Thus red will get a higher
preference with respect to the other colors.

Constraint-based technology is currently used in many configurators to both
model and solve configuration problems: component types are represented by



variables, having as many values as the concrete components, and both compati-
bility and personal constraints are represented as constraints (or soft constraints)
over subsets of such variables. At present, user choices during the interaction with
the configurator are usually restricted to specifying unary constraints, in which
a certain value is selected for a variable.

Whenever a choice is made, the corresponding (unary) constraint is added to
existing compatibility and personal constraints, and some constraint propagation
notion is enforced, for example arc-consistency (AC) [68], to rule out (some
of the) future choices that are not compatible with the current choice. While
providing justifications based on search is difficult, arc-consistency enforcing has
been used as a source of guidance for justifications, and it has been exploited to
help the users in some of the scenarios mentioned above. For example, in [50],
it is shown how AC enforcement can be used to provide both justifications for
choice elimination, and also guidance for conflict resolution.

The same approach can be used also for configurators with preferences [64],
using a generalized version of arc-consistency, whose application may decrease
the preferences in some constraints. When a user makes a choice for a specific
feature of a configuration problem, the preferences of the other features are au-
tomatically lowered to the minimum value. This triggers arc-consistency, which
in turn lowers other preferences for features that are correlated to the chosen
one. If all the values of a feature have minimal preference, that feature cannot be
instantiated to any value. Thus the sequence of choices already made cannot lead
to a complete configuration. Otherwise, the configuration process may continue,
but the lowered preference values can help in guiding towards the best complete
configurations. It is therefore possible to compute explanations describing why
the preferences for some values decrease, and suggesting at the same time which
assignment has to be chosen, or retracted, in order to maximize the quality of a
complete configuration.

5.4 Learning

In a soft constraint problem, sometimes one may know his/her preferences over
some of the solutions, but have no idea on how to code this knowledge into
the constraint problem in terms of local preferences. That is, one has a global
idea about the goodness of a solution, but does not know the contribution of
each single constraint to such a measure. In such a situation, it is difficult both
to associate a preference to the other solutions in a compatible way, and to
understand the importance of each tuple and/or constraint. In other situations,
one may have just a rough estimate of the local preferences, either for the tuples
or for the constraints.

In [66], this scenario is theoretically addressed by proposing to use learning
techniques based on gradient descent. More precisely, it is assumed that the
level of preference for some solutions (that is, the examples) is known, and a
suitable learning technique is defined to learn, from these examples, values to
be associated with each constraint tuple, in a way that is compatible with the



examples. In [6] the theoretical framework proposed in [66] is implemented, and
results of several experiments are shown.

Soft constraint learning has been embedded also in a general interactive con-
straint framework, where users can state both usual preferences over constraints
and also preferences over solutions proposed by the system [67]. In this way,
the modeling and the solving process are heavily interleaved. Moreover, the two
tasks can be done also incrementally, by specifying some preferences at each
step, and obtaining better and better solutions at each step. In this way, the
examples needed are much less, since they are not given by the user all at the
beginning of the solving process, but are guided by the solver, that proposes the
next best solutions and asks the user to give a feedback on them.

5.5 Incompleteness and elicitation

Sometimes the task of specifying a whole soft CSP may be so heavy that a user
may be unwilling to provide a complete specification. For example, some pref-
erences may be omitted. Preference omission may have several reasons, such as
privacy concerns, or timing issues among several users concurring in the specifi-
cation of a soft CSP.

Even if a soft CSP has some missing preferences, it could still be feasible to
find an optimal solution. However, there is more than one notion of ”optimality”.
Two extreme notions of optimal solutions are the following: possibly optimal

solutions are assignments to all the variables that are optimal in at least one

way currently unspecified preferences can be revealed, while necessarily optimal

solutions are assignments to all the variables that are optimal in all ways in
which currently unspecified preferences can be revealed.

Given an incomplete soft CSP, its set of possibly optimal solutions is never
empty, while the set of necessarily optimal solutions can be empty. Of course
what we would like to find is a necessarily optimal solution, to be on the safe
side: such solutions are optimal regardless of how the missing preferences would
be specified. However, if this set is empty, we can interleave search and preference
elicitation. More precisely, we can ask the user to provide some of the missing
preferences and try to find, if any, a necessarily optimal solution of the new
incomplete soft CSP. Then we can repeat the process until the current problem
has at least one necessarily optimal solution. Experimental results show that this
process ends after eliciting a very small percentage of the missing preferences
[52].

6 Applying soft constraints

Soft constraints have been applied to several scenarios. Here we will review some
of them. Others can be found in [61].



6.1 Temporal reasoning

Reasoning about time is a core issue in many real life problems, such as planning
and scheduling for production plants, transportation, and space missions. Several
approaches have been proposed to reason about temporal information. Temporal
constraints have been among the most successful in practice.

In temporal constraint problems, variables either represent instantaneous
events or temporal intervals. Temporal constraints allow one to put temporal
restrictions either on when a given event should occur, or on how long a given
activity should last. Several qualitative and quantitative constraint-based tem-
poral formalisms have been proposed. A qualitative temporal constraint defines
which temporal relations, e.g. before, after, during, are allowed between two tem-
poral intervals representing two activities. A quantitative temporal constraint
instead defines restrictions between the start and end times of some activities.
Once the constraints have been stated, the goal is to find an occurrence time, or
duration, for all the events, such that all temporal constraints are respected.

The expressive power of classical temporal constraints may however be in-
sufficient to model faithfully all the aspects of the problem. For example, it may
be that some durations are more preferable than others, such as in “I can have
lunch between 11:30am and 2pm, but I prefer to have it at 1pm”, or in “I can
meet you between 9am and 10am, but the earlier the better”. For this reason,
both qualitative and quantitative temporal reasoning formalisms have been ex-
tended with quantitative preferences to allow for the specification of such a kind
of statements.

In particular, the qualitative approach has been augmented with fuzzy pref-
erences, that are associated with the relations among temporal intervals allowed
by the constraints. Higher values represent a more preferred relation. Once such
constraints have been stated, the goal is to find a temporal assignment to all the
variables with the highest “lower” preference on any constraint.

In [57] the semiring-based formalism has been combined with temporal quan-
titative constraints. The result are soft temporal constraints where each allowed
duration or occurrence time for a temporal event is associated to a (fuzzy) pref-
erence representing the desirability of that specific time. Tractability results have
been shown for some classes of these problems, characterized by the absence of
disjunctions in the temporal constraints (as in the classical case) and by the
shape of the preference functions.

6.2 Security

The semiring-based framework has been used to tackle several security problems,
such as protocols, policies, and system/network security. The basic idea used is
to consider security not as a Boolean predicate but as a notion suitable to be
represented via different levels. So, instead of just having secure and non secure
protocols, we have protocols that satisfy the confidentiality and authentication
goals with a certain security level [2, 3]. By considering such security levels (for



instance public, confidential, secret, and top-secret), protocols can be better
analyzed and sometimes new flaws [4, 5] can be found.

The security of systems and networks have been analyzed by considering re-
spectively integrity policies and trusts among nodes of a network. The integrity
of a system can then be evaluated by checking how much it satisfies some speci-
fied (soft) constraints [14, 15]. In a similar manner, by adding constraints on the
type of flow permitted or denied among the nodes of a network, a flow analysis
can be executed, revealing inter-operation [16] or cascading [17, 18] problems.

Soft constraints and logic programming together have been also used [34]
to represent the concept of multi-trust, which is aimed at computing trust by
collectively involving a group of trustees at the same time: the trustor needs the
concurrent support of multiple individuals to accomplish its task.

6.3 Routing and quality of service

Semirings are also used for Routing and Quality of Service (QoS). For instance,
in [62] the authors give a generic algorithm for finding singlesource shortest dis-
tances in a weighted directed graph when the weights are elements of a semiring.
The same algorithm can also be used to solve efficiently classical shortest paths
problems or to find the kshortest distances in a directed graph. An interesting
foundational model has been instead introduced in [44]. The model handles QoS
attributes as semantic constraints within a graphical calculus for mobility. The
QoS attributes are related to the programming abstractions and are exploited to
select, configure, and dynamically modify the underlying system oriented QoS
mechanisms.

Semirings and constraints together are instead used in [28, 32] where a formal
model to represent and solve routing and multicast routing problems in multi-
cast networks with QoS has been suggested. And-or graphs have been used to
represent the network and SCLP programs are used to compute the best path (or
the best tree when multicast is considered), according to QoS criteria. Another
approach extends instead cc programming [38]. In the resulting framework, Ser-
vice Level Agreement requirements are (soft) constraints that can be generated
either by a single party or by the synchronization of two agents.

6.4 Data mining

The paradigm of pattern discovery based on constraints was introduced with
the aim of providing the user with a tool to drive the discovery process towards
potentially interesting patterns, with the positive side effect of achieving a more
efficient computation.

In classical constraint-based mining, a constraint is a Boolean function which
returns either true or false. In [8, 9] a new paradigm of pattern discovery based
on soft constraints has been introduced. This provides a rigorous theoretical
framework, which is very general (having the classical paradigm as a particular
instance), and able to measure the level of interest of a pattern.



7 Conclusions and future scenarios

Ugo Montanari and the authors of this paper introduced twelve years ago the no-
tion of semiring-based soft constraints. Since then, the semiring-based framework
has been further studied, extended, and applied to several scenarios. In this paper
we have described the extension of this framework to deal with both positive and
negative preferences, as well as its adaption to deal with conditional qualitative
preferences. Moreover, we have briefly outlined how this kind of constraints have
been embedded in constraint-based languages, both sequential and concurrent.
Furthermore, we have described how the complexity of modeling and solving a
problem with soft constraints has been mitigated via the use of techniques such
as abstraction, explanation generation, symmetry breaking, machine learning,
and preference elicitation. Finally, we have mentioned some applications to the
fields of security, QoS, data mining, and temporal reasoning.

Although the initial idea of semiring-based soft constraints generated a huge
amount of research, both on the theoretical and on the application side, much
more can be done to make soft constraints more useful and widely applicable. For
example, many tractability results, developed for classes of classical constraints,
can be studied and adapted to the setting of soft constraints. Also, specialized
solvers for specific classes of soft constraints, as well as general solvers for the
whole class, should be developed. We also believe that the generalization started
with the introduction of the soft constraint formalism should be continued to
achieve a single framework where many kinds of preferences should be easily
modeled and solved. We also believe that uncertainty issues should be taken into
consideration, as well as multi-agent scenarios where several agents express their
preferences over a common set of objects and want to agree over the choice of
one or more objects which are highly preferred by all of them. On the application
side, the semiring idea could be used in reputation logic to give a quantitative
and qualitative measure to the notion of trust among users. The field of QoS
seems also a field that deserve further study.

8 A special thank

We would really like to thank Ugo Montanari for the very interesting and exciting
time spent working together on the subject of this paper and on other research
issues. His knowledge, skills, generosity, and passion for research has always been
for us an inspiring example that drives our work and fills us with pride for having
shared some research activities with him.

References

1. K. R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

2. G. Bella, S. Bistarelli. Soft Constraints for Security Protocol Analysis: Confiden-
tiality. Proc. PADL 2001, Springer LNCS 1990, 2001.



3. G. Bella and S. Bistarelli. Soft Constraint Programming to Analysing Security
Protocols. Theory and Practice of Logic Programming (TPLP), special Issue on
Verification and Computational Logic, vol. 4, n. 5, pp. 1-28, Cambridge University
Press, 2004.

4. G. Bella and S. Bistarelli. Confidentiality levels and deliberate/indeliberate pro-
tocol attacks. Security Protocols: 10th International Workshop, Revised Papers,
Springer LNCS 2845, pp. 104-119, 2002.

5. G.Bella, S. Bistarelli. Information Assurance for Security Protocols. Computers &
Security, 24(4):322-333, Elsevier, 2005.

6. A. Biso, F. Rossi, A. Sperduti. Experimental results on Learning Soft Constraints.
Proc. KR 2000 (7th Int. Conf. on Principles of Knowledge Representation and
Reasoning), 2000.

7. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, Springer
LNCS 2962, 2004.

8. S. Bistarelli and F. Bonchi. Soft Constraint Based Pattern Mining. Data & Knowl-
edge Engineering, Volume 62, Issue 1, 2007.

9. S. Bistarelli and F. Bonchi. Extending the Soft Constraint Based Mining Paradigm.
Proc. KDID’06, Springer LNCS 4747, 2007.

10. S. Bistarelli, P. Codognet, F. Rossi. Abstracting Soft Constraints: Framework,
Properties, Examples. Artificial Intelligence Journal, vol. 139, pp. 175-211, 2002.

11. S. Bistarelli, B. Faltings, N. Neagu. Interchangeability in Soft CSPs. Proc. CP2002,
Springer LNCS 2470, 2002.

12. S. Bistarelli, B. Faltings, N. Neagu. Experimental Evaluation of Interchangeability
in Soft CSPs. In Recent Advances in Constraints, Proc CSCLP’03, Springer LNCS
3010, 2004.

13. S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie. Semiring-
Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison. Con-
straints, Vol.4, N.3, Kluwer, 1999.

14. S. Bistarelli and S.N. Foley. Analysis of Integrity Policies using Soft Constraints.
Proc. IEEE POLICY2003, 2003.

15. S. Bistarelli and S.N. Foley. A Constraint Based Framework for Dependability
Goals: Integrity. Proc. SAFECOMP2003, Springer LNCS 2788, 2003.

16. S. Bistarelli and S.N. Foley, B. O’Sullivan. Reasoning about Secure Interoperation
using Soft Constraints. Proc. IFIP TC1 WG1.7 Workshop on Formal Aspects in
Security and Trust (FAST), Kluwer, 2005.

17. S. Bistarelli, S.N. Foley, B. O’Sullivan. Detecting and Eliminating the Cascade
Vulnerability Problem from Multi-level Security Networks using Soft Constraints.
Proc. IAAI-04, AAAI Press, 2004.

18. S. Bistarelli, S.N.Foley, B. O’Sullivan. A soft constraint-based approach to the cas-
cade vulnerability problem. Journal of Computer Security, Volume 13, N. 5, pp. 699
- 720; Special Issue: Security Track at ACM Symposium on Applied Computing,
2004.

19. S. Bistarelli, T. Fruehwirth, M. Marte and F. Rossi, Soft Constraint Propagation
and Solving in Constraint Handling Rules, Special issue of Computational Intelli-
gence on ”Preferences in AI and CP”, volume 20, n. 2, pp. 287-307, 2004.

20. S. Bistarelli, M. Gabbrielli, M.C. Meo, F. Santini. Timed Soft Concurrent Con-
straint Programs. Proc. CP2007 Doctoral Program, Providence RI - USA. 2007.

21. S.Bistarelli and F. Gadducci. Enhancing constraints manipulation in semiring-
based formalisms. In Proc. ECAI-2006, pages 63–67, IOS Press, 2006.



22. S. Bistarelli, R. Gennari, F. Rossi, General Properties and Termination Condi-
tions for Soft Constraint Propagation. Constraints: An International Journal, Con-
straints, Kluwer, Vol. 8, issue 1, January 2003.

23. S. Bistarelli, J. Keleher, B. O’Sullivan. Symmetry Breaking in Soft CSPs. Proc.
AI-2003, BCS Conference Series ”Research and Development in Intelligent Systems
xx”, Springer, 2004.

24. S. Bistarelli, M. Marte, T. Fruhwirth, F. Rossi, Soft Constraint propagation and
Solving with CHRs. Proc. SAC 2002 (ACM Symposium on Applied Computing),
Madrid, March 2002.

25. S. Bistarelli, U. Montanari and F. Rossi. Soft Concurrent Constraint Programming.
ACM Transactions on Computational Logic (TOCL), Vol 7, N. 3, pages 1–27, 2006.

26. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM, vol. 44, n. 2, pp. 201-236, 1997.

27. S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. Proc.
IJCAI95, Morgan Kaufmann, 1995.

28. S. Bistarelli, U. Montanari and F. Rossi. Soft Constraint Logic Programming and
Generalized Shortest Path Problems. Journal of Heuristics, Kluwer, vol 8, n. 1,
2002.

29. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Logic Pro-
gramming. Proc. 15th International Joint Conference on Artificial Intelligence (IJ-
CAI97), pages 352–357, San Francisco, CA, USA, 1997. Morgan Kaufman.

30. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Logic Pro-
gramming: Syntax and Semantics. ACM Transactions on Programming Languages
and System (TOPLAS), 23(1):1–29, 2001.

31. S. Bistarelli, U. Montanari, and F. Rossi. Soft Concurrent Constraint Program-
ming. Proc. ESOP, April 6 - 14, Springer LNCS 2305, 2002.

32. S. Bistarelli, U. Montanari, F. Rossi, and F. Santini. Modelling Multicast Qos
Routing by using Best-Tree Search in AND-OR Graphs and Soft Constraint Logic
Programming. Proc. Fifth Workshop on Quantitative Aspects of Programming
Languages QAPL’07, ENTCS, 2007.

33. S. Bistarelli, I. Pilan, F. Rossi. Abstracting Soft Constraints: Some Experimental
Results. In ”Recent Advances in Constraints, 2003”, Springer LNAI 3010, 2004.

34. S. Bistarelli, F. Santini. Propagating Multitrust within Trust Networks. To appear,
Proc. SAC 2008.

35. S. Bistarelli, F. Santini. Non monotonic soft cc. IIT TR-15/2007, 2007.
36. R. Brafman, Y. Dimopoulos. Preference-based constraint optimization. Computa-

tional Intelligence, vol. 20, n. 2, pp. 218-245, 2004.
37. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets:

A tool for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.

38. M. Buscemi and U. Montanari. CC-Pi: A Constraint-Based Language for Specify-
ing Service Level Agreements. Proc. ESOP’07, Springer LNCS 4421, 2007.

39. M.C. Cooper. Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy
Sets and Systems, vol. 134, n. 3, pp. 311–342, 2003.

40. M.C. Cooper and T. Schiex. Arc Consistency for Soft Constraints. Artificial
Intelligence, vol. 154, n. 1–2, pp. 199–227, 2004.

41. P. Cousot and R. Cousot. Abstract Interpretation: A Unified lattice Model for

static Analysis of Programs by Construction or Approximation of Fixpoints. Proc.
4th ACM Symposium on Principles of Programming Languages (POPL77), ACM,
1977.



42. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

43. A. Delgado, C.A. Olarte, J.A. Prez, C. Rueda. Implementing Semiring-Based
Constraints Using Mozart. Proc. MOZ 2004, Springer LNCS 3389, pages 224-236,
2004.

44. R. De Nicola, et al. A Formal Basis for Reasoning on Programmable QoS. In “
Verification: Theory and Practice”, Springer LNCS 2772, 2004.

45. C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh. Reasoning about soft con-
straints and conditional preferences: complexity results and approximation tech-
niques. Proc. IJCAI-03, 215–220. Morgan Kaufmann, 2003.

46. D. Dubois, H. Fargier, H. Prade, The calculus of fuzzy restrictions as a basis for
flexible constraint satisfaction, Proc. 2nd IEEE Int. Conf. on Fuzzy Systems, IEEE,
1993.

47. D. Duchier, C. Gardent, J. Niehren. Concurrent Constraint Programming in Oz
for Natural Language Processing. Programming Systems Lab, 1998. Available at
http://www.ps.uni-sb.de/Papers

48. H. Fargier and J. Lang, Uncertainty in Constraint Satisfaction Problems: a Prob-
abilistic Approach, Proc. ECSQARU, Springer LNCS 747, 1993.

49. H. Fargier, J. Lang, T. Schiex, Selecting Preferred Solutions in Fuzzy Constraint
Satisfaction Problems, Proc. 1st European Ccongress on Fuzzy and Intelligent
Technologies (EUFIT), 1993.

50. E.C. Freuder, C. Likitvivatanavong, R. J. Wallace. Explanation and implication
for configuration problems. Proc. IJCAI 2001 workshop on configuration, 2001.

51. E. C. Freuder and R. J. Wallace, Partial Constraint Satisfaction, AI Journal, vol.
58, 1992.

52. M. Gelain, M.S. Pini, F. Rossi, K.B. Venable. Dealing with incomplete preferences
in soft constraint problems. Proc. CP 2007, Springer LNCS 4741, 2007.

53. Y. Georget and P. Codognet. Compiling semiring-based constraints with clp(fd,s).
Proc. CP98, Springer LNCS 1520, 1998.

54. A. Ghose and P. Harvey. Metric scsps: Partial constraint satisfaction via semiring
csps augmented with metrics. Proc. 15th Australian Joint Conference on Artificial
Intelligence, Springer LNCS 2557, pages 443–454, 2002.

55. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

56. J. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. POPL87, ACM, 1987.

57. L. Khatib, P. Morris, R. Morris, F. Rossi. Temporal constraint reasoning with
preferences. Proc. IJCAI 2001, August 2001.

58. J. Larrosa, R. Dechter. On the dual representation of non-binary semiring-based
CSPs. Proc. CP2000 Workshop on Soft Constraints, 2000.

59. L. Leenen, T. Meyer, and A. K. Ghose. Relaxations of semiring constraint satisfac-
tion problems. Proc. CP2005 International Workshop on Soft Constraints (SOFT-
05), 2005.

60. K. Marriott and P. J. Stuckey. Programming with Constraints. MIT Press, 1998.

61. P. Meseguer, F. Rossi, T.Schiex. Soft constraints. In Handbook of constraint pro-
gramming, F. Rossi, P. Van Beek, T. Walsh eds., Elsevier, 2006.

62. M. Mohri. Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics; vol. 7, Issue 3, p. 321–350,
2002.

63. U. Montanari. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Science, vol. 7, p. 95–132, 1974.



64. M. Moretti, F. Rossi, E. Freuder, C. Likitvivatanavong, R. Wallace. Explanations
and optimization in preference-based configurators. in Recent Advances in Con-
straints, Springer LNAI, Vol.2627, Springer, 2003.

65. M.S. Pini, F. Rossi, K.B. Venable, S. Bistarelli. Bipolar preference problems: frame-
work, properties and solving techniques. Selected papers from 2006 ERCIM work-
shop on constraints (Lisbon, June 2006), Springer LNAI 4561, 2007.

66. F. Rossi and A. Sperduti. Learning solution preferences in constraint problems.
Journal of Theoretical and Experimental Artificial In telligence (JETAI), Vol. 10,
Taylor and Francis, 1998.

67. F. Rossi and A. Sperduti. Acquiring both constraint and solution preferences in
interactive constraint systems. Constraints, vol.9, n. 4, Kluwer, 2004.

68. F. Rossi, P. Van Beek, and T. Walsh editors, Handbook of constraint programming,
Elsevier, 2006.

69. Zs. Ruttkay, Fuzzy Constraint Satisfaction, Proc. 3rd IEEE Int. Conf. on Fuzzy
Systems, 1994.

70. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
71. T. Schiex. Arc consistency for soft constraints. Proc. CP2000, Springer LNCS

1894, pages 411–424, 2000.
72. T. Schiex, H. Fargier, G. Verfaillie, Valued Constraint Satisfaction Problems: hard

and easy problems. Proc. IJCAI 1995.
73. B.M. Smith, S. Bistarelli, B. O’Sullivan. Constraint Symmetry for the Soft CSP.

Proc. CP 2007, LNCS, Springer, 2007.
74. E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
75. N. Wilson. Decision Diagrams for the Computation of Semiring Valuations. Proc.

IJCAI’05.


