
Journal of Computer Security 13 (2005) 699–720 699
IOS Press

A soft constraint-based approach to the cascade
vulnerability problem

Stefano Bistarelli a,b, Simon N. Foley c and Barry O’Sullivan d

a Istituto di Informatica e Telematica, CNR, Pisa, Italy
E-mail: stefano.bistarelli@iit.cnr.it
b Dipartimento di Scienze, Universitá degli Studi “G. D’annunzio”, Pescara, Italy
E-mail: bista@sci.unich.it
c Department of Computer Science, University College Cork, Ireland
E-mail: s.foley@cs.ucc.ie
d Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Ireland
E-mail: b.osullivan@cs.ucc.ie

The security of a network configuration is based not just on the security of its individual components
and their direct interconnections, but also on the potential for systems to interoperate indirectly across
network routes. Such interoperation has been shown to provide the potential for cascading paths that
violate security, in a circuitous manner, across a network. In this paper we show how constraint satisfaction
provides a natural approach to expressing the necessary constraints to ensure multilevel security across
a network configuration. In particular, soft constraints are used to detect and eliminate the cascading
network paths that compromise security. Taking this approach results in practical advancements over
existing solutions to this problem. In particular, constraint satisfaction highlights the set of all cascading
paths, which we can eliminate in polynomial time by breaking a minimal number of system links to ensure
security.

1. Introduction

The composition of secure systems is not necessarily secure. A user may be able
to gain unauthorised access to an object by taking a circuitous access route across in-
dividually secure but interoperating systems [16]. Determining security is based not
just on the individual system authorisation mechanisms but also on how the systems
are configured to interoperate. For example, if Alice is permitted to have access to
Bob’s files on the administration system, and Clare is permitted access Alice’s files
on the sales system, then is it safe to support file sharing between these systems? The
extent of system interoperation must be limited if the administration security policy
states that Clare is not permitted access to Bob’s (administration) files.

The cascade vulnerability problem [29] is concerned with secure interoperation,
and considers the assurance risk of composing multilevel secure systems that are
evaluated to different levels of assurance according to the criteria specified in [29].

0926-227X/05/$17.00  2005 – IOS Press and the authors. All rights reserved

700 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

The transitivity of the multilevel security policy upheld across all secure systems
ensures that their multilevel composition is secure; however, interoperability and data
sharing between systems may increase the risk of compromise beyond that accepted
by the assurance level. For example, it may be an acceptable risk to store only secret
and top-secret data on a medium assurance system, and only classified and secret
data on another medium assurance system; classified and top-secret data may be
stored simultaneously only on “high” assurance systems. However, if these medium
assurance systems interoperate at classification secret, then the acceptable risk of
compromise is no longer adequate as there is an unacceptable cascading risk from
top-secret across the network to classified.

Existing research has considered schemes for detecting these security vulnera-
bilities and for eliminating them by reconfiguring system interoperation. While the
detection of the cascade vulnerability [14–16,18,23] can be easily achieved, their
optimal elimination is NP-complete [16–18].

We present an approach to using constraints [13,21] for reasoning about secure
interoperation. Constraint solving is an emerging software technology for modelling
and solving large-scale optimisation problems [30]. Constraints have been success-
fully applied to a number of problems in computer security [2,3,6,7,24]. However,
the cascade vulnerability problem, and secure interoperation in general, have not
been studied.

The approach that we present in this paper represents a paradigm shift in the mod-
elling, detection and elimination of the cascade vulnerability problem. We present a
constraint model that provides a natural description of an arbitrary multilevel secure
network. Any solution to the model represents a cascading path through the network,
providing significantly more information on its vulnerabilities than the existing ap-
proaches, and providing a basis for eliminating the cascade vulnerability problem.
Previous approaches [14,18] detect a single cascading path in polynomial time, but
correcting the cascade in an optimal way is NP-complete. Using a constraint model,
we can rely on a significant body of successful techniques from the field of con-
straint processing for finding the set of cascading paths which, once found, can be
eliminated in polynomial time. These results are applicable to secure interoperation
in general.

This paper combines and extends work originally published in [8,9]. The paper
is organised as follows. Section 2 provides background on the cascade vulnerability
problem and on soft constraints. Section 3 describes a soft constraint-based model for
describing multilevel secure networks. Solutions to this constraint model represent
the possible information flow paths through the network and Section 4 characterises
the cascade vulnerability problem in terms of these solutions. An example is consid-
ered in Section 5 and Section 6 proposes a polynomial-time scheme for eliminating
cascading paths from the network.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 701

2. Background

2.1. The cascade vulnerability problem

Figure 1 gives an example of a multilevel security (MLS) network configuration
with a cascade vulnerability problem [14].

The network is comprised of multilevel secure systems Sys.E, Sys.F , Sys.G and
Sys.H storing classified (C), secret (S) and top-secret (T) information as depicted in
Fig. 1. Each system is accredited according to levels of assurance C2<B1<B2<B3
from [28,29]. For example, Sys.F is used to simultaneously store classified, secret
and top-secret information and, therefore, (according to [28,29]) must be evaluated
at level B3 or higher, reflecting the high level of confidence that must be placed in the
secure operation of the system. This is to counter the risk of an attacker compromis-
ing the system and copying top-secret information to classified. Sys.H , on the other
hand, has been evaluated at the lowest level of assurance C2 and, therefore, may be
used only to store single level data.

However, the security-level interoperability defined by the system connections in
Fig. 1 results in a cascade vulnerability across the network. There is a risk that an
attacker who has the ability to compromise security on B2 or lower assured systems
can copy T to S on Sys.E, to S on Sys.H to S to C on Sys.G. This is contrary to the
requirement that the level of assurance that T cannot be copied to C should be B3 or
higher. This requirement is met by the individual systems but not as a result of their
interoperation. A generalised form of the cascade vulnerability problem is defined as
follows.

2.1.1. MLS
A multilevel secure system enforces a lattice-based security policy L of security

levels that has ordering relation �. Given x, y : L then x � y means that information
may flow from level x to level y, for example, C � S � T.

Fig. 1. Network configuration with a cascade vulnerability problem.

702 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

2.1.2. Assurance levels
Security criteria define a lattice, A, of assurance levels with ordering �. Given

x, y : A, then x � y means that a system evaluated at y is no less secure than a
system evaluated at x, or alternatively, that an attacker that can compromise a system
evaluated at y can compromise a system evaluated at x. Let S define the set of all
possible systems. We define accred : S → A where accred(s) gives the assurance
level of system s : S , and is taken to represent the minimum effort required by an
attacker to compromise system s.

2.1.3. Acceptable risk
Security evaluation criteria also define an acceptable risk function risk : L×L →

A, such that given l, l′ : L then risk(l, l′) defines the minimum acceptable risk
of compromise from l to l′; it represents the minimum acceptable effort required
to “compromise security” and copy/downgrade information from level l to level l′.
Without any loss of generality we assume that there is no security enforcement at
the lowest assurance level 0, and thus, if l � l′ then risk(l, l′) = 0. For example,
the function risk encodes the assurance matrix for the “B” levels (from [28,29]) 1, 2
and 3, with: 0 representing no security enforcement, as risk(C, S) = risk(C, T) =
risk(S, T) = 0, risk(S, C) = 1, risk(T, S) = 2, and risk(T, C) = 3, and so forth.

2.1.4. Evaluated systems
Individual systems must be assured higher than the minimum acceptable risk to

compromise the data they store. If a system s can hold information at levels l and l′

then risk(l, l′) � accred(s).

2.1.5. Network model
A system node in our network model is a pair, ls, and represents the fact that

system s can hold information at level l. Thus, a system is a collection of nodes that
represent the data it holds. For example, in Fig. 1, Sys.E can store secret and top-
secret information and is represented by nodes SE and TE . A network of systems
is a weighted graph of these nodes according to how they are connected. An w-
weighted arc from ls to l′s′ means that it requires at minimum w effort to directly
copy information at level l held on system s to level l′ on system s′.

2.1.6. Cascading risks
Arcs are used to represent direct flows within a system and interoperation links

between systems. A flow l � l′ that is permitted on system s is represented as a
(assurance) 0-weighted arc from ls to l′s; if a flow is not permitted between levels l
and l′ that are held on system s then it is represented as an arc weighted as accred(s)
from ls to l′s.

A link from system s to s′ that connects l-level information is represented as a
0-weighted arc from ls to ls′—all other pairs ls to ls′ not related in this way are
either represented as having no arc, or an arc with the maximum assurance value 1.

Given pairs ls and l′s′ we then define effort(ls, l′s′) as the minimum effort required
to compromise the network and copy and/or downgrade level l information held on

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 703

system s to level l′ information on system s′. As an example, in Fig. 1, the effort
to “copy” top-secret information on system Sys.E to classified on system Sys.G is
effort(TE , CG) = B2 via the path through Sys.H .

2.1.7. Cascade freedom
We require that for any pair of systems s and s′ and levels l and l′, then we have

risk(l, l′) � effort(ls, l′s′). Given a path in the network from ls to l′s′ , then its cascade
weight is the maximum weight that directly connects any two nodes on the path. This
reflects the minimum effort that will be required by an attacker to copy information
from ls to l′s′ by using this path. effort(ls, l′s′) is the minimum of the cascade weights
for all paths that connect ls to l′s′ .

2.2. Soft constraints

Several formalisations of the concept of soft constraints are currently available. In
the following, we refer to the one based on c-semirings [4,11], which can be shown
to generalise and express many of the others [5].

A soft constraint may be seen as a constraint where each instantiation of its vari-
ables has an associated value from a partially ordered set that can be interpreted as
a set of preference values. Combining constraints will then have to take into account
such additional values, and thus the formalism has also to provide suitable operations
for combination (×) and comparison (+) of tuples of values and constraints. This is
why this formalisation is based on the concept of c-semiring, which is just a set plus
two operations.

2.2.1. Semirings
A semiring is a tuple 〈A, +,×, 0, 1〉 such that: (1) A is a set and 0, 1 ∈ A; (2) +

is commutative, associative and 0 is its unit element; (3) × is associative, distributes
over +, 1 is its unit element and 0 is its absorbing element. A c-semiring is a semi-
ring 〈A, +,×, 0, 1〉 such that: + is idempotent, 1 is its absorbing element and × is
commutative. Let us consider the relation �S over A such that a �S b iff a + b = b.
Then it is possible to prove that (see [11]): (1) �S is a partial order; (2) + and ×
are monotone on �S ; (3) 0 is its minimum and 1 its maximum; (4) 〈A, �S〉 is a
lattice and, for all a, b ∈ A, a + b = lub(a, b) (where lub is the least upper bound).
Moreover, if × is idempotent, then: + distributes over ×; 〈A, �S〉 is a distributive
lattice and × its glb (greatest lower bound). Informally, the relation �S gives us a
way to compare semiring values and constraints. In fact, when we have a �S b, we
will say that b is better than a. In the following, when the semiring will be clear from
the context, a �S b will be often indicated by a � b.

2.2.2. Constraint problems
Given a semiring S = 〈A, +,×, 0, 1〉 and an ordered set of variables V over a

finite domain D, a constraint is a function which, given an assignment η : V → D
of the variables, returns a value of the semiring. By using this notation we define

704 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

C : η → A as the set of all possible constraints that can be built starting from S, D
and V .

Note that in this functional formulation, each constraint is a function. Such a func-
tion involves all the variables in V , but it depends on the assignment of only a finite
subset of them. So, for instance, a binary constraint cx,y over variables x and y, is
a function cx,y : V → D → A, but it depends only on the assignment of variables
{x, y} ⊆ V . We call this subset the support of the constraint. More formally, consider
a constraint c ∈ C. We define its support as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v :=
d1] �= cη[v := d2]}, where

η[v := d]v′ =
{

d if v = v′,
ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the assignment v := d1
(that is the operator [] has precedence over application). Note also that cη is the
application of a constraint function c : V → D → A to a function η : V → D; what
we obtain, is a semiring value cη = a.

A soft constraint satisfaction problem (SCSP) is a pair 〈C, con〉 where con ⊆ V
and C is a set of constraints: con is the set of variables of interest for the constraint set
C, which however may concern also variables not in con. Note that a classical CSP
is a SCSP where the chosen c-semiring is: SCSP = 〈{false, true},∨,∧, false,
true〉. Fuzzy CSPs [26] (FCSP) can instead be modelled in the SCSP framework by
choosing the c-semiring SFCSP = 〈[0, 1], max, min, 0, 1〉. Many other “soft” CSPs
(Probabilistic, weighted, . . .) can be modelled by using a suitable semiring structure
(Sprob = 〈[0, 1], max,×, 0, 1〉, Sweight = 〈R, min, +, +∞, 0〉, . . .).

Figure 2 shows the graph representation of a fuzzy CSP. Variables and constraints
are represented, respectively, by nodes and by undirected (unary for c1 and c3 and
binary for c2) arcs, and semiring values are written to the right of the corresponding
tuples. The variables of interest (that is the set con) are represented with a double
circle. Here we assume that the domain D of the variables contains only elements a
and b and c.

Fig. 2. A fuzzy CSP.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 705

2.2.3. Combining and projecting soft constraints
Given the set C, the combination function ⊗ : C×C → C is defined as (c1⊗c2)η =

c1η ×S c2η. In words, combining two constraints means building a new constraint
whose support involves all the variables of the original ones, and which associates
with each tuple of domain values for such variables a semiring element which is
obtained by multiplying the elements associated by the original constraints to the
appropriate sub-tuples. It is easy to verify that supp(c1 ⊗ c2) ⊆ supp(c1)∪supp(c2).

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over V − {v},
written c ⇓(V −{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d]. Informally,

projecting means eliminating some variables from the support. This is done by as-
sociating with each tuple over the remaining variables a semiring element which is
the sum of the elements associated by the original constraint to all the extensions of
this tuple over the eliminated variables. In short, combination is performed via the
multiplicative operation of the semiring, and projection via the additive one.

2.2.4. Solutions
A solution of an SCSP P = 〈C, con〉 is the constraint Sol(P) = (

⊗
C) ⇓con.

That is, we combine all constraints, and then project over the variables in con. In this
way we get the constraint with support (not greater than) con which is “induced” by
the entire SCSP. Note that when all the variables are of interest we do not need to
perform any projection.

For example, the solution of the fuzzy CSP of Fig. 2 associates a semiring element
with every domain value of variable x. Such an element is obtained by first combin-
ing all the constraints together. For instance, for the tuple 〈a, a〉 (that is, x = y = a),
we have to compute the minimum between 0.9 (which is the value assigned to x = a
in constraint c1), 0.8 (which is the value assigned to 〈x = a, y = a〉 in c2) and
0.9 (which is the value for y = a in c3). Hence, the resulting value for this tuple
is 0.8. We can do the same work for tuple 〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0,
〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and 〈c, c〉 → 0.2. The ob-
tained tuples are then projected over variable x, obtaining the solution 〈a〉 → 0.8,
〈b〉 → 0.1 and 〈c〉 → 0.8.

3. Modelling MLS networks

Consider a network N = {E, F , G, H , . . .} of a finite arbitrary number n of sys-
tems. This network is represented in our constraint model in terms of all possible
paths (of length n and less) that connect the systems. The paths are modelled using
2 × n path variables, where each path variable P s

i and P d
i can be instantiated to be

one system of the network. A path through the network is represented by a specific
instantiation of the variables [P s

1 , P d
1 , P s

2 , P d
2 , . . . , P s

n, P d
n]. In particular, the instan-

tiation of the pair of nodes P s
i and P d

i , for i := 1 . . . n, represents the flow from the
source P s

i to the destination P d
i within the system at the i-th position of the path.

706 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

Fig. 3. A simple network.

Similarly, instantiation of P d
i and P s

i+1, for i := 1 . . . n − 1 represents the flow
among the i-th and the i + 1-th system in the specific instantiated path.

Consider for instance the network N = {E, F} represented in Fig. 3 involving
two systems, Sys.E and Sys.F , with Sys.E handling information at level top-secret
(T) and secret (S), and Sys.F handling information at level secret (S) and confiden-
tial (C). We can capture this instance by using 4 path variables: [P s

1 , P d
1 , P s

2 , P d
2].

3.1. Path variable domains

The domain of each path variable defines the set of possible security levels avail-
able on each system. In particular, each source variable P s

i contains domain elements
marked with s, and each destination variable P d

i contains domain elements marked
with d.

The network in Fig. 3 has in our model 4 variables [P s
1 , P d

1 , P s
2 , P d

2] with
dom(P s

i) = {Ts
E , Ss

E , Ss
F , Cs

F }, with i := 1, 2, and dom(P d
i) = {Td

E , Sd
E , Sd

F , Cd
F },

for i := 1, 2. The strategy in our network model is that a network configuration will
be represented as a series of constraints between the source and destination variables,
representing all possible paths across the network.

In general, when the network contains n > 2 systems, we also need to be able to
deal with shorter paths of length k < n. To do this, we need to extend the domain
of each path variable, P ?

i (where ? stands alternatively for source s and destination
d), for any i > 2, with some artificial elements. More precisely, we extended the
domain dom(P ?

i)′ = dom(P ?
i) ∪ {∗?

1, ∗?
2, . . . , ∗?

i−2}. These ∗ elements are added to
deal with paths shorter than n. This is necessary because solving an SCSP requires
finding an assignment for each variable in the SCSP and we may want to represent
paths shorter than the number of nodes in the network.

3.2. Modelling each system

The flows that are possible within a particular system occuring in position i of a
network path are modelled as a constraint between the source and destination vari-
ables P s

i and P d
i . These flows reflect the accesses that are permitted by the system’s

MLS security mechanism. For example, secret information is permitted to flow to
top-secret in Sys.E and, thus, there is a constraint [P s

1 := Ss
E ; P d

1 := Td
E], which

evaluates to 0, meaning unrestricted information flow. The flows that are possible
within a system can be categorised in three ways.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 707

• Flowpermitted represents the information flows that are permitted by the policy
in each node. For example, S may flow to T in Sys.E.

• Flowrisk represents the information flows that are not permitted by the policy,
but for which there is a risk of flow if the system became compromised. For
example, the risk of a flow from T to S in system Sys.E is B2 (assurance level
2), corresponding to the level of assurance at which Sys.E has been evaluated.

• Flowinvalid: represents all the remaining flows that are not valid (that is, are im-
possible for the given system). For example, a flow from T to C is not possible
on Sys.E since the system has not been configured to store information labelled
as classified.

Consider an arbitrary system Si that can occur on position i of a path through the
network. Between each pair of variables P s

i and P d
i for each system Si, we define a

soft constraint, c(P s
i ,P d

i), that gives a weight to each possible (permitted or risk) flow

within that system. Various semirings could be used to represent the network and the
associated policy. We use the following semiring in this paper, although our results
are general and are not limited to this particular one:

Scascade = 〈N, min, max, +∞, 0〉.

Given this semiring, the constraint c(P s
i ,P d

i) representing the flow inside a system S

that occurs on position i of the path is defined as follows:

c(P s
i ,P d

i)(s, d) =




accred(Si) (s, d) ∈ Flowrisk
(risk flows);

0 (s, d) ∈ Flowpermitted
(permitted flows);

+∞ otherwise
(invalid flows).

Since the domain of the variables P ?
i (where ? stands for s and d) has been ex-

tended with the elements {∗?
1, ∗?

2, . . . , ∗?
i−2}, we have also to consider these “arti-

ficial” values. In particular, we extend the definition of each constraint c(P s
i ,P d

i) as

follows:

c(P s
i ,P d

i)(s, d) =




0 (s, d) ∈ {(∗s
1, ∗d

1), . . . , (∗s
i−2, ∗d

i−2)}
(Artificial permitted flows);

+∞ otherwise
(Artificial invalid flows).

The constraints between P s
1 and P d

1 and between P s
2 and P d

2 in Fig. 4 depicts
some of the system flow constraints that model the network configuration in Fig. 3.
The use of the ‘∗’ elements and the representation of connections between systems
within the network is considered in the next section.

708 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

Fig. 4. Flow constraints within Sys.E and Sys.F .

3.3. Modelling the network

Security level interconnections between systems result in two classes of flows
between systems in a network.

• Networkpermitted represents information flows permitted by the connection pol-
icy between each system and represents direct synchronisation flows between
systems. For example, the secret-level connection from Sys.E to Sys.F in Fig. 3
corresponds to a network permitted flow from SE to SF .

• Networkinvalid represents the absence of direct connection between the systems
in the network configuration.

For each adjacent pair of systems at positions i and i + 1 along a network path,
we define a soft constraint, c(P d

i ,P s
i+1), that defines the possible synchronisations be-

tween the systems. Note that these constraints are defined between the destination
variable of the first system, P d

i , and the source variable of the second system, P s
i+1.

The constraint c(P d
i ,P s

i+1) representing the synchronisation flows between system at

positions i and i + 1 is defined as follows:

c(P d
i ,P s

i+1)(d, s) =




0 (d, s) ∈ Networkpermitted
(Policy permitted synchronisation);

+∞ otherwise
(invalid synchronisation).

For example, the network configuration Networkpermitted for Fig. 3 is defined as fol-
lows:

Networkpermitted = {(Sd
E , Ss

F), (Sd
F , Ss

E)}

Note that the connection model does not consider assurance risks for connections;
this can be achieved, if desired, by explicitly modelling the connections by their
components (for example, a link encryption device) and corresponding assurance
levels.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 709

Fig. 5. Flow constraints on the connection from Sys.E to Sys.F .

When connecting systems at P d
i and P s

i+1 it is also necessary to consider the
constraints imposed by the artificial elements ∗?

i . The definition of each constraint
c(P d

i ,P s
i+1) is extended as follows:

c(P d
i ,P s

i+1)(d, s) =




0 (d, s) ∈ {(∗d
1 , ∗s

2), . . . , (∗d
i−3, ∗s

i−2)}

∪{(�, ∗s
1) for all � ∈ D(P d

i)}
(Artificial permitted synchronisation);

+∞ otherwise
(Artificial invalid synchronisation).

The extension of this constraint is slightly different to the previous system-level con-
straints. In particular, it enables us to model the connection between the last real
domain element in the path and the first ∗s

1-element.
Figure 5 depicts some of the system and network flow constraints that model the

network configuration in Fig. 3. This constraint network represents a number of paths
of length 4 (corresponding to 2 ∗ n, where n is the number of systems in the con-
figuration). The path represented by the constraint solution η = [P s

1 := Ts
E ; P d

1 :=
Sd

E ; P s
2 := Ss

F ; P d
2 := Cd

F] has assurance/risk values: 2 (top-secret to secret com-
promise on Sys.E); 0 (secret level system connection); and 1 (secret to classified
compromise on Sys.F), on the relating arcs, respectively.

For a given configuration, every path through the network must be modelled in
this way. Figure 5 represents just one path and its subpaths, starting from Sys.E.
Further constraints must be added to the model of the configuration to depict the
other paths. For example, paths that start from Sys.F . Figure 6 depicts some of the
constraints that represents all paths for the configuration. In more complex network
configurations the ∗ elements allow the modelling of alternate paths between sys-
tems. For example, in the case of Fig. 1, paths (of length four) include [E; F ; G; H],
[E; H; G; ∗], and so forth.

In addition to ensuring that systems are configured in a valid way, we also need
to ensure that no two pairs of path variables represent the same system. This ensures
that our model does not capture cyclic paths. Therefore, we need to post an alldiffer-
ent [25] constraint amongst all the variables in the model. An alldifferent constraint
ensures that all variables over which it is defined take on different values.

710 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

Fig. 6. Modelling multiple paths.

The solutions of the defined SCSP (referred to as the Effort-CSP, E), that is all the
solutions with a weight lower than +∞, represents all of the possible paths through
the system. The semiring level associated with each path (solution) gives a measure
of the effort required to compromise the network using that specific path.

4. Detecting cascade vulnerabilities

To determine whether or not there exists a cascade vulnerability problem, we need
to compare the effort required to compromise the network against the risk of com-
promising the system as a whole. Therefore, we introduce a set of risk constraints,
R = {r(P s

1 ,P d
i)|i ∈ {2, . . . , n}}. The weight of each instance of r(P s

1 ,P d
i) represents

the risk associated with the path from P s
1 to P d

i . The cost of each tuple in these
constraints is defined as follows:

r(Ss
1 ,Sd

i)(s, d) =
{

0 if d = ∗d
i ;

risk(s, d) otherwise.

The set of solutions of the SCSP E (that is the Effort-CSP defined above), each
of whose associated semiring level is lower than +∞, represents the set of paths
through the network. The semiring level associated with each solution-path of E rep-
resents the minimum effort required to compromise the network, while the combina-
tion of the constraints in R (the Risk-CSP) gives the risk for all the paths. Therefore,
a cascading path can be identified as any path η where the risk associated with the
path exceeds the effort to compromise it, that is, where the following constraint is
satisfied:

⊗
Rη >

⊗
Eη

Therefore, by adding the above constraint to our constraint model, the existence of
a solution to that model indicates that here exists a cascading path. Furthermore, the

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 711

set of solutions provides the set of cascading paths. This provides us with a basis
upon which we can set about removing the cascade vulnerability problem from the
network by eliminating all solutions of the model.

5. An example

In this section we encode the network example described in Fig. 1 within the pro-
posed constraints model. Figure 7 depicts the structure of the constraint relationships
in this model. We first present an example of how our model identifies a cascade-free
path, and then present an example of detecting a cascading path.

For the purposes of the examples, the risk lattice is assumed to be as follows:
risk(C, S) = risk(C, T) = risk(S, T) = 0, risk(S, C) = 1, risk(T, S) = 2,
risk(T, C) = 3.

Figure 7 presents the structure of the constraint model for an example from [14].
Our model comprises 8 path variables, P s

1 , P d
1 , P s

2 , P d
2 , P s

3 , P d
3 , P s

4 , and P d
4 , and 3

risk variables, r(P s
1 ,P d

2), r(P s
1 ,P d

3) and r(P s
1 ,P d

4). The domain of each path variable,

D(P ?
i), is: {T?

E , S?
E , T?

F , S?
F , C?

F , S?
G, C?

G, S?
H} (where ? stands alternatively for s

and d) and i := 1, . . . , 4. Note that we also extend each domain using ∗?
i values as

described above, but do not show this here for conciseness.

5.1. A cascade-free path

Consider the following path through the network:

η = [P s
1 := Ts

E , P d
1 := Td

E , P s
2 := Ts

F , P d
2 := Sd

F ,

P s
3 := Ss

G, P d
3 := Cd

G, P s
4 := ∗s

1, P d
4 := ∗d

1].

This scenario is illustrated in Fig. 8.

Fig. 7. The constraint model structure.

712 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

Fig. 8. A cascade-free path.

Evaluating the cascade detection constraint we get the following, proving that this
path is cascade-free:

⊗
Rη >

⊗
Eη ≡ 3 > 3 ≡ False.

5.2. A cascading path

Consider the following path through the network, depicted in Fig. 9:

η = [P s
1 := Ts

E , P d
1 := Sd

E , P s
2 := Ss

H , P d
2 := Sd

H ,

P s
3 := Ss

G, P d
3 := Cd

G, P s
4 := ∗s

1, P d
4 := ∗d

1]

Evaluating the cascade detection constraint we get the following:

⊗
Rη >

⊗
Eη ≡ 3 > 2 ≡ True

Therefore, this path exhibits a cascade vulnerability problem.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 713

Fig. 9. A cascading path.

6. Eliminating cascade vulnerabilities

In order to eliminate the cascade vulnerability problem from an MLS network it
is necessary to remove all of the cascading paths that run through it. However, in
breaking links (connections) between systems, the services provided by the network
are affected. Therefore, when eliminating the cascade vulnerability problem it is
preferable to break as few links as possible.

The set of solutions to the constraint model presented earlier provides all of the
cascading paths within the network. Therefore, in order to remove all cascade vul-
nerabilities from the network, we need to eliminate all solutions to the constraint
model.

The problem of finding the minimum number of links to break in order to remove
all of the cascading paths can be reformulated within our framework as the problem
of finding the minimum number of unary constraints (each removing a link) that have
to be added to the problem to make it unsatisfiable. This problem has been solved in
[1] by solving the corresponding minimum hitting-set problem. Given a collection J
of subsets of a finite set K, the minimum-hitting set of J is the smallest (cardinality)
set K ′ ⊆ K from J such that K ′ contains at least one element from each subset in J .
Unfortunately, finding the minimum hitting-set is NP-complete.

Our approach to solving the problem takes a slightly different approach to [1].
Rather than finding a subset of the links with minimum cardinality, we focus on

714 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

finding a set of links that is minimal in the sense that no link from such a set can
be re-introduced without resulting in a cascading path. That is, we are looking for a
set of unary constraints to add to our constraint model (with each unary constraint
removing a link) such that the resultant CSP is unsatisfiable, and such that no proper
subset of this set would give rise to an unsatisfiable CSP.

Definition 1 (Minimal Set of Removed Links). A set of links that we remove is
minimal if:

1. The resultant network is cascade free, and
2. No proper subset of this set gives rise to a network without the cascade vulner-

ability problem.

Central to our approach to eliminating cascading paths is the notion of a cascading
path generator.

Definition 2 (Cascading Path Generator). A cascading path generator, η, is a path
involving a sequence of assignments to path variables that is not a super-sequence of
another cascading path. Note that we ignore the artificial values ∗?

s/d
.

The set of cascading path generators are representative of all cascading paths in
the set of solutions to our constraint model. In fact, each cascading path is a cascad-
ing path generator itself or one of its extensions. If an extension of a cascading path
generator introduces no more critical links (i.e., that are responsible for introducing
additional cascading paths) the cascading effect on this path is removed when we re-
move the problem from the cascading path generator. If other critical links are added,
the new links will also appear in another cascading path generator and will be dealt
with when eliminating all cascading vulnerability problems due to that generator.
Thus, to focus attention on the causes of the cascade vulnerabilities it is sufficient to
limit any elimination strategy to the set of cascading path generators. These can be
obtained from the set of solutions in polynomial-time.

Each cascading path generator has a very important property: namely, that it is
sufficient to remove one link on the path in order to remove the cascading effect
associated with it.

Theorem 1. Given a cascading path generator, η, removing any of the links on that
path removes the cascading effect along that path.

Proof. This follows from the definition of cascading path generator. A cascading
path generator represented by η does not, by definition, contain any sub-path that is
also a cascading path. Therefore, we can safely remove any link in η and be sure
the cascade along η (and any other cascading paths that η may generate) will be
removed. �

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 715

Starting from the set of all of the cascading path generators our goal is to find a set
of links to be removed (unary constraints to be added) in order to obtain a cascade
free network (a CSP with no solutions). Moreover we want to find a minimal set of
links, as discussed earlier.

Example 1. Consider multilevel secure systems E, F , G, H , I and J managing
information at security levels e, f, g, h, i, j and k that are configured according to
Fig. 10. Each system is evaluated at the lowest level of assurance 1, while the risk
function specifies risk(x, y) = 1 for any level x and y, except for the cases of
risk(e, h) = 2, risk(e, i) = 2 risk(f, i) = 2 risk(g, j) = 2. This configuration
results in the following set of cascading path generators:

P1 = 〈L1, L2〉

P2 = 〈L2, L3〉

P3 = 〈L3, L4〉

P4 = 〈L4, L5〉.

Note that while path P5 = 〈L1, L2, L3〉 is also a cascading path it is not a cascading
path generator: P5 is covered by cascading path generators 〈L1, L2〉 and 〈L2, L3〉; re-
moval of any link from each of these paths will also ensure elimination of cascading
path P5.

The sets {L1, L3, L5}, {L2, L3, L5} and {L2, L4} are all minimal sets of links
that we can remove to eliminate all cascade paths in the system. Notice that the
cascading path {L2, L3, L4} is not minimal because by removing L3 we can still
obtain a cascade-free configuration.

Fig. 10. Multiple cascading path generators.

716 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

Following the approach in [12,20] used to find minimal conflict sets, we de-
scribe an approach to find a minimal set of links to be removed from the network.
The following algorithm is used to select an approximation of a minimal set of re-
moved links (the algorithm is known in the literature as greedy minimal hitting-set
[19,22,27]):

1. Maintain a counter for each link involved in the set of cascading path generators
that need to be removed.

2. Remove the most common link (the link with the highest counter), thus remov-
ing all cascading path generators involving that link; in case of a tie a random
one is selected.

3. Update the link counters built in Step 1 to reflect the effect of reducing the set
of cascading path generators that we need to consider.

4. Continue removing links and updating the link counters until all cascading
paths have been removed.

This is a polynomial-time procedure that gives an approximation of a minimal set
of removed links. Starting from this approximation we must now verify that it is a
minimal set.

This is done using the technique proposed in [12,20]. The strategy behind this
technique is as follows. Given a set of links {l1, l2, . . . , ln} generated by the proce-
dure above, then ln must be part of a minimal set of links, since it was required to
eliminate all cascading paths. The process is then repeated, this time starting from
ln, and building the set {ln, l1, l2, . . . , lk} until all cascading paths have again been
removed. Since adding a constraint corresponding to lk leads to an unsatisfiable CSP,
lk must also be part of the minimal set too. At the next step we start by incremen-
tally building the set {ln, lk, l1, l2, . . . , lm}, until the initial set we use for the current
iteration eliminates all cascading paths. An example is presented below to illustrate
the strategy.

Example 2. Consider again the system configuration depicted in Fig. 10. Using the
greedy minimal hitting-set algorithm, defined above, we could1 find the following
approximation of the minimal set of removed links: r1 = {L3, L2, L5}. We now
apply the iterative technique [12,20] to computing a minimal conflict as described
above. Link L5 leads to an inconsistent CSP and, therefore, L5 must be in the mini-
mal set. An alternative set of links to remove is built, starting from L5 and following
the same order as before. In removing link L5 we remove only path P4 and then we
remove link L3, removing paths P2 and P3. To remove all the paths we have to also
remove link L2, which removes the path P1. L2 is the last removed link, so it has to
be in the minimal set with L5.

Starting again, this time from set {L5, L2}, we remove paths P1, P2 and P4. Cas-
cading path generators remain in the network and thus we continue to select more

1Notice that more than one result can be obtained if ties are encountered as we consider the link coun-
ters.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 717

Table 1

Computing minimal sets of links to break all cascading paths

Step Removed links Paths remaining Partial minimal set

of links to break

1. {L3} {P1, P4} {}

2. {L3, L2} {P4} {}

3. {L3, L2, L5} {} {L5}

4. {L5} {P1, P2, P3} {L5}

5. {L5, L3} {P1} {L5}

6. {L5, L3, L2} {} {L5, L2}

7. {L5, L2} {P3} {L5, L2}

8. {L5, L2, L3} {} {L5, L2, L3} (minimal)

1. {L3} {P1, P4} {}

2. {L3, L2} {P4} {}

3. {L3, L2, L4} {} {L4}

4. {L4} {P1, P2} {L4}

5. {L4, L3} {P1} {L4}

6. {L4, L3, L2} {} {L4, L2}

7. {L4, L2} {} {L4, L2} (minimal)

links for removal. Selecting L3 results in the removal of P3 and, since the initial set
that we used for the current iteration eliminates all cascading paths, we can say that
the set r1 = {L3, L2, L5} is a minimal set of links we can use.

In this case the greedy algorithm gave a minimal set of links. This is not always
the case. Suppose the greedy algorithm first removes the link L3 (that has a counter
of 2), then removes link L2 (that has a counter of 1) and then removes L4 instead of
L5 (both have counter value 1). We obtain the set r2 = {L3, L2, L4} as the approxi-
mation of the minimal set of removed links. Running the algorithm we first remove
L3 (removing paths P2 and P3), then L2 (removing path P1) and then link L4 (re-
moving the last path P4). We now start from the L4, but must also remove links L3
and L2 to remove all paths. Now, starting with the set r∗2 = {L4, L2} we remove all
the paths, and thus r∗2 is a minimal cascading path.

Table 1 depicts the runs of the algorithm for the two examples.

The following results regarding this procedure follow from [12,20].

Theorem 2 (Soundness). The network we obtain from applying the procedure is cas-
cade free.

Proof. The procedure used to remove links is applied until no cascading path are
present. Therefore, the network is cascade free. �

718 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

Theorem 3 (Minimality). The number of links that are removed from the network is
minimal.

Proof. Notice that we can eliminate the cascading effect from a cascading path gen-
erator by removing any one of its links. The minimality of this set follows from
[12,20]. �

7. Conclusion

In this paper we have presented a new approach to detecting and eliminat-
ing the cascade vulnerability problem in multilevel secure systems based on soft
constraints. Soft constraints have been successfully applied to other problems in
computer security. The Role-Based Access Control policy model described in [3]
uses soft-constraints to define authorisation but does not consider the issue of se-
cure/cascading authorisation. [6,24] considers how soft constraints might be used to
specify noninterference-style security properties for systems. In [2] soft constraints
are used to represent confidentiality and authentication properties of security proto-
cols. A soft constraint based model is used in [10] to analyze the secure interoper-
ation problem in [16]. These results, and the results in this paper, demonstrate the
usefulness of constraints as a general purpose modelling technique for security.

The approach that we present in this paper represents a paradigm shift in the mod-
elling, detection and elimination of the cascade vulnerability problem. In particular,
our constraint model provides a natural and declarative description of an arbitrary
multilevel secure system. Any solution to the model represents a cascading path,
which provides significantly more information regarding the vulnerabilities in the
network than the existing approaches. The set of solutions to the proposed constraint
model provides a basis for removing the cascade vulnerability problem. Previous ap-
proaches [14,18] detect a single cascading path in polynomial time, but correcting
the cascade in an optimal way is NP-complete. As described above, detecting all
paths in the constraint model is NP-hard, however elimination of a minimal number
of links is polynomial.

While constraint solving is NP-complete in general, this has not detracted from
its uptake as a practical approach to solving many real-world problems [30]. Using a
constraint model, we can rely on a significant body of successful techniques for find-
ing the set of cascading paths, which once found, can be eliminated in polynomial
time. These results are applicable to secure interoperation in general.

Acknowledgements

The work in this paper builds upon earlier work presented in two conference pa-
pers by the authors [8,9]. We are indebted to the anonymous referees whose com-
ments helped us to improve the presentation considerably.

S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem 719

This work has received partial support from the Italian MIUR project “Con-
straint Based Verification of Reactive Systems” (COVER) and from Enterprise Ire-
land under their Basic Research Grant Scheme (Grant Numbers SC/02/289 and
SC/2003/007) and their International Collaboration Programme (Grant Number
IC/2003/88).

References

[1] J. Bailey and P.J. Stuckey, Discovery of minimal unsatisfiable subsets of constraints using hitting-
set dualization, in: Proc. Practical Aspects of Declarative Languages (PADL 2005), Volume 3350 of
Lecture Notes in Computer Science, Springer, 2005, pp. 174–186.

[2] G. Bella and S. Bistarelli, Soft constraint programming to analysing security protocols, Theory and
Practice of Logic Programming (TPLP), (Special Issue on Verification and Computational Logic)
4(5) (2004), 1–28.

[3] V.G. Bharadwaj and J.S. Baras, Towards automated negotiation of access control policies, in: Proc.
of IEEE Workshop Policies for Distributed Systems and Networks, 2003, pp. 77–80.

[4] S. Bistarelli, Semirings for Soft Constraint Solving and Programming, Volume LNCS 2962,
Springer, 2004.

[5] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex and G. Verfaillie, Semiring-based CSPs
and Valued CSPs: Frameworks, properties, and comparison, CONSTRAINTS: An International Jour-
nal 4(3) (1999), 199–240.

[6] S. Bistarelli and S.N. Foley, Analysis of integrity policies using soft constraints, in: Proc. of IEEE
Workshop Policies for Distributed Systems and Networks, 2003, pp. 77–80.

[7] S. Bistarelli and S.N. Foley, A constraint based framework for dependability goals: Integrity,
in: Proc. of 22nd International Conference on Computer Safety, Reliability and Security (SAFE-
COMP2003), Volume 2788 of Lecture Notes in Computer Science, Springer, 2003, pp. 130–143.

[8] S. Bistarelli, S.N. Foley and B. O’Sullivan, Detecting and eliminating the cascade vulnerability
problem from multi-level security networks using soft constraints, in: Proceedings of AAAI/IAAI-
2004 (16th Innovative Applications of AI Conference), AAAI Press, San Jose, 2004, pp. 808–813.

[9] S. Bistarelli, S.N. Foley and B. O’Sullivan, Modelling and detecting the cascade vulnerability prob-
lem using soft constraints, in: Proceedings of ACM Symposium on Applied Computing (SAC-2004),
ACM Press, 2004, pp. 383–390.

[10] S. Bistarelli, S.N. Foley and B. O’Sullivan, Reasoning about secure interoperation using soft con-
straints, in: Proceedings of FAST-2004 Workshop on Formal Aspects of Security and Trust, 2004.

[11] S. Bistarelli, U. Montanari and F. Rossi, Semiring-based Constraint Solving and Optimization, JACM
44(2) (1997), 201–236.

[12] J.L.N. de Siqueira and J.-F. Puget, Explanation-based generalisation of failures, in: Proc. 8th Euro-
pean Conference on Artificial Intelligence, ECAI 88, Pitmann Publishing, 1988, pp. 339–344.

[13] R. Dechter, Constraint Processing, Morgan-Kaufmann, 2003.

[14] J.A. Fitch and L.J. Hoffman, A shortest path network security model, Computers and Security 12(2)
(1993), 169–189.

[15] S.N. Foley, Conduit cascades and secure synchronization, in: ACM New Security Paradigms Work-
shop, 2000.

[16] L. Gong and X. Qian, The complexity and composability of secure interoperation, in: Proceedings
of the Symposium on Security and Privacy, Oakland, CA, IEEE Computer Society Press, 1994,
pp. 190–200.

720 S. Bistarelli et al. / A soft constraint-based approach to the cascade vulnerability problem

[17] S. Gritalis and D. Spinellis, The cascade vulnerability problem: The detection problem and a simu-
lated annealing approach to its correction, Microprocessors and Microsystems 21(10) (1998), 621–
628.

[18] J.D. Horton, R. Harland, E. Ashby, R.H. Cooper, W.F. Hyslop, B.G. Nickerson, W.M. Stewart and
O.K. Ward, The cascade vulnerability problem, Journal of Computer Security 2(4) (1993), 279–290.

[19] D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and Sys-
tem Sciences 9 (1974), 256–278.

[20] U. Junker, QUICKXPLAIN: Conflict detection for arbitrary constraint propagation algorithms, in:
IJCAI ’01 Workshop on Modelling and Solving problems with constraints, Seattle, WA, USA, 2001.

[21] V. Kumar, Algorithms for constraint-satisfaction problems: A survey, AI Magazine 13(1) (1992),
32–44.

[22] L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Mathematics 13 (1975),
383–390.

[23] J.K Millen and M.W. Schwartz, The cascading problem for interconnected networks, in: 4th
Aerospace Computer Security Applications Conference, 1988, pp. 269–273.

[24] A. Di Pierro, C. Hankin and H. Wiklicky, On approximate non-interference, in: Proc. of Workshop
on Issues in the Theory of Security, IFIP WG1.7, 2002.

[25] J.-C. Regin, A filtering algorithm for constraints of difference in csps, in: Proceedings AAAI-94,
1994, pp. 362–367.

[26] T. Schiex, Possibilistic constraint satisfaction problems, or “how to handle soft constraints”? in:
Proc. 8th Conf. of Uncertainty in AI, 1992, pp. 269–275.

[27] P. Slavík, A tight analysis of the greedy algorithm for set cover, in: Proc. of the 28th ACM Symposium
on Theory of Computing (STOC), 1996, pp. 435–441.

[28] TCSEC, Computer security requirements – guidance for applying the department of defense trusted
computer system evaluation criteria in specific environments, Technical Report CSC-STD-003-85,
National Computer Security Center, Orange Book, 1985.

[29] TNI, Trusted computer system evaluation criteria: Trusted network interpretation, Technical report,
National Computer Security Center, Red Book, 1987.

[30] M. Wallace, Practical applications of constraint programming, Constraints 1(1–2) (1996) 139–168.

