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Abstract

Integrity policies and cryptographic protocols have much in common. They allow
for a number of participating principals, and consist of sets of rules controlling
the actions that principals should or should not perform. They are intended to
uphold various security properties, the crucial ones being integrity, confidentiality
and authentication.

This paper takes a unified view to the analysis of integrity policies and crypto-
graphic protocols: they are artifacts that must be designed to be sufficiently robust
to attack given an understood threat model. For example, integrity policy rules pro-
vide resilience to the threat of internal fraud, while cryptographic protocols provide
resilience to the threat of replay and related attacks. The framework is modelled
using (soft) constraints and analysis corresponds to the soft constraint satisfaction
problem. Soft constraints facilitate a quantitative approach to analyzing integrity,
confidentiality and authentication. Examples will be given: an integrity policy may
achieve different levels of integrity under different circumstances; a protocol message
may enjoy different levels of confidentiality for different principals; a principal can
achieve different levels of authentication with different principals.
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1 Introduction

Integrity, confidentiality and authentication are essential security properties.
In this paper we use the constraint solving framework to uniformly study all
of them in the context of integrity policies and cryptographic protocols.

An integrity policy defines the situations when modification of information
is authorized and is enforced by the security mechanisms of the system. This
is done by modeling the system and infrastructure in terms of the constraints
that they impose over security relevant components of the system. This results
in a definition of integrity consistency that can be solved as a constraint solving
problem A further advantage to using a constraint based framework is that
it becomes possible to carry out a quantitative analysis of integrity using
soft constraints [6, 7, 8, 2, 18, 19, 11, 14, 17]. A quantitative analysis provides a
fine-grained measure of how secure a system is, rather than the simple coarse-
grained false/true provided by the conventional ‘crisp’ constraints.

A cryptographic protocol is a prescribed set of message exchanges between
principals of an insecure network. Confidentiality is the property of a mes-
sage to remain undisclosed to malicious principals. Another crucial goal is
authentication, confirming a principal’s participation in a protocol session.
Confidentiality has been essentially formalised as a mere “yes or no” prop-
erty thus far, so one can just claim that a key is confidential or not. The
motivation for our research was studying a finer formal notion for the goal.
We have developed the notion of l-confidentiality, where l is the security level
signifying the strength with which the goal is met. The security level belongs
to the carrier set of a semiring, as we adopt semiring-based soft constraint
programming. Each principal assigns his own security level to each message
— different levels to different messages — expressing the principal’s trust on
the message. This lets us formalise that different levels of a goal are granted
to different principals.

The paper is organized as follows. Section 2 provides an introduction to
constraints and the constraint solving problem. Section 3 first proposes an ab-
stract approach to modeling systems within a crisp constraint framework, and
then describes how soft constraints are used to carry out quantitative integrity
analysis. The paper continues with the presentation of the crucial SCSPs for
analyzing cryptographic protocols, with the definitions concerning confiden-
tiality, and with a significant example (Section 4). Finally, some conclusions
(Section 5) are given.

2 Introduction to Constraint Solving

Constraint Solving is an emerging software technology for declarative descrip-
tion and effective solving of large problems. The constraint programming pro-
cess consists of the generation of requirements (constraints) and solution of
these requirements, by specialized constraint solvers.
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When the requirements of a problem are expressed as a collection of
boolean predicates over variables, we obtain what is called the crisp (or classi-
cal) Constraint Satisfaction Problem (CSP). In this case the problem is solved
by finding any assignment of the variables that satisfies all the constraints.

Sometimes, when a deeper analysis of a problem is required, soft constraints
are used instead. Soft constraints associate a qualitative or quantitative value
either to the entire constraint or to each assignment of its variables. Such val-
ues are interpreted as levels of preference or importance or cost. The levels are
usually ordered, reflecting the fact that some levels (constraints) are better
than others. When using soft constraints it is necessary to specify, via suit-
able combination operators, how the level of preference of a global solution is
obtained from the preferences in the constraints.

Several formalizations of the concept of soft constraints are currently avail-
able. In the following, we refer to the formalization based on c-semirings
[6, 7, 9, 2], which can be shown to generalize and express both crisp and soft
constraints [7, 3].

2.1 Semiring-based CSPs

A semiring-based constraint assigns to each instantiation of its variables an
associated value from a partially ordered set. When dealing with crisp con-
straints, the values are the boolean true and false representing the admissible
and/or non-admissible values; when dealing with soft constraints the values
are interpreted as preferences or probabilities or costs.

The framework must also handle the combination of constraints. To do
this one must take into account such additional values, and thus the formalism
must provide suitable operations for combination (×) and comparison (+) of
tuples of values and constraints. This is why this formalization is based on the
concept of c-semiring.

2.2 Semirings

A semiring is a tuple 〈A, +,×,0,1〉 such that: A is a set and 0,1 ∈ A; + is
commutative, associative and 0 is its unit element; × is associative, distributes
over +, 1 is its unit element and 0 is its absorbing element. A c-semiring
(“c” stands for “constraint-based”) is a semiring 〈A, +,×,0,1〉 such that +
is idempotent with 1 as its absorbing element and × is commutative [7,2]. In
the following we will always use the word semiring as standing for c-semiring.

Let us consider the relation ≤S over A such that a ≤S b iff a + b = b.
It is possible to prove that: ≤S is a partial order; + and × are monotone on
≤S; 0 is its minimum and 1 its maximum, and 〈A,≤S〉 is a complete lattice
with lowest upper bound operator +. Moreover, if × is idempotent, then: +
distributes over ×, and 〈A,≤S〉 is a complete distributive lattice with greatest
lower bound operator ×. The ≤S relation is what we will use to compare tuples
and constraints: a ≤S b intuitively means that b is better than a.
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2.3 Constraint Problems

Given a semiring S = 〈A, +,×,0,1〉 and an ordered set of variables V over
a finite domain D, a constraint is a function which, given an assignment η :
V → D of the variables, returns a value of the semiring.

By using this notation we define C = η → A as the set of all possible
constraints that can be built starting from S, D and V .

Consider a constraint c ∈ C. We define his support as supp(c) = {v ∈ V |
∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association
v := d1 (that is the operator [ ] has precedence over application).

A constraint solving problem is a pair 〈C, con〉 where con ⊆ V and C

is a set of constraints: con is the set of variables of interest for the con-
straint set C, which however may concern also variables not in con. Note
that a classical CSP is an SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉.

Many other “soft” CSPs (Probabilistic, weighted, . . . ) can be modeled by
using a suitable semiring structure (Sprob = 〈[0, 1],max,×, 0, 1〉, Sweight =
〈R,min, +, +∞, 0〉, . . . ).

X Y

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1
〈b〉 → 0.5

〈c〉 → 0.9
〈c〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈c, a〉 → 0.8

〈c, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

〈a, c〉 → 0.2

〈b, c〉 → 0.1

〈c, c〉 → 0.2

c1

c2

c3

Fig. 1. A fuzzy CSP.

Example 1 Figure 1 shows the graph representation of a fuzzy CSP 5 . Vari-
ables X and Y , and constraints are represented respectively by nodes and by
undirected (unary for c1 and c3 and binary for c2) arcs, and semiring values
are written to the right of the corresponding tuples. The variables of interest
(that is the set con) are represented with a double circle. Here we assume that
the domain D of the variables contains only elements a, b and c.

If semiring values represent probability/fuzziness values then, for instance,
the tuple 〈a, c〉 → 0.2 in constraint c2 can be interpreted to mean that the

5 Fuzzy CSPs can be modeled in the SCSP framework by choosing the c-semiring SFCSP =
〈[0, 1],max,min, 0, 1〉.
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probability/fuzziness of X and Y having values a and c, respectively, is 0.2.
△

2.4 Combining constraints

When there is a set of soft constraints C, the combined weight of the constraints
is computed using the operator ⊗ : C×C → C defined as (c1⊗c2)η = c1η×Sc2η.

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over
V − {v}, written c ⇓(V −{v}) is the constraint c′ s.t. c′η =

∑

d∈D cη[v := d]. In-
formally, projecting means eliminating some variables from the support. This
is done by associating to each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint
to all the extensions of this tuple over the eliminated variables. In short, com-
bination is performed via the multiplicative operation of the semiring, and
projection via the additive one.

2.5 Solutions

Solution of an SCSP P = 〈C, con〉 is the constraint Sol(P ) = (
⊗

C) ⇓con.
That is, we combine all constraints, and then project over the variables in
con. In this way we get the constraint with support (not greater than) con

which is “induced” by the entire SCSP. Note that when all the variables are
of interest we do not need to perform any projection.

Solutions are constraints in themselves and can be ordered by extending the
≤S order. We say that a constraint c1 is at least as constraining as constraint
c2 if c1 ⊑ c2, where for any assignment η of variables then

c1 ⊑ c2 ≡ c1η ≤S c2η

Thus, if c1 ⊑ c2 holds, then constraint c1 may be thought of as a refinement,
or ‘suitable’ (more restrictive) replacement of constraint c2.

Example 2 Consider again the solution of the fuzzy CSP of Figure 1. It as-
sociates a semiring element to every domain value of variable X. Such an
element is obtained by first combining all the constraints together and then
projecting the obtained constraint over X.

For instance, for the tuple 〈a, a〉 (that is, X = Y = a), we have to compute
the minimum between 0.9 (which is the value assigned to X = a in constraint
c1), 0.8 (which is the value assigned to 〈X = a, Y = a〉 in c2) and 0.9 (which
is the value for Y = a in c3). Hence, the resulting value for this tuple is 0.8.
We can do the same work for tuple 〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0,
〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and 〈c, c〉 → 0.2. The
obtained tuples are then projected over variable X, obtaining the solution
〈a〉 → 0.8, 〈b〉 → 0.1 and 〈c〉 → 0.8. △
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3 Analyzing Integrity Policies

An integrity policy defines the situations when modification of information is
authorized and is enforced by the security mechanisms of the system. However,
in a complex application system it is possible that an integrity policy may
have been incorrectly specified and, as a result, a user may be authorized
to modify information that can lead to an unexpected system compromise.
In this section, inspired from the results of [4, 5], we describe how constraint
solving can be used to model and analyze the effectiveness of application
system integrity policies.

In the following we show by using examples from [12, 13], how functional
requirements can be expressed as requirements in terms of constraints on
variables that are invariant over the lifetime of the system.

inv

pay

ship invpay represent constraint variablesNote.

Supplier

Infrastructure

Enterprise

shipnote

payment

invoice

System

verify

shipment

validate

payment
ship

V

Fig. 2. A simple payment enterprise

Example 3 A simple enterprise receives shipments, and generates associated
payments for a supplier. Requirements Analysis identifies the actions shipnote
and payment, corresponding to the arrival of a shipment (note) and its asso-
ciated payment, respectively. For the purposes of integrity, the analysis has
identified a requirement that the system should not pay its supplier more than
the stated value of goods shipped.

Let the constraint variables ship and pay represent the total value of goods
shipped to date and the total value of payments made to date, respectively.
Constraint Probity describes the requirement as an invariant over variables
ship and pay.

Probity ≡ pay ≤ ship

Figure 2 outlines a possible implementation of this requirement. A clerk
verifies shipment notes and enters invoice details (action invoice) to a computer
system, which in turn, generates payment to the supplier. This implementation
is described in terms of variables ship, pay and variable inv which represents
the total value of invoices generated to date.

A clerk should not process more invoices than shipments and, therefore,
the clerk’s behavior is represented by the following constraint.

Clerk ≡ inv ≤ ship
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The requirement on the invoice processing application system is

Appl ≡ pay ≤ inv

and the enterprise design is specified as the constraint

Imp1 ≡ Appl ⊗ Clerk

obtained by combining together Appl and Clerk constraints. Intuitively, in-
tegrity is ensured in this system since Imp1 ensures the high-level requirement
Probity. △

In the above example, the supplier’s interface V to the system is modeled
in terms of the variables ship and pay. Constraints between these variables are
used to characterize our requirements for the system. We want to ensure that
the implementation upholds probity through this interface, that is,

Imp1⇓{ship,pay} ⊑ Probity

We are unconcerned about the possible values of the ‘internal’ variable inv

and thus the constraint relation Imp1⇓{ship,pay} describes the constraints in
Imp1 that exist between variables ship and pay. By definition, the above equa-
tion defines that all of the possible solutions of Imp1⇓{ship,pay} are solutions of
Probity, that is, for any assignment η of variables then

Imp1⇓{ship,pay} η ≤S Probity η

Definition 3.1 We say that the requirement S locally refines requirement R

through the interface described by the set of variables V iff S⇓V ⊑ R⇓V .

Example 4 Continuing Example 3, assume that the application system will
behave reliably and uphold Appl. However, it is not reasonable to assume that
the clerk will always act reliably as Clerk. In practice, the clerk could take on
any behavior:

Clerk≡ (inv ≤ ship ∨ inv > ship) = true

Imp2≡Clerk ⊗ Appl

Imp2 is a more realistic representation of the actual enterprise. It more ac-
curately reflects the reliability of its infrastructure than the previous design
Imp1. However, since inv is no longer constrained it can take on any value, and
therefore, pay is unconstrained and we have

Imp2⇓{ship,pay} 6⊑ Probity

that is, the implementation of the system is not sufficiently robust to be able
to deal with internal failures in a safe way and uphold the original probity
requirement. △
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In [15], integrity is given as one attribute of dependability . Dependability
is characterized as a “property of a computer system such that reliance can
be justifiably placed on the service it delivers” [15]. In [12, 13] this notion of
dependability may be viewed as a class of refinement whereby the nature of
the reliability of the enterprise is explicitly specified.

Definition 3.2 (Dependability) If R gives requirements for an enterprise and
S is its proposed implementation, including details about the nature of the
reliability of its infrastructure, then S is as dependably safe as R at interface
that is described by the set of variables E if and only if S⇓E ⊑ R⇓E

Separation of duties [20, 10] is a common implementation technique for
achieving integrity. While fault-tolerant techniques replicate an operation, sep-
aration of duties can be thought of as a partitioning of the operation across
different user domains.

Example 5 When a shipment arrives a clerk verifies the consignment at
goods-inwards (entering consign into the system). When an invoice arrives,
a different clerk enters details into the system, and if the invoice matches a
consignments, a payment is generated. So long as the operations are separated
then a single clerk entering a bogus consignment or invoice can be detected
by the system. This is depicted in Figure 3.

inv
invoice

verify
P2 STATUS

generate

cheque

P4

Supplier

consign

verify
P1

consign
update

P3

Application System

Infrastructure

Enterprise

shipnote

payment

consign

invoice

V

ship

pay

con

Fig. 3. Supporting separation of duties

Let variables inv and con represent the total value of invoices and consign-
ments, respectively, received to date. Specifications Clerk1, Clerk2 and App3

define the constraints on the system variables, reflecting invariants that are
expected to be upheld by the clerks and the application system.

Clerk1≡ con ≤ ship

Clerk2≡ inv ≤ ship

App3≡ pay ≤ min(con, inv)

This system is as dependably safe as Probity even when a single clerk fails,
that is, we have
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(Clerk1 ⊗ Clerk2 ⊗ App3)⇓{ship,pay} ⊑ Probity

(Clerk2 ⊗ App3)⇓{ship,pay} ⊑ Probity

(Clerk1 ⊗ App3)⇓{ship,pay} ⊑ Probity

Note that the absence of a constraint means that it does not restrict variables
to any values. However, the system is not resilient to the failure of both clerks
nor to the failure of the application software. Removing the ‘normal behavior’
constraints imposed by both clerks or by the application yields the following.

App3⇓{ship,pay} 6⊑ Probity

(Clerk1 ⊗ Clerk2)⇓{ship,pay} 6⊑ Probity

As currently defined, our specification favors the payment-enterprise, not the
supplier: payments may be very late, or not made at all, but are never bogus.
If a clerk fails then payment may not be made. In reality, the infrastructure
contains many additional components; audit logs to record failures and super-
visors, who make judgments and rectify these inconsistencies. △

3.1 Quantitative integrity analysis

The examples in the previous section use crisp constraints to describe system
requirements and implementations. When a quantitative analysis of the sys-
tem is required then it is necessary to represent these properties using soft
constraints.

Example 6 Consider again the Probity requirement and suppose that we aim
not only to have a correct implementation, but, if possible, to have the ”best”
possible implementation. To do this we consider a soft constraint between
variables ship and pay that assigns to the configuration ship = a and pay = b

the preference level represented by the integer a−b 6 . If we are looking for the
best implementation for the buyer, then we will try to maximize this level. In
this way, different instances of the same system can be compared, and different
implementations can be checked and analyzed.

Soft constraints also provide a basis for evaluating and comparing less
resilient implementations that cannot uphold the intended requirement. For
example, if an acceptable implementation Imp cannot be found to satisfy

Imp⇓{ship,pay} ⊑ Probity

then one might be satisfied (in some sense) by selecting the best of the less
resilient, but acceptable implementations. Given insufficiently resilient imple-
mentations Imp1 and Imp2 then their corresponding semiring levels provide
a relative ordering that allow the selection of the ‘best’ of the less resilient
implementations.

6 This value represent how much pay differs from ship. Our goal is to have pay=ship, but
sometimes this is impossible and our goal will be to minimize the a − b difference.
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Probabilistic based reasoning can also be done within the soft constraints
framework. For example, consider an implementation Imp3 that ensures that
the number of payments is never more than 3, regardless of the number of
shipments received. This is represented as:

Imp3 ≡ pay ≤ 3.

Assume that there is a constraint on variable ship that specifies the probability
of the possible number of shipments made at a certain time. If the nature of the
probability distribution is such that it is generally more likely that the value
of ship is greater than 3, then Imp3 is a not unreasonable implementation
(despite Imp3⇓{ship,pay} ⊑ Probity not holding). △

4 Analyzing Cryptographic Protocols

Security protocols stipulate how the remote principals of a computer network
should interact in order to obtain specific security goals. The crucial goals of
confidentiality and authentication may be achieved in various forms, each of
different strength.

In this section, inspired from the results of [1], we describe how soft con-
straint solving can be used to develop a uniform formal notion for the two
goals. They are no longer formalised as mere yes/no properties as in the ex-
isting literature, but gain an extra parameter, the security level. For example,
different messages can enjoy different levels of confidentiality, or a principal
can achieve different levels of authentication with different principals.

4.1 The Security Semiring

Our security semiring is used to specify each principal’s trust on the security
of each message, that is each principal’s security level on each message. The
security levels range from the most secure (highest) level unknown to the least
secure (lowest) level public. Intuitively, if A’s security level on m is unknown,
then no principal (included A) knows m according to A, and, if A’s security
level on m is public, then all principals potentially know m according to A.
The lower A’s security level on m, the higher the number of principals that
A believes authorised to know m. For simplicity, we state no relation between
the granularity of the security levels and the number of principals authorised
to know m.

More formally, given a natural number n, we define the set L of security
levels as follows:

L = {unknown, private, traded1, traded2, . . . , tradedn, public}

We introduce an additive operator, +sec, and a multiplicative operator,
×sec. To allow for a compact definition of the two operators, and to simplify

10
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the following treatment, let us define a convenient double naming:

– unknown ≡ traded−1

– private ≡ traded0

– public ≡ tradedn+1

Let us consider an index i and an index j both belonging to the closed
interval [−1, n+1] of integers. We define +sec and×sec by the following axioms.

Ax. 1: tradedi +sec tradedj = tradedmax(i,j)

Ax. 2: tradedi ×sec tradedj = tradedmin(i,j)

The structure Ssec = 〈L, +sec,×sec, public, unknown 〉 can be easily veri-
fied to be a c-semiring.

Using the security semiring, we define the network constraint system CSn =
〈Ssec,D,V〉 where:

• Ssec is the security semiring (Section 4.1);
• V is a bounded set of variables.
• D is a bounded set of values including the empty message {||} and all

atomic messages, as well as all messages recursively obtained by concate-
nation and encryption.

. The network constraint system represents the computer network on which
the cryptographic protocols can be executed.

The elements of V stand for the network principals, and the elements of
D represent all possible messages. Atomic messages typically are principal
names, timestamps, nonces and cryptographic keys.

The development of the principals’ security levels from manipulation of
the messages seen during the protocol sessions can be formalised as a security
entailment, that is an entailment relation between constraints [9].

We define rules to compute the security levels that each principal gives
to the newly generated messages. The rules establish that the security level
of a message gets somewhat lower each time the message is manipulated by
encryption or decryption.

A possible set of rules is presented in Figure 4, where function def is as-
sociated to a generic constraint projected on a generic principal A. Different
rules can be studied to capture other features.

4.2 Initial, Policy and Imputable SCSPs

The policy for a protocol P is a set of rules stating, among other things, the
preconditions necessary for the protocol execution, such as which messages
are public, and which messages are private for which principals.

It is intuitive to capture these policy rules by our security levels (Sec-
tion 4.1). Precisely, these rules can be translated into unary constraints for
the network constraint system. For each principal A ∈ V, we define a unary
constraint that states A’s security levels as follows. It associates security level

11
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Concatenation:
v1, v2 < unknown; def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3

def ({|m1, m2|}) = (v1 +sec v2) ×sec v3

Splitting:
v3 < unknown; def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3

def (m1) = v1 ×sec v3; def (m2) = v2 ×sec v3

Encryption:

tradedl1 , tradedl2 < unknown;

def (m1) = tradedl1 ; def (m2) = tradedl2 ; def ({|m1|}m2
) = tradedl3

def ({|m1|}m2
) = (tradedl1+1 +sec tradedl2) ×sec tradedl3

Decryption:

tradedl2 , tradedl3 < unknown;

def (m1) = tradedl1 ; def (m−1
2 ) = tradedl2 ; def ({|m1|}m2

) = tradedl3

def (m1) = tradedl1 ×sec tradedl2+1 ×sec tradedl3

Fig. 4. Entailment rules for security levels

public to those messages that are known to all, typically principal names,
timestamps and public keys; level private to A’s initial secrets, such as keys
(e.g., A’s long-term key if P uses symmetric cryptography, or A’s private key
if P uses asymmetric cryptography, or A’s pin if P uses smart cards); level
unknown to all remaining domain values (including, e.g., the secrets that A

will invent during the protocol execution, or other principals’ initial secrets).
This procedure defines what we name initial SCSP for P, which specifies the
principals’ security levels when no session of P has yet started.

The policy for a protocol P also specifies how the messages that must
be exchanged during a session between a pair of principals are formed. We
read from the protocol policy each allowed step of the form A → B : m and
its informal description, which explains whether A invents m or part of it.
Then, we build the policy SCSP for P by adding new constraints to the initial
SCSP according to the event that is considered. If that event is a principal
A’s inventing a message n, then a unary constraint is added on variable A

assigning security level private to the domain value n (and unknown to all
other values). If that event is a principal A’s sending a message m to a principal
B, then the semiring value, alias security level, associated to message m over
A is considered. This level is computed by entailment (Figure 4) whenever m

is obtained by manipulation of other messages (rather than m being e.g. a
fresh nonce just invented with security level private by the previous case of
the algorithm). A binary constraint that assigns the newly computed security
level to the tuple 〈{||},m〉 (and unknown to all other tuples) is now added to
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the current SCSP on the pair of variables A and B. This reasoning is repeated
for each of the bounded number of events allowed by the policy. When there
are no more events to process, the current SCSP is returned as policy SCSP
for P, which is our formal model for the protocol.

A real-world network history induced by a protocol P must account for
malicious activity by some principals. Each such history can be viewed as a
sequence of events of the forms: a principal’s inventing new messages, a prin-
cipal’s sending messages that are not intercepted, and a principal’s sending
messages that are intercepted. While the second event signifies that the in-
tended recipient of a message indeed gets the message, the third signifies that
some malicious principal prevents the delivery of the message that is sent.

We can model any network configuration at a certain point in any real-
world network history as an SCSP. We take as inputs a protocol P and a
network configuration nc originated from the protocol execution. The pro-
cessing of the third type of event is added: when a message is sent by A to B

and is intercepted by another principal C, the corresponding constraint must
be stated on the pair A,C rather than A,B. We obtain what we name an
imputable SCSP for P.

4.3 Formalising Confidentiality

Using the security levels, we develop uniform definitions of confidentiality and
of confidentiality attack, which appear to capture any policy requirement.
Intuitively, if a principal’s security level on a message is l, then the message
is l-confidential for the principal because the security level in fact formalises
the principal’s trust on the security, that is confidentiality, of the message.

In practice, establishing whether our definition of l-confidentiality holds in
an SCSP requires calculating the solution of the imputable SCSP and project-
ing it on certain principals of interest. The higher l, the stronger the goal.

Definition 4.1 [l-confidentiality] Given an imputable SCSP p and a principal
A, we say that there is l-confidentiality of m for A in p iff Sol(p) ⇓{A} (m) = l.

By a preliminary analysis, we can study what goals the protocol achieves
in ideal conditions where no principal acts maliciously. Most importantly, by
an empirical analysis, we can study what goals the protocol achieves on a spe-
cific network configuration arising from the protocol execution under realistic
threats. We concentrate on the corresponding imputable SCSP, calculate its
solution and project it on a principal of interest: we obtain the principal’s
security levels on all messages. Having done the same operations on the pol-
icy SCSP, we can compare the outcomes. If some level from the imputable is
lower than the corresponding level from the policy, then there is an attack in
the imputable SCSP. In fact, some malicious operations contributing to the
network configuration modeled by the imputable SCSP have taken place so to
lower some of the security levels stated by the policy SCSP. It is important
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to stress that any principal might have performed, either deliberately or not,
those operations.

Definition 4.2 [Confidentiality attack]
Given a policy SCSP P, an imputable SCSP p for the same protocol, and a
principal A, we say that there is a confidentiality attack by A on m in p iff
there is l-confidentiality of m in P for A, l′-confidentiality of m in p for A, and
l′ < l.

Therefore, there is a confidentiality attack by A on m in p iff Sol(P) ⇓{A}

(m) < Sol(P) ⇓{A} (m). The more an attack lowers a security level, the worse
that attack, so confidentiality attacks can be variously compared.

The authentication goal can be formalized in a similar fashion (details can
be found elsewhere [1]).

4.4 An empirical analysis of the Needham-Schroeder protocol

Figure 5 presents the asymmetric Needham-Schroeder protocol, which is so
popular that it requires little comments.

1. A → B : {|Na, A|}
Kb

2. B → A : {|Na,Nb|}
Ka

3. A → B : {|Nb|}
Kb

Fig. 5. The asymmetric Needham-Schroeder protocol

The goal of the protocol is authentication: at completion of a session initi-
ated by A with B, A should get evidence to have communicated with B and,
likewise, B should get evidence to have communicated with A. Assuming that
encryption is perfect and that the nonces are truly random, authentication is
achieved here by confidentiality of the nonces. Indeed, upon reception of Na
inside message 2, A would conclude that she is interacting with B, the only
principal who could retrieve Na from message 1. In the same fashion, when
B receives Nb inside message 3, he would conclude that A was at the other
end of the network because Nb must have been obtained from message 2, and
no-one but A could perform this operation.

Lowe discovers [16] that the protocol suffers the attack in Figure 6, whereby
a malicious principal C masquerades as a principal A with a principal B,
after A initiated a session with C. The attack, which sees C interleave two
sessions, indicates failure of the authentication of A with B, which follows from
failure of the confidentiality of Nb. The security levels of all other principals
on the nonces Na and Nb are unknown. So, by Definition 4.1, those nonces
are unknown-confidential for any principal different from A or B.

We start off by building the initial SCSP, whose fragment for principals
A and B is in Figure 7 (the following only features suitable SCSP fragments
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1. A → C : {|Na, A|}
Kc

1′. C → B : {|Na, A|}
Kb

2′. B → A : {|Na,Nb|}
Ka

2. C → A : {|Na,Nb|}
Ka

3. A → C : {|Nb|}
Kc

3′. C → B : {|Nb|}
Kb

Fig. 6. Lowe’s attack to the Needham-Schroeder Protocol

pertaining to the principals of interest).

A B

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka
−1〉 → private 〈Kb

−1〉 → private

Fig. 7. Fragment of the initial SCSP for Needham-Schroeder protocol

Then, we build the policy SCSP for the protocol. Figure 8 presents the
fragment pertaining to a single session between principals A and B. The Figure
indicates that, while A’s security level on her nonce Na was initially private,
it is now lowered to traded1 by entailment because of the binary constraint
formalising step 2 of the protocol. Similarly, B’s security level on Nb is now
traded2 though it was originally private. The Figure omits the messages that
are not relevant to the following discussion.

BA

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka
−1〉 → private 〈Kb

−1〉 → private

〈Na〉 → private

〈Nb〉 → private

〈Nb〉 → traded1

〈Nb〉 → traded2

〈Na〉 → traded1

〈Na〉 → traded1

〈{||}, {|Na, a|}
Kb

〉 → traded1

〈{|Na, Nb|}
Ka

, {||}〉 → traded1

〈{||}, {|Nb|}
Kb

〉 → traded2

Fig. 8. Fragment of the policy SCSP for the Needham-Schroeder protocol

At this stage, we build the imputable SCSP given in Figure 9. It formalises
the network configuration defined by Lowe’s attack. The solution of this SCSP
projected on variable C is a constraint that associates security level traded4 to
the nonce Nb. Following Definition 4.1, Nb is traded4-confidential for C in this
SCSP. Hence, by Definition 4.2, there is a deliberate confidentiality attack by
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C

A
B

〈a〉 → public

〈a〉 → public
〈a〉 → public

〈b〉 → public

〈b〉 → public
〈b〉 → public

〈c〉 → public

〈c〉 → public
〈c〉 → public

〈Ka〉 → public

〈Ka〉 → public
〈Ka〉 → public

〈Kb〉 → public

〈Kb〉 → public
〈Kb〉 → public

〈Kc〉 → public

〈Kc〉 → public
〈Kc〉 → public

〈Ka
−1〉 → private

〈Kb
−1〉 → private

〈Kc
−1〉 → private

〈Na〉 → private 〈Nb〉 → private

〈{||}, {|N
a, a|}

K
c 〉

→
traded

1

〈{
||}

,
{|
N
a
,
a
|} K

b
〉
→

tr
a
d
e
d 2

〈{|N
a,

N
b|}

K
a , {||}〉

→
traded

3

〈{
|N

a
,
N
b
|} K

a
,
{|
|}
〉
→

tr
a
d
e
d 3

〈{||}, {|N
b|}

K
c 〉

→
traded

4

〈{
||}

,
{|
N
b
|} K

b
〉
→

tr
a
d
e
d 4

〈Na〉 → traded1

〈Na〉 → traded2

〈Na〉 → traded3

〈Nb〉 → traded3

〈Nb〉 → traded4

〈Nb〉 → traded4

{|Na, Nb|}
Ka

→ traded3

Fig. 9. Fragment of the Imputable SCSP corresponding to Lowe’s attack

C on Nb in this problem, because Nb got level unknown in the policy SCSP.
This leads to Lowe’s attack.

We have discovered another attack in the same problem [1]. The problem
solution projected on variable B associates security level traded2 to the nonce
Na, which instead got level unknown in the policy SCSP. This signifies that B

has learnt a nonce that he was not allowed to learn by policy, that there is an
indeliberate confidentiality attack by B on Na — notice that the two attacks
are uniformly formalised. As a consequence of the former attack, Lowe reports
that, if B is a bank, C can steal money from A’s account. As a consequence
of our attack, should also A be a bank, B would be able to steal money from
C’s account by deliberately exploiting his knowledge of Na (details appear
elsewhere [1]).

5 Conclusions

The contribution of this paper is a unified technique for quantitatively ana-
lyzing the configuration of integrity policies and measuring the confidentiality
and authentication goals of cryptographic protocols. In both cases, the use of
soft, rather than crisp, constraints significantly deepens the analysis.

With integrity policies soft constraints allow the use of quantitative in-
formation in modeling the system and infrastructure configuration. For in-
stance, by associating probability measures with component failures, we can
describe that a system configuration/policy achieve integrity within some
degree of probability.
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With cryptographic protocols soft constraints introduce an extra param-
eter, called security level. It allows formal statements that different proto-
col principants get different forms of the confidentiality and authentication
goals. Even comparing the forms of the same goal as achieved by different
protocols appears to be at reach.

We were pleased to observe that our technique easily scales up to both con-
texts: with integrity policies, the implementations are compared with a given
specification; with cryptographic protocols, the protocol runs under study are
compared with an ideal run without spies. In both cases, the analysis reduces
to checking the solutions of specific constraint satisfaction problems, a task
that can be significantly supported by mechanical tools.
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