An Elegant and Efficient Implementation of Russian Dolls Search for Variable Weighted CSP

T. Benoist, M. Lemaître

{tbenoist}@bouygues.com

Variable Weighted CSP

Definition:

- Additive WCSP where only unary constraints (X_i=1) are weighted
- maximize $\Omega = \sum w_i X_i$
- Subject to: $X_i \in \{0,1\}$ + selection constraints

Some VWCSPs:

- knapsack problems,
- «soft scheduling »
- prize-collecting TSP

Example: Select & Schedule

- 10 candidate photos, each with gain w_i
- → Select the subset (selection variables X_i)
 - \Box of higher gain $(\Omega = \sum w_i X_i)$
 - \Box that can be scheduled (variables T_i) without violating transition times $t_{i\rightarrow i}$ constraints.

Example: Select & Schedule

10 candidate photos, each with gain \mathbf{w}_i

- → Select the subset (selection variables X_i)
 - \Box of higher gain $(\Omega = \sum w_i X_i)$
 - \Box that can be scheduled (variables T_i) without violating transition times $t_{i\rightarrow i}$ constraints.

- Static order on selection variables
- Successive resolutions of nested sub problems

 $Rds_{10}=max(P_{10})$

10

1

4

6

5

9

7

ONERA

2

- Static order on selection variables
- Successive resolutions of nested sub problems

 $Rds_9 = max(P_9)$

- Static order on selection variables
- Successive resolutions of nested sub problems

and so on... 10

 $Rds_8 = max(P_8)$

 $Rds_1=max(P_1)=max(P)$

During resolution of the last problem (P_1) (once $P_{10}, P_9, ..., P_2$ have been solved)

Initial upper bound: $\Omega \leq w_1 + Rds_2$

RDS cost-based filtering

Variable fixing rule:

If w1+ w2+ Rds6 ≤ currentBest **then** X₄=1

RDS cost-based filtering

Variable fixing rule:

If w1+ w2+ Rds6 \leq currentBest then X_4 =1

LightRDS

- Objective function:
 - $\Omega = W_1 X_1 + ... + W_5 X_5 + \Omega_6$
 - $\Omega_6 = w_6 X_6 + ... + w_{10} X_{10}$ with $\Omega_6 \le Rds_6$
- RDS filtering is naturally performed by these linear constraints

Declarative implementation

$$\Omega = \Omega_1$$

$$\Omega_i = \mathbf{w}_i \mathbf{X}_i + \Omega_{i+1}$$

$$\Omega_{10} = \mathbf{W}_{10} \mathbf{X}_{10}$$

idited

LightRDS filtering is strictly stronger

This is equivalent to using all frontiers simultaneously

. dhill b

LightRDS filtering is strictly stronger

If Rds₄<Rds₆+w₄ then frontier 4 would produce a better bound:

$$w_1 + w_2 + Rds_4 < w_1 + w_2 + w_4 + Rds_6$$

dhild

LightRDS filtering is strictly stronger

If Rds₄<Rds₆+w₄ then frontier 4 would produce a better bound:

$$w_1 + w_2 + Rds_4 < w_1 + w_2 + w_4 + Rds_6$$

And possibly better filtering:

MEDS

Control mechanism

→ Encapsulated in a special root choice point

NIRO!

Control mechanism

→ Encapsulated in a special root choice point

ROS

Computational Results

- Satellite planning problem: ftp://ftp.cert.fr/pub/DCSD/CD/lemaitre/Choco/bep/
- CHOCO model

Number of nodes and CPU time are divided by two

NOT extensible to WCSP

Forward Checking (FC)

dynamic partition of constraints

ONERA

-> static reformulation of the objective function seems impossible

Conclusion

- LightRDS is more efficient
- LightRDS is simple:
 - Declarative implementation
 - No dedicated filtering to program
 - No frontier to manage
- LightRDS can be tested in a few minutes
 - on Variable Weighted CSPs
 - when the constraint graph has a small bandwidth

