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Abstract. Exploiting symmetry in constraint satisfaction problems has become
a very popular topic of research in recent times. The existence of symyim a
problem has the effect of artificially increasing the size of the searatespat
is explored by search algorithms. Another significant topic of resdaasheen
approaches to reasoning about preferences. As constrainspigapplications
are becoming more widespread in areas such as electronic commenéigu-
ration, etc., it is becoming increasingly important that we can reasaut gipef-
erences as efficiently as possible. We present an approach to deitingym-
metry in the semiring framework for soft constraints. We demonstratétkak-
ing symmetries in soft constraint satisfaction problems improves théeeitiz
of search. The paper contributes to the state-of-the-art in symmetakibg, as
well as in reasoning about preferences.

1 Introduction

Exploiting symmetry in constraint satisfaction problensstecome a very popular
topic of research in recent times [1, 2, 16, 20, 22, 25]. Thisterce of symmetry in a
problem has the effect of artificially increasing the sizehef search space that is ex-
plored by search algorithms. Therefore, a typical approsath break the symmetries
in the problem so that only unique solutions are returned {hat only one exemplar
of each symmetric equivalence class of solutions is retl)rnehe complete set of so-
lutions can be trivially computed using the symmetry in thebpem. The significant
advantage is that not only do we return fewer solutions, lritigo reduce the search
effort required to find these solutions by eliminating synmieeébranches of the search
tree.

Another significant topic of research in the constraint pssing community is the
ability to reason about preferences [4, 21]. It has been sHoow preferences can
be modeled as constraints [6, 14]. As constraint procesgiptjcations are becoming
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more widespread in areas such as electronic commerce, eaifa, etc., it is be-
coming increasingly important that we can reason abouepzetes in as efficient a
manner as possible. For example, a typical problem in e-centensystems requires
that we satisfy a set of user-specified preference conttrira maximal degree. The
user would typically wish to see a set of alternative sohgito their preferences, but
would like to have diversity amongst the set presented ta finis is a well studied
issue in the case-based reasoning community [27], but$swed studied in the con-
straint processing community. One obvious avenue to beoeegblhere are notions of
symmetry in preferences. Diversity in this case might berjmeted as the presentation
of a set of solutions which are members of different symroettjuivalence classes.
This is a potential application of the work presented in gaper.

The work reported is focused on symmetry breaking in sofsttamt satisfaction
problems. We present an approach to dealing with symmetheisemiring framework
for soft constraints [6, 8]. We first give definitions of symimyeextending the work of
Benhamou [2], and then relax them using the notion of dedi@uaTlhe theoretical
results are enforced by some empirical tests, showing tieakbng symmetries in soft
constraint satisfaction problems improves the efficierfcgearch.

The remainder of the paper is structured as follows. Se@ipnesents a review
of soft constraints and and overview of the state-of-thiérathe area of symmetry-
breaking. We present the theoretical aspects of our apiprmasymmetry breaking in
soft CSPs in Section 3 and give some examples in Section 4e $owpirical results are
presented in Section 5. Some concluding remarks are madextios 6.

2 Background

Before presenting an approach to dealing with symmetry fhG8Ps, we will first

present a review of the background to this work. In Sectidna?brief state-of-the-art
review of symmetry breaking in CSPs will be presented. IntiSe@.2 the semiring-
based approach to soft CSPs will be recapitulated for theerdence of the reader.

2.1 Symmetry Breaking

There is significant interest within the constraint progmaing community in exploiting
symmetry when solving constraint satisfaction problensafkonsequence, a growing
number of techniques are being reported in the literatuemhBmou [2] presented an
early analysis of symmetry-breaking and placed it in theextrof Freuder’s work on
interchangeability, a special case of symmetry [18].

A common approach to symmetry breaking involves carefulbdeling the prob-
lem so that symmetries have been removed. For example, @cef al. [13] have
demonstrated how constraints can be added to the modelén rdéreak symmetries.
Puget [24] has presented a formal approach to symmetry ingetiiat involves the ad-
dition of ordering constraints to break symmetries. Flegteal. [16] adopt a similar
approach by adding ordering constraints to break symnsdtrieatrix models. Flener
et al. [16] also remind us that symmetry detection is graph-isghiam complete in
the general case, pointing to the work of Crawford [12].

Brown et al. [11] have presented a modified backtracking algorithm tmatlks
symmetry by pruning branches of the search tree dynamiddiig is done by ensuring
that only one solution from each symmetric equivalencesdmsomputed. Similarly, a



general method for eliminating symmetries, known as symnteeaking during search
(SBDS), has been proposed by Gent and Smith [20]. The SBD®agqipis based on
earlier work by Backofen and Will [1]. Both of these methods te regarded as ex-
amples of a class of approaches to handling symmetriesrihalive the addition of
constraints during search to avoid symmetrical statesanstarch space. An imple-
mentation of SDBS based on the GAP computational abstrgebed system has been
presented by Germt al.[19].

Meseguer and Torras [23] have reported the use of searchiraydeeuristics to
avoid symmetries during search. However, the method iggessral that SBDS [20].

The notion of partial symmetry breaking has been exploredMiojponald and
Smith [22]. They show that there is a break-even point to msiciered when breaking
symmetries during search; there is a point where the beneféducing search from
adding more symmetries it out-weighed by the extra overlieaatred. By breaking
a subset of the possible symmetries in a problem, rather heaking all of them,
significant savings in runtime can be accomplished.

Finally, symmetry breaking based on no-good recording ndsthave been pre-
sented by Fahlet al. [15] and Focacci and Milano [17]. The approach presented by
the former is known as symmetry-breaking via dominanceatiete (SBDD) and been
shown to compare well with SBDS. The latter approach is knaarthe global cut
framework. Puget has presented an improvement on theseaby@s by using an aux-
iliary CSP for performing dominance checks based on no-gecadrding [25].

It should be noted that all of the approaches to dealing withrsetry presented
above are defined for crisp constraints. In this paper weeptefor the first time, a the-
oretical framework for exploiting symmetries in soft CSBsd demonstrate the utility
of the approach empirically using an SBDS-like approachDSHs chosen since it is
a very flexible approach to breaking symmetries and is reagiplicable to symmetry
breaking in soft CSPs.

2.2 Soft CSPs

Several formalizations of the conceptsiift constraintsare currently available. In the
following, we refer to the one based on c-semirings [3, 5,]6w8ich can be shown

to generalize and express many of the others [4]. A soft caimstmay be seen as
a constraint where each instantiations of its variablesamaassociated value from a
partially ordered set which can be interpreted as a set ééqaece values. Combining
constraints will then have to take into account such adufiovalues, and thus the
formalism has also to provide suitable operations for comion (x) and comparison

(+) of tuples of values and constraints. This is why this foiimaion is based on the
concept of c-semiring, which is just a set plus two operation

Semirings. A semiring is a tupl€ A, +, x,0,1) such that: 14 is a setand, 1 € 4;
2.+ is commutative, associative afds its unit element; 3x is associative, distributes
over+, 1 is its unit element and is its absorbing element. A c-semiring is a semiring
(A, +, x,0,1) such that+ is idempotent] is its absorbing element andis commu-
tative. Let us consider the relatiohg over A such thate <g b iff a + b = b. Then it

is possible to prove that (see [6]): 4 is a partial order; 24 and x are monotone on
<g; 3.0 is its minimum andl its maximum; 4.(A, <g) is a complete lattice and, for



alla,b € A, a+ b= lub(a,b) (wherelub is theleast upper bound Moreover, ifx is
idempotent, then+ distributes overx; (A, <g) is a complete distributive lattice and
its glb (greatest lower bound Informally, the relation<g gives us a way to compare
semiring values and constraints. In fact, when we haves b, we will say thatb is
better than aln the following, when the semiring will be clear from thentext,a <g b
will be often indicated by < b.

Constraint ProblemsGiven a semiringd = (A, +, x, 0, 1) and an ordered set of vari-
ablesV over a finite domairD, a constraintis a function which, given an assignment
n : V — D of the variables, returns a value of the semiring. By usirng tiotation we
defineC = n — A as the set of all possible constraints that can be builtisgaftom

S, D andV.

Note that in thiSunctionalformulation, each constraint is a function (as defined in
[8]) and not a pair (as defined in [5, 6]). Such a function imegsl all the variables in
V, but it depends on the assignment of only a finite subset of tt8o, for instance,
a binary constraint, , over variablest andy, is a functionc,,, : V. — D — A,
but it depends only on the assignment of varialflesy} C V. We call this subset the
supportof the constraint. More formally, consider a constraine €. We define its
support asupp(c) = {v € V' | In,d, da.cnfv := di] # cnlv := da]}, where

i !/
n[v:zd]v’:{d , vailf’
nv'  otherwise
Note thaten[v := d;] meanscry’ wherer’ is n modified with the assignment :=
d, (that is the operatol ] has precedence over application). Note also thas the
application of a constraint function: V' — D — A to a functiony : D — A; what
we obtain, is a semiring valug) = a.

A soft constraint satisfaction probleis a pair(C, con) wherecon C V andC
is a set of constraintsion is the set of variables of interest for the constraintGet
which however may concern also variables notdm. Note that a classical CSP is
a SCSP where the chosen c-semiringdgisp = ({ false,true},V, A, false, true).
Fuzzy CSPs [10, 26] can instead be modeled in the SCSP frartkéyahoosing the
c-semiringSrcsp = ([0, 1], max, min,0,1). Many other “soft” CSPs (Probabilis-
tic, weighted, ...) can be modeled by using a suitable samistructure §,,.,, =
([0,1], maz, x,0,1), Sweight = (R, min, +,4+00,0),...).

Fig. 1 shows the graph representation of a fuzzy CSP. Vasadohd constraints are
represented respectively by nodes and by undirected (doiary andcs and binary for
c) arcs, and semiring values are written to the right of theesgonding tuples. The
variables of interest (that is the setn) are represented with a double circle. Here we
assume that the domain of the variables contains only elementandb and c.

Combining and projecting soft constraint&iven the set, the combination function
® : € x C — Cisdefined agc; ® c2)n = c1n X g con. Informally, combining two

constraints means building a new constraint whose suppestvies all the variables
of the original ones, and which associates with each tupkboafain values for such
variables a semiring element which is obtained by multipdythe elements associ-



(a) — 0.9 0.9
(b) — 0.1 (a,a) — 0.8 () = 0

() 0.9 (a,b) — 0.2 P
1 (a,c) — 0.2 ) cs
@ (b,a) — 0
(b, by — 0

(b, e) — 0.1

c2

(c,a) — 0.8
(c,b) — 0.2
(c,c) — 0.2

Fig. 1. A fuzzy CSP.

ated by the original constraints to the appropriate suketupt is easy to verify that
supp(c1 ® ca) C supp(c1) U supp(ca).

Given a constraint € C and a variabler € V, theprojectionof c overV — {v},
written ¢ |}y _(,) is the constraint’ s.t.c'n = ;. cnfv := d]. Informally, pro-
jecting means eliminating some variables from the supftiis is done by associating
with each tuple over the remaining variables a semiring el@which is the sum of the
elements associated by the original constraint to all thenskons of this tuple over the
eliminated variables. In short, combination is performiecthre multiplicative operation
of the semiring, and projection via the additive one.

Solutions. A solution of an SCSPP = (C,con) is the constraintSol(P) =
(& C) Jeon- That is, we combine all constraints, and then project overnvariables
in con. In this way we get the constraint with support (not greatan) con which is
“induced” by the entire SCSP. Note that when all the varighle of interest we do not
need to perform any projection.

For example, the solution of the fuzzy CSP of Fig. 1 asscgiateemiring element
to every domain value of variable. Such an element is obtained by first combining
all the constraints together. For instance, for the tuple:) (that is,z = y = a),
we have to compute the minimum betwegf (which is the value assigned o= a
in constraintc,), 0.8 (which is the value assigned & = a,y = a) in ¢2) and0.9
(which is the value foy = a in ¢3). Hence, the resulting value for this tuplefis. We
can do the same work for tuple, b) — 0.2, {a,c) — 0.2, (b,a) — 0, (b,d) — 0,
(b,¢) — 0.1, (¢,a) — 0.8, {¢,b) — 0.2 and(c, c¢) — 0.2. The obtained tuples are then
projected over variable, obtaining the solutiofia) — 0.8, (b) — 0.1 and{c) — 0.8.

3 Symmetry in Soft CSPs

Using an approach similar to [2], we can define two notionSerhantic symmetry

Definition 1 (Symmetry for satisfiability). Consider two domain valuésand a for
a variable v and the set of constraintS'’; we say thath and a are symmetrical for
satisfiability @ ~ b) if and only if

Yo, 3In, 0 ®Cn[v =al=a = ®C’n’[v =0 =a



Informally, two domain values andb aresymmetrical for satisfiabilitif whenever the
assignment := a (v := b) leads to a solution with semiring value then, we can also
obtain a solution with the same valueusing the assignment:= b (v := a).

Definition 2 (Symmetry for all solutions). Consider two domain valuésanda for a
variable v and the set of constraints; we say thab anda are symmetrical (w.r.t. the
constrainty’) (a ~ b) if and only if

3,0 0" ¥ (v = a]) = 1'[v = b], andg(n[v := b]) = n"[v := d],
A

®C77[U =a] = ®C’¢(77[v =al) A ®Cn[v =b = ®C’¢(n[v =b)).

Informally, two domain value: andb aresymmetrical (w.r.t. the constraints) if
whenever the assignmeniv := a] (n[v := b]) leads to a solution with value, then
there is also an assignmepty[v := al) (¢(n[v := b])) leading to the same semiring
valuea.

Clearly symmetry for all solutions implies symmetry foriséiibility.

Theorem 1. Symmetry for all solutions implies symmetry for satisfighil

Since finding the mapping is one of the most important steps when looking for
symmetry, it could be useful to reformulate the definitiorspinmetry for all solutions
using equivalent propositions.

Proposition 1. The following propositions describing the notion of synmnéar all
solutions ¢ ~ b) are equivalent:

o, n',n" ¥y p(nlv := a]) = n'[v:= b, and(n[v := b]) = " [v := d],
A Q)
Q) Cnlv == a] = Q) Co(nlv := a]) A ) Clv := b = Q) Cp(nlv := b]);

¢, Vn ®Cn[v =a] = ®C¢(n[v = a))[v:=1]
A ()

® Crlo = 1] = Q) Collo := ) v =

36,V : Q) Cnlv = a] = Q) Co(n)[v := b]
A 3)

&) Cnlv =] = Q) Co(n)[v := al;

It also important to notice that, similar to the crisp cabe, totion of Interchange-
ability for Soft CSPs [9] is a specific type of symmetry for stllutions obtained using
as¢ the identity function.



Theorem 2. Consider two domain valuésanda, for a variablev and the set of con-
straintsC. If b is fully interchangeable with onv (FI,(a/b)) (that is, for all assign-

mentsy, we have) Cnfv := a] = Q Cnlv := b] [9]) then a andb are symmetrical

(w.r.t. the constraint€’) (a ~ b). In particular, the symmetry hold using @she identity

function.

Symmetries in SCSPs are rarer than in classical CSPs. Baetigon using a notion
of threshold (similar to that defined by Bistaradtial.[9]) is useful.

Definition 3 (Threshold symmetry for satisfiability). Consider two domain valués
anda for a variablewv, the set of constraint§’ and a thresholdy; we say that anda
are ,symmetrical for satisfiabilityd ~ b) if and only if

Va > a,3n,n : ®Cn[v =al=a <= ®Cn’[v =b=a

Informally, two domain values andb are ,symmetrical for satisfiability if whenever
the assignment := a (v := b) leads to a solution with value > &, then, there is also
a way to obtain a solution with the same vatuesing the assignment:= b (v := a).

Definition 4 (Threshold symmetry for all solutions). Consider two domain valuds
anda for a variablewv, the set of constraint§’ and a thresholdy; we say that anda
are ;symmetrical for all solutionsa(~ b) if and only if

0.0 el > 6y (o = a)) = of[v = 1], ande(nlv = b]) = n"[v = a],
AN

®Cn[v =al=aA ®C¢(n[v =a]) =«
A

Q) Cnlv:=b] =o' A Q) Co(nlv:=1]) = o’

Informally, two domain values andb are ;symmetrical for all solution& whenever
the assignmeni[v := a] (n[v := b]) leads to a solution whose semiring valueis &
(o/ > @), then there is also a solutiofi = ¢(n[v := a]) (" = ¢(n[v := b])) that has
the same semiring value (o).

We can prove that the number of symmetries increases whemonesise the thresh-
old level.

Theorem 3. Given two domain elementsandb and two thresholds; < «a». Then,

— if a =,, b, thena =,, b;
— ifa ~,, b, thena ~,, b.

4 Examples

The example problem that will be studied here is based on dftensqueens prob-
lem [7]. The example is a generalization of the usuaueens problem, which can be
found in [28]. The classical formulation requires thafueens are placed onnax n
chess-board in such a way that they do not attack each othtrisl formulation, we



may allow attacking queens, but we give a higher preferemselutions where queens
attacking each other are farther apart. In order to formautats problem as a con-
straint satisfaction problem, the location of the queemshmgiven by variables, and
the“do not attack each otherrequirement can be expressed in terms of a number of
constraints. A simple way to do this is to assign a variablestch queeh

As then queens must be placedqindifferent columns, we can identify each queen
by its column, and represent its position by a variable wichicates the row of the
queen in question. Let; stand for the row of the queen in th¢h column. The domain
of each of the variables, ..., v, is {1,2,...,n}. For any two different variables
andvj, the following two constraints must hold, expressing tihat queens should be
in different rows and on different diagonals:

Ui#’l}j
lvi — ;] # |i — j

If we want to use soft constraints, the previous crisp caiirsis must to be assigned
an element of the semiring. So, whenevgr= v;, instead of giving the boolean value
false we assign the fuzzy valug — j|/n. This means that the farther apart the two
queens are, the higher this value will be. The same reas@tsagholds for the two
diagonals; in this case, whén, — v;| = |i — j| we assign the valug — j|/n.

Notice that each solution of this generalizedjueens problem has a semiring value
which is obtained by minimizing the semiring values of &l ébnstraints. This comes
from the choice of the fuzzy semiring, where the multiplieatoperation is thenin.
Therefore, if a solution contains three pairs of attackingans, each of the pairs will
have a semiring value given by one of the constraints, andatue of this solution will
be the minimum of these three values. Different solutiorsthen ordered using the
other semiring operation, which in this case is thex. Note that this same problem
can be solved also with a different semiring, obtaining éedént way to compute a
solution and a different ordering. For example, we couldehehosen the semiringk U
+o00, min, +, +00, 0}, where the value of each solution would have been obtained by
summing the values of each attacking pair, and solutionddvoave been compared
using the min operator.

Let's now fixn = 4 and illustrate the definitions of the previous section usirg
example. Clearly we can see that, as in the crisp case, fov;amigh i = 1,...,4, we
havel ~ 4 and2 ~ 3. We have, in fact, for any configuration

&) Crlvr == 1] = Q) C¢"()[vn := 4]

A
&) Cnlor == 4] = Q) Co* (n)[vr == 1;

where¢?({vy = a1,ve := ag,v3 1= as,vy = as}) = {vy ;=4 —a; + 1,09 :=
4—ay+1,v3:=4—az+1,vs :=4— ays + 1} The same happens for the variables
va, ..., v4 and for the pai2 ~ 3. In Fig. 2 some mappings are presented.

! Note that this choice already eliminates some possible symmetries.
2 Notice also that this holds for any of the formulas in Proposition 1.



(a) A solutionn with level - and its  (b) A solutionn with level 1 and its
symmetric equivalentl(~ 4 for v1). symmetric equivalentl(~ 4 for v1).

=

symmetric equivalent(~ 3 for v1).

Fig. 2. Some mappings showing~ 4 and2 ~ 3 for v;.

Let’'s now consider the notion gfsymmetry. Fom = 4 we have many configura-
tions with semiring vaIu%. We present in Fig. 4 configurations whose semiring value
is greater or equal tha@. All the configurations with Ievelé and1 can be obtained by
applying the two geometric symmetries:

1. vertical symmetryp®” ({vy 1= a1,...,v; = a4y..., 0y := ap}) = {v1 == n —
a+1,...,0,:=n—a;+1,...,0p :=n—a, + 1}

2. horizontal symmetrys”({vy = a1,...,v; := ai,...,0n = an}) = {v1 =
Upy vy Vi 5= Ap—j 1y -y Up =1}

Notice also that in the soft-queen problem there are solutions with semiring vague
(see Fig. 3) but these are excluded from our model, since present one queen in
each column.

Fig. 3. A solution with level2 not permitted in our model.

We want to show that when using a threshaldmore symmetries can be found.
Suppose we fixa = % By using Definition 4, looking for,symmetry means that
we need to check if there exists a mapping.t.a ~ b, but only whena andb are
involved in a solution greater than the threshaldSince in our example we want look
for %symmetries, it is sufficient to focus attention on the configjons depicted in
Fig. 4.

We claim thatl >~ 3 and2 >~ 4 for variablewvs. To prove this, we need to give a
mappinge s.t. for any configuratiom s.t. ® Cnlve := 1] > 5 we have® Cnlvs :=



(b) Solution with
level 1.

Fig. 4. Solutions forn = 4.

1] = @ C¢(n)[v2 := 3] and vice-versa (the same happenser, 4). Let's consider
the mappingy similar to¢", s.t.

- ¢(2a 47 1) 3) = (3’ 17 2) 4)! and¢(37 17 47 2) = (2, 47 17 3)1
— when restricted to variable,, v3, andvy (&) (v, vs,0.} = ¢f{v1,v3,v4})' and

— when restricted ta, (¢l{v2}(1) = 3,¢l{v2}(2) = 47¢L{u2}(3) = 1’¢l{’02}(4) =
2.

The mapping just defined, satisfies the condition of symmtryall solutions
greater thar%. Fig. 5 illustrates the mappings. Obviously the semirintueaassoci-
ated with a solution and its transformed equivalent is timeesa

Obviously, we can check that the mapping maintains the sanutian level, so
1 >~ 3 and?2 ~i 4. Similarly, we also haveé ~; 3 and2 ~; 4 as an example of
Theorem 3.

5 Experiments

In this section we present some empirical results supgpttie theoretical framework
presented in Section 3. In particular, Section 5.1 dematesirthat if values, andb
for variablev area; threshold symmetric, they are alsg threshold symmetric, where
a1 < as, and that the number of mappingsthat satisfy the definition for threshold
symmetry for all solutions (Definition 4), increases withger threshold value.

In Section 5.2 we present results from an implementation®frametry Breaking
During Search algorithm that utilizes soft symmetries tuee search effort and the
number of solutions produced. Experimental results confirenimprovement in the
search performance, and show a significant reduction inther of distinct solutions
found.

5.1 Counting Soft Symmetries

In crisp CSPs, the only mappings which can be used to find syriwalevalues in the
n-queens problem are the geometric mappings, for examplendo”, the vertical and
horizontal axial symmetries, respectively. In the soft @@&mework, we can utilize the



(a) The mapping of the first solution (b) The mapping of the second solu-
with level 1. tion with level ;.

/%% a
5

(c) The mapping of the third solution (d) The mapping of the fourth solution
with level 1. with level 1.

(e) The mapping of the solution with
level 1.

Fig. 5. The mappings of the solutions with level %

notion of threshold symmetry to find many more mappings, artl more symmetri-
cal values, which allow symmetry breaking methods to breakensymmetries at each
step.

In our experimental evaluations, we use a small subset gioakible mappings
to test for threshold symmetry between two valueendb for a variablev. In particu-
lar, we chose to systematically generate the subset of sdliple mappings for the soft
queens problem in which domain values are mapped directithier domain valueis-
respectiveof what variable they are assigned to. We computed this sbigsgenerating
n! permutations of the domain values and mapping directly betwalues in the origi-
nal domain and the corresponding position in the permuted Binis set of mappings is
a very small subset of all the possible mappiggemong chess-board configurations;
for the sake of computational tractability we chose to ugedhbset to enable us to find
useful mappings. This subset allowed us to find a significantber of non-geometric
mappings, and provides us with useful results. Many othehous of generating a
manageable subset of mappings are possible. Using a lagef snappings would
potentially give rise to more symmetries, which is one pgassavenue for future work.

In Table 1 we show the symmetrical values founddpusing this set of mappings
for various values of threshot@lin the 5-Queens problem; we present results for values
1 and 3 as examples. We can see that at lower leveis ofe identify, for example,
valuesl and5 as symmetrical with for v,. At all levels ofa greater than this, we also
identify these values as symmetrical, supporting Theorem 3

Table 2 presents results attained by systematically etiautéhe threshold sym-
metry for all solutions (Definition 4) for al{v, a, b, ¢) combinations, using the set of
mappings we generated as discussed above. Results shotva iable indicate the



Table 1.Table of symmetrical values far= 1 anda = 3 for v; in 5-Queens problem at various
values of threshold:.

a (v1 :=a) symmetric values
0.2 1 {1,5}
3 {3}
0.4 1 {1,5}
3 {3}
0.6 1 {1,2,3,4,5}
3 {1,2,3,4,5}
0.8 1 {1,2,3,4,5}
3 {1,2,3,4,5}
1.0 1 {1,2,3,4,5}
3 {1,2,3,4,5}

number of mappings that satisfy the definition for the spedifialue ofa. The results
clearly show that the number of mappings which give rise torsgtries is much larger
at higher thresholds, a useful property when using symoatvalues to guide search
in soft CSPs.

Table 2. Number of times threshold symmetry for all solutions definition is satisfied thitrsh-
olda = % anda = 1 when iterating through allv, a, b, ¢) combinations for soft queens
problems of various sizes.

n a=x a=1

2 6 6
3 15 27
4 24 68
5 40 100
6 54 1620

5.2 Exploiting Soft Symmetries during Search

To demonstrate the utility of the ideas developed in thisepaye implemented an al-
gorithm to break symmetries in soft CSPs. In this algorithm we attempt to bsgen-
metry in the search space to avoid searching for solutiorishvdre symmetrical to
solutions of the same (or higher) consistency which we heady found. Our imple-
mentation is based on the Symmetry Breaking During Sea8BD$J approach [20].
We implemented this search algorithm by augmenting a silvgut&tracker to break
symmetry during search by avoiding sections of the searabesprhich are symmet-
rical to those we have already successfully explored. s way we can significantly
reduce the search effort required to find a set of solutionkraduce the number of



Table 3.Results for our Soft SBDS Backtracker

Soft SBDS Backtracker

n « #bts #sols #bts #sols
2 1 2 0 2 0
2 0.5 2 1 4 4
3 1 4 0 4 0
3 0.667 3 1 5 2
3 0.333 14 8 27 27
4 1 10 1 13 2
4 0.75 10 1 13 2
4 0.5 11 6 26 16
4 0.25 30 16 256 256
5 1 4 1 43 10
5 0.8 4 1 43 10
5 0.6 4 1 43 10
5 0.4 103 66 233 184
5 0.2 363 243 3125 3125
6 1 87 2 131 4
6 0.833 50 6 155 32
6 0.667 67 20 197 70
6 0.5 124 61 358 198
6 0.333 485 304 3019 2642
6 0.167 1092 729 46656 46656

distinct solutions produced by providing a set of represtire solutions instead of an
exhaustive list of all possible solutions of the requiredsistency.

To enable us to prune symmetric states, we maintain a vaklastan set for each
level of the search tree. Each time that we find a solution efréquired consistency
«, we update these exclusion sets with valyegmmetric to the relevant value from
that solution. To ensure that symmetries act locally, wetgmalue exclusion sets for
subsequent levels of the search tree each time we backtrackttoice point.

This approach does not improve on the effort required to find solution to a
soft CSP. However, in soft CSPs our goal is usually to find &t bolution(s). There-
fore, if we find one solution of a high level of consistency we bt need to search
for states which are symmetrical to this solution, signifibareducing search effort.
Furthermore, we also reduce the effort involved in finditigsolutions to a soft CSP.

The set of symmetrical values used for this algorithm isqueputed by following
an approach similar to that outlined above for computingrésellts in Table 2. In this
case, we evaluate the threshold symmetry for all solutiefisition for all (v, a, b, ¢, @)
combinations possible in the relevant instance of the softeqs problem. We then
store eacltv, a, b) triple which is found to bg,symmetric, thus avoiding the significant
overhead of searching through a large set of mappings eaehvie wish to add to our
value exclusion sets. With the current lack of an efficienangeof identifying useful
non-geometric mappings, we see this approach as a reasa@mbpromise between



the added search efficiency gained by utilizjfgymmetries and the off-line overhead
of computing these symmetries.

The set of solutions produced by this algorithm can be seea r@presentative
subset of all possible solutions of the required consistembaich is a useful method of
producing diverse solutions to a loosely constrained emobl

Results achieved using this approach are encouraging:gméisantly reduce the
number of distinct solutions found and the number of backsaequired to find those
solutions. In Table 3 we present results demonstrating titigy wf our approach to
breaking soft symmetries, particularly in loosely conisied problems. For example, if
we examine the results far = 6 anda = é we can see that a very large reduction
in the number of backtracks is attained to find a small reptesige subset of a large
number of possible solutions.

6 Conclusions

Exploiting symmetry in constraint satisfaction problenastecome a very popular
topic of research in recent times. The existence of symnietyproblem has the effect
of artificially increasing the size of the search space thatxiplored by search algo-
rithms. Another significant topic of research has been aapres to reasoning about
preferences. As constraint processing applications azerbi@g more widespread in
areas such as electronic commerce, configuration, ets.b&goming increasingly im-
portant that we can reason about preferences in as efficentlnner as possible.

We have presented an approach to dealing with symmetry isetméring frame-
work for soft constraints. We demonstrate that breakingreginies in soft constraint
satisfaction problems improves the efficiency of searcte paper contributes to the
state-of-the-art in symmetry breaking, as well as in reemgpabout preferences.
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