
A Logic of Partially Satisfied Constraints

Nic Wilson

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

nicwilson@eircom.net

Abstract. Soft constraints are recognised as being important for many
constraints applications. These include (a) over-constrained problems,
where we cannot satisfy all the constraints, (b) situations where a con-
straint can be partially satisfied, so that there are degrees of satisfaction,
and (c) where the identity of a constraint is uncertain, so that it can be
uncertain whether a constraint is satisfied or not by a tuple.
This paper takes a logic-based approach to partially satisfied constraints,
for situations where a tuple can be assigned partially ordered degrees of
satisfaction for a constraint. A semantics is defined, which determines
which constraints can be inferred from a set of constraints, and a sound
and complete proof theory is given. This formalism is closely related to
idempotent semiring-based CSPs and lattice-valued possibilistic logic.

1 Introduction

Soft constraints are recognised as being important for many constraints appli-
cations. Situations which soft constraints are intended for include the following:

(a) Over-constrained problems, where we cannot satisfy all the constraints. In
this case a degree might be associated to a tuple, which depends on the
set of constraints that it falsifies, representing perhaps a cost of failing to
satisfy those constraints. Approaches to this kind of problem include those
described in (Freuder and Wallace, 92) [9].

(b) Situations where a constraint can be partially satisfied, so that there are
degrees of satisfaction; fuzzy constraint satisfaction [5] is intended for this
type of situation.

(c) Situations where the identity of a constraint is uncertain, so that it can be
uncertain whether a constraint is satisfied or not by a tuple, see e.g., [8].

This paper takes a logic-based approach to partially satisfied constraints for
situations where a tuple can be assigned partially ordered degrees of satisfaction
for a constraint. Allowing partially ordered degrees of satisfaction increases the
representational flexibility; it allows one not to have to always decide if the degree
to which a tuple satisfies a constraint is more or less than the degree to which
the tuple satisfies another constraint. A semantics is defined, which determines
which constraints can be inferred from a set of constraints, and a sound and

complete proof theory is given. The consequent formalism is closely related to
idempotent semiring-based CSPs and in particular, set-based CSPs, as well as
lattice-valued possibilistic logic.

In section 2, finite CSPs are expressed as a logic with a simple sound and
complete proof theory. This is generalised to deduction for partially satisfied
constraints in section 3. In the case where the partially ordered set of degrees
is a distributive lattice, the proof theory from section 2 generalises in a very
simple way, as shown in section 3.1. The close links with idempotent semiring-
based CSPs and lattice-valued possibilistic logic are described in section 3.2
and 3.3, respectively. Section 3.4 considers the general case of partially ordered
degrees, by constructing embeddings of partially ordered sets into a particular
distributive lattice; this enables one to use the computational approach of 3.1 for
the general case. This paper focuses on deduction of constraints; however this is
often not what one is primarily interested in, but in finding solutions (though
deduction can be used to guide the search); 3.5 looks briefly at the problem
of finding optimal complete tuples. Section 4 describes an alternative semantic
consequence relation for partially satisfied constraints.

2 Finite CSPs as a Logic

Let V be a finite set of variables, where each variable Vi ∈ V has finite domain
Vi. For U ⊆ V , define U to be the set of possible assignments to variables U ,
that is,

∏
Vi∈U Vi. By convention, the empty set of variables is defined to have a

single value �. In this framework, we define a constraint c to be a subset of Vc,
for some set of variables Vc ⊆ V . A complete tuple x is an element of V . For
U ⊆ V let x↓U be the projection of x to variables U . Associated with constraint
c is the constraint c↑V = {x ∈ V : x↓Vc ∈ c} on variables V . c may be considered
as a more compact representation of c↑V . Similarly, for U such that Vc ⊆ U ⊆ V ,
define c↑U to be {y ∈ U : y↓Vc ∈ c}, where y↓Vc is the projection of partial tuple
y to variables Vc.

For example, let V = {V1, V2, V3, V4, V5}, for i = 1, . . . , 5, let Vi = {ai, bi}. Let
U = {V1, V2}. Then U = {(a1, a2), (a1, b2), (b1, a2), (b1, b2)}. Define constraint c
by: Vc = {V1, V2}, c = {(a1, a2), (b1, b2)}. x = (a1, a2, b3, a4, b5) is an example of
a complete tuple. x ∈ c↑V since x↓Vc = (a1, a2) is in c.

Semantics

A model is intended to represent a possible state of the world. We will define
what a model is, and which constraints it satisfies. Then constraint d will be
said to be a consequence of set of constraints C (written C |= d) if every model
of C is a model of d. There are different natural notions of model.

Semantics(I): A model is a complete tuple, i.e., an element of V . x |= c if and
only if x ∈ c↑V if and only if x↓Vc ∈ c.

This semantics is appropriate if the variables are uncertainty variables, rather
than choice/decision variables: it assumes a unique true (but unknown) complete
tuple x.

Semantics(II): If we have control over the variables then models in the above
sense do not represent mutually exclusive and exhaustive possible states of the
world: no complete tuple x may satisfy the constraints, or many might. So it is
then natural to define a model M to be a subset of V . M |= c if and only if
M ⊆ c↑V . In this semantics each constraint is viewed as a restriction on possible
complete tuples. M represents the correct set of all adequate tuples.

One way of viewing this is that we have a particular purpose in mind, and
certain choices, represented by complete tuples, will be adequate, and some not.
So a possible state of the world is the set of complete tuples that is adequate
for that purpose. Each constraint is then interpreted as restricting this set of
choices, telling us that some of these choices are not adequate.

In either case we say C |= d if and only if every model of C is a model of d.
The two semantics are equivalent in the sense that the same constraints d follow
from C.

Note that for any constraint c, c is satisfied by the same models as c↑V , so c
and c↑V are equivalent. In particular the empty constraint ∅U is equivalent for
each U , so that ∅∅ is equivalent to ∅V : the only model satisfying it is M = ∅ (in
the first semantics it has no models).

C is called satisfiable if and only if there exists some complete tuple x ∈ V
with x satisfying each element of C (i.e., x |= C in Semantics(I)), which is if
and only if there exists some non-empty M with M |= C in Semantics (II).
Otherwise C is said to be unsatisfiable. C is unsatisfiable if and only if C |= ∅∅.
The consequence relation thus determines satisfiability for sets of constraints.

The construction ensures certain basic properties of the consequence relation
|=: it is reflexive (if d ∈ C then C |= d), transitive (if C |= d for all d ∈ D and
D |= e then C |= e), and monotonic (if C |= d then C ∪D |= d).

Combination of constraints. For constraints c and d, define c ∧ d to be the
constraint c↑U ∩ d↑U on variables U = Vc ∪ Vd. So y ∈ U is in c ∧ d if and only
if y↓Vc ∈ c and y↓Vd ∈ d. c ∧ d is essentially intersection, as c↑U is essentially
the same constraint as c. This operation is commutative and associative, so for
finite set of constraints C we write

∧
C for the result of applying ∧ sequentially

the elements of C.

Projection of constraints For constraint c, and U ⊆ Vc, define c↓U , the projection
of c to U , to be {y↓U : y ∈ c}.

Identity (trivial) constraints For U ⊆ V let 1U be the constraint U . (Every
U -tuple is allowed.) This gives us no information, and is satisfied by all models.

Proof theory Define the proof theory by the following axiom and inference
rules:
Axiom: 1V .

Inference Rules:
From c and d deduce c ∧ d.

For each constraint c and U ⊆ Vc the following inference rule:
From c deduce c↓U .

When Vc = Vd and c ⊆ d:
From c deduce d.

In the usual fashion we say that d can be proved from C if there exists a
sequence of elements in the language (constraints) d1, . . . , dn with dn = d and
each di being either an element of C, an axiom, or the result of applying one of
the inference rules to earlier elements in the sequence.

Theorem 1. The above proof theory is sound and complete: C |= d if and only
if d can be proved from C.

Deletion Inference rule A generalised arc consistency can be expressed in terms
of derived inference rules: the combination of projections of constraints to a single
variable. Another important derived inference rule is deletion of a variable. Let
Vi ∈ V . Combine all constraints involving that variable and project to U −{Vi}:
(
∧
{c ∈ C : Vc 3 Vi})↓U−{Vi}, where U =

⋃
{Vc : c ∈ C, Vc 3 c} is the set of

variables involved in the combination.
It can be shown that (C ∧ 1Vd

)↓Vd can be computed by repeated deletion of
the variables not in Vd; this follows because combination and projection obey
the Shenoy-Shafer axioms (Shenoy and Shafer, 90) [14, 13]; this is an instance of
the fusion algorithm [15] (c.f. also Dechter’s Bucket Elimination [11]), which for
this case corresponds to the adaptive consistency algorithm [12, 11]. Therefore
the deletion inference rule gives a sound and complete proof procedure. This
approach is efficient if one can find a hypertree cover which doesn’t involve too
large sets for the constraints’ variable sets hypergraph {Vc : c ∈ C} since then
none of the combinations need involve too many variables. One can also use the
Shenoy-Shafer approach to efficiently find, for example, all the possible values
in each domain.

Relationship with propositional logic embedding. This logical representation might
be viewed as a partial embedding of Finite CSPs in propositional logic. To rep-
resent as a propositional theory (c.f., section 14 of (Mackworth, 92) [10]), one
can create a propositional variable for each element in each domain, with mutu-
ally exclusivity and exhaustivity axioms between elements in the same domain.
So for each variable Vi ∈ V we have |Vi| associated propositional variables,
{pk

i : k ∈ Vi}. Mutual exclusivity of elements in domain Vi are expressed as ax-
ioms ¬(pk

i ∧ pl
i) for all k, l ∈ Vi with k 6= l. Exhaustivity of Vi is expressed

by the axiom
∨

k∈Vi
pk

i . A partial tuple is represented as a conjunction of these
propositional variables, and a constraint as a disjunction of partial tuples. So a

constraint c ⊆ Vc is represented by the formula
∨

y∈c p(y) where p(y) is the for-

mula
∧

Vi∈Vc
p

y(Vi)
i . Combination of constraints then is essentially conjunction,

but where we ‘multiply out’ to maintain the disjunction of conjunctions form
(simplified by the fact that one only has to consider compatible pairs of partial
tuples). Projection corresponds to omitting some conjuncts of partial tuples in
a constraint.

Alternative Notation A constraint c as defined above can also be viewed as
a function from Vc to {0, 1}: assigning 1’s to partial tuples in the constraint.
Similarly, models can be viewed as functions from V to {0, 1}. To emphasise the
link with the partially satisfied constraints framework of section 3, we give the
previous definitions in terms of this alternative notation.

M |= c if and only if M ≤ c↑V , i.e., for all complete tuples x ∈ V , M(x) ≤
c↑V (x), which is if and only if for all x ∈ V , M(x) ≤ c(x↓Vc).

c ∧ d is the constraint on Vc ∪ Vd given by: for y ∈ Vc ∪ Vd, (c ∧ d)(y) =
c(y↓Vc)∧d(y↓Vd), where the last ∧ is logical AND (i.e., min). For U ⊆ Vc, c↓U , the
projection of c to U , is given by: for u ∈ U , c↓U (u) =

∨
{c(y) : y ∈ Vc, y

↓U = u},
where

∨
in the last equation is logical OR (i.e., max). 1U is the constraint on

variables U which is everywhere equal to 1: for all u ∈ U , 1U (u) = 1. The only
difference in the notation in the proof theory is that the subset inference rule is
replaced by:

When Vc = Vd and c ≤ d: From c deduce d,

since: c ≤ d, i.e., for all y ∈ Vc, c(y) ≤ d(y), if and only if every tuple in c is a
tuple in d.

3 Partially Satisfied Constraints

Suppose we now want to allow degrees of satisfaction of constraints. We choose
a finite partially ordered set A = (A,�, 0, 1) to represent these degrees, where
A contains a unique a maximal element 1 and a unique minimal element 0.
Define an A-constraint c to be a function from Vc to A, for some set of variables
Vc ⊆ V . A value of 1 is intended to mean that the tuple completely satisfies the
constraint, and a value of 0 means that the tuple doesn’t satisfy the constraint
at all.

Semantics We would like to say whatA-constraints d can be deduced from a set
of A-constraints C. The intuition that this is based on is as follows: we imagine
that the constraints are for a particular purpose, and that there exists some
unknown function M : V → A which says the true degree that each complete
tuple x ∈ V is adequate for our purposes. Each constraint c in our set C is then
taken to restrict the possible such models M . A constraint c with Vc = V is
interpreted as telling us that for all x ∈ V , the true degree of adequacy M(x)
is bounded above by c(x), i.e., M(x) � c(x). Other constraints, with Vc 6= V

are considered as more compact representations of the constraint c↑V defined by
c↑V (x) = c(x↓Vc). Hence c is interpreted as telling us that for all x ∈ V , the true
degree of adequacy M(x) is bounded above by c↑V (x) = c(x↓Vc).

So we say that M |= c (M satisfies c) if and only if M � c↑V , that is, for all
x ∈ V , M(x) � c↑V (x), in other words: M(x) � c(x↓Vc). For set of A-constraints
C and A-constraint d we define C |= d if and only if every model M of (every
constraint in) C is also model of d. If C is a singleton set {c}, we may write
c |= d instead of {c} |= d.

There is a natural ordering between constraints c and d with Vc = Vd, ex-
tending � pointwise: we say c � d if for all y ∈ Vc, c(y) � d(y).

An alternative notion of semantic consequence is explored in section 4, based
on a similar intuition, but allowing a model M to take values in a partially
ordered set that extends A.

The semantic definition is not very helpful for computing the consequences d
of C; we need some more computationally useful characterisation of consequence.
To do this end we consider a special case first, in 3.1, when A is a distributive
lattice. The formalism is then very closely related to idempotent semiring-based
CSPs [2] with the natural notion of consequence being the same, as discussed in
section 3.2. Also, for this special case, the formalism is very closely related to
lattice-valued possibilistic logic [7], as shown in section 3.3. In 3.4 the general
case for A is considered, by embedding the partially ordered set in a particular
distributive lattice, and using the formalism of 3.1 to determine consequence.
3.5 considers briefly the problem of finding tuples with degree greater than a
particular α, and finding optimal complete tuples.

3.1 The case when A is a distributive lattice

We first look at this special case of a partial order. The definition of semantic
consequence given above is a direct generalisation of that for FCSPs: with the
alternative notation, just replacing ≤ by �. It turns out that the proof theory,
soundness and completeness, and associated algorithms generalise in exactly the
same way, when A = (A, 0, 1,�) is a distributive lattice.

For finite A, (A, 0, 1,�) is a distributive lattice if and only if any α, β ∈ A
have a greatest lower bound α∧β in A (so that γ � α, β implies γ � α∧β), and
a least upper bound α ∨ β (so that α, β � γ implies α ∨ β � γ), which satisfy
the distributivity property: for all α, β, γ ∈ A, γ ∧ (α ∨ β) = (γ ∧ α) ∨ (γ ∧ β).

An important example of a distributive lattice is a subset lattice: let A be
a set of subsets of a set Θ, which is closed under intersection and union: i.e., if
α, β ∈ A then α, β ⊆ Θ and α∩β, α∪β ∈ A. In fact, any finite distributive lattice
is isomorphic to such a subset lattice (using e.g., the construction in section 3.4).

The lattice properties enable us to define combination and projection of A-
constraints, with the same form as before.

Let c : Vc → A and d : Vd → A be two A-constraints. Their combination c∧d
is the A-constraint on variables Vc ∪ Vd given by, for y ∈ Vc ∪ Vd, (c ∧ d)(y) =
c(y↓Vc) ∧ d(y↓Vd).

For U ⊆ Vc, c↓U , the projection of c to U , is given by: for u ∈ U , c↓U (u) =∨
{c(y) : y ∈ Vc, y

↓U = u}, where
∨

in the last equation is the ∨ in the lattice
A. The degree of the projection is the meet of c(y) over all y which project to u.

1U is the constraint on variables U which is everywhere equal to 1: for all
u ∈ U , 1U (u) = 1.

Proof theory

Define the proof theory by the following axiom and inference rules:
Axiom: 1V .
Inference Rules:

From c and d deduce c ∧ d.
For each constraint c and U ⊆ Vc the following inference rule:

From c deduce c↓U .
When Vc = Vd and c � d:

From c deduce d.
The following lemma gives some basic properties.

Lemma 1. Let M be a model for A-constraints, let c and d be A-constraints,
and let C be a set of A-constraints.

(i) For all models M , and U ⊆ V , M |= 1U .
(ii) c ∧ 1V = c↑V ; M |= c ⇐⇒ M |= c↑V .
(iii) M |= C if and only if M |=

∧
C.

(iv) c |= d if and only if c↑V � d↑V if and only if for all x ∈ V , c(x↓Vc) � d(x↓Vd).
(v) If Vc = Vd then c |= d if and only if for all y ∈ Vc, c(y) � d(y).
(vi) If U ⊆ Vc then c |= c↓U .
(vii) If Vc ⊇ Vd then c |= d ⇐⇒ c↓Vd |= d.

The following proposition follows from the application of parts (iii), (i), (vii)
and (v) of the lemma.

Proposition 1. C |= d if and only if
∧

C |= d if and only if (
∧

C∧1Vd
)↓Vd � d.

If
⋃

c∈C Vc ⊇ Vd then C |= d if and only if (
∧

C)↓Vd � d.

Theorem 2 (Soundness and Completeness). C |= d if and only if d can be
proved from C using the axiom and inference rules.

Soundness follows from parts (i), (iii), (v) and (vi) of the above lemma.
Completeness follows from the proposition since we can prove 1Vd

from 1V using
the projection inference rule; then from 1Vd

and C we can prove
∧

C ∧1Vd
using

the combination inference rule and then (
∧

C ∧ 1Vd
)↓Vd using the projection

inference rule. So, if C |= d we can deduce d from C using finally the � inference
rule, showing completeness.

Again we have a form of arc consistency as sound inference rules. Also
the Shenoy-Shafer axioms are satisfied by combination and projection for A-
constraints (see in particular theorems 18 and 19 of (Bistarelli et al, 97) [2]).
This implies that the deletion inference rule leads again to a sound and com-
plete inference procedure which is efficient if there’s a nice hypertree cover of
the hypergraph {Vc : c ∈ C}.

3.2 Relationship with idempotent semiring-based CSPs

It is clear that there is a close relationship between the formalism in 3.1 and
idempotent semiring-based CSPs (Bistarelli et al, 97) [2], as the combination
and projection operations defined above are the same as those used in semiring-
based CSPs. In this section we show that the notion of consequence defined above
is the same as the natural notion of consequence in idempotent semiring-based
CSPs.

In an idempotent semiring-based CSP the primary objects are A-constraints,
with the degrees A forming a distributive lattice (see [2] theorem 10). Without
loss of generality, we can consider A to be finite (if it is not we can consider
instead the (finite) sublattice generated by the degrees in A that appear in a
finite set of constraints.)

A constraint problem, for an idempotent semiring-based CSP, is defined to
be a pair 〈C,U〉 where C is a set of A-constraints and U ⊆ V . The solution of
this pair is defined to be the A-constraint Sol(〈C,U〉) = (

∧
C)↓U . For constraint

problems 〈C1, U〉 and 〈C2, U〉, the relation 〈C1, U〉 v 〈C2, U〉 is said to hold if
Sol(〈C1, U〉) � Sol(〈C2, U〉). Equivalence between constraint problems is defined
as follows: 〈C1, U〉 ≡ 〈C2, U〉 if 〈C1, U〉 v 〈C2, U〉 and 〈C2, U〉 v 〈C1, U〉, i.e., if
Sol(〈C1, U〉) = Sol(〈C2, U〉).

There is a natural definition for deduction of constraints in this system.

Proposition 2. Let C ∪ {d} be a set of A-constraints such that VC ⊇ Vd,
where VC =

⋃
c∈C Vc. Then the following are equivalent: (i) (

∧
C)↓Vd � d;

(ii) (
∧

C) � d ∧ 1VC
; (iii) Sol(〈C, Vd〉) � d; (iv) 〈C, Vd〉 v 〈{d}, Vd〉; (v)

〈C, VC〉 v 〈{d, 1VC
}, VC〉; (vi) 〈C ∪ {d}, VC〉 ≡ 〈C, VC〉; (vii) for any U ⊆ VC ,

〈C ∪ {d}, U〉 ≡ 〈C,U〉; (viii) (
∧

C) ∧ d =
∧

C.

For set C of A-constraints and A-constraint d with
⋃

c∈C Vc ⊇ Vd, we can say
that d is a consequence of C if Sol(〈C, Vd〉) � d (or any other of the equivalent
forms in the proposition). Using part (viii), this can be seen to tally with the
entailment relation defined in (Bistarelli et al, 02) [4] (see definition 6).

By part (i) of this proposition and the previous proposition, this notion of
consequence is the same as the consequence defined earlier: C |= d. Therefore the
framework described above, for the distributive lattice case, gives a semantics
for consequence in idempotent semiring-based CSPs.

This semantics differs in a fundamental way from the model-theoretic seman-
tics for semiring-based Constraint Logic Programming given in (Bistarelli et al,
2001) [3]. In the semantics described above (both in the hard constraints and
soft constraints cases), a constraint is taken to restrict allowable tuples, and so
conveys only negative information: a tuple not in the constraint is inadequate,
tuples in the constraint may or may not be adequate. Consequently, there exists
a unique maximal model of a set of constraints C, i.e., (

∧
C)↑V . In contrast, in

the logic programming-based semantics of [3], constraints are expressed using a
set of facts expressing known instances of the constraints, which is not assumed
to be an exhaustive set of instances; these therefore express positive informa-
tion, and there exists a unique minimal interpretation of such a set of facts, and

more generally a program; we then query to see if there exists a known common
instance (i.e., a solution) of the set of constraints. Which of the two semantics
is more appropriate will depend on the application.

3.3 Relationship with lattice-valued possibilistic logic

This logic of soft constraints is also closely related to a form of possibilistic logic
[7] which takes values in a distributive lattice, see (Dubois et al, 91) [6], and
(Dubois et al, 94) [7] section 4.3.

Let A = (A,�, 0, 1) be a complete distributive lattice. Define an A-possibility
distribution over set Ω to be a function π from Ω to A. Define the associated
A-possibility measure to be the function Possπ : 2Ω → A given by Possπ(X) =∨
{π(ω) : ω ∈ X}.

A lattice-valued possibilistic logic over FCSPs. We might embed FCSPs in propo-
sitional logic and then use possibilistic logic over lattices. Here we take a more
direct approach, defining such a possibilistic logic over the language of FCSPs.
Possibilistic logic usually involves lower bounds on the necessity values of propo-
sitions; these are equivalent to upper bounds on the possibility values of the
negated propositions, and for convenience, these are used here.

Let L be the set of pairs (y, α) for α ∈ A and partial tuple y ∈ U for some
U ⊆ V . The intended meaning of this pair (y, α) is that the possibility measure
of y is at most α. For A-possibility distribution π over V , U ⊆ V , partial tuple
y ∈ U , and α ∈ A, define π |= (y, α) if and only if Possπ({x ∈ V : x↓U = y}) �
α. Therefore π |= (y, α) if and only if for all x such that x↓U = y, π(x) � α. For
Γ , ∆ ⊆ L we say Γ |= ∆ if and only if π |= ∆ for all π such that π |= Γ . (π |= Γ
if and only if π |= (y, α) for all (y, α) ∈ Γ .)

Relationship with logic of partially satisfied constraints An A-constraint c : Vc →
A corresponds to a set of pairs c∗ ⊆ L, where c∗ = {(y, c(y)) : y ∈ Vc}. For set
of such soft constraints C, write C∗ =

⋃
c∈C c∗. A-possibility distributions π are

just models in the partially satisfied constraints logic defined above, and, for
A-constraint c, π |= c in the soft constraint logic if and only if π |= c∗. Hence we
have C |= d if and only if C∗ |= d∗. Thus deduction for lattice-valued constraints
can be considered as lattice-valued possibilistic deduction.

This result suggests the application of the more general partially ordered case
(sections 3.4 and 4) to produce a poset-valued-possibilistic logic, of a different
form to that produced by Benferhat et al., [1].

3.4 The General Partially Ordered Set Case

Here we consider the general case: where A = (A, 0, 1,�) is an arbitrary partially
ordered set that has a unique minimal element 0 and a unique maximal element
1. The idea is to embed the partially ordered set into a lattice of subsets in such
a way that the ordering information is maintained, but without adding any extra

ordering of elements. Then we can use the proof procedures for the subset lattice
case to make deductions for this general case.

Let � be a partial order on set A. For B ⊆ A and γ ∈ A we write B ⇒ γ if
every lower bound of (every element of) B is a lower bound of γ, i.e., if α ∈ A
is such that α � B, then α � γ (where α � B iff for all β ∈ B, α � β). Let C
be a set of A-constraints: i.e., each c ∈ C is a function from Vc to A, for some
Vc ⊆ V . For x ∈ V define C(x) to be the set {c(x↓Vc) : c ∈ C}.

Proposition 3. With the above notation, C |= d if and only if for all x ∈ V ,
C(x) ⇒ d(x↓Vd).

This proposition expresses deduction in terms of the relation ⇒. To prove
the ‘if’ part: if C(x) ⇒ d(x↓Vd) and M |= C then for all x ∈ V , M(x) � C(x) so
by the definition of ⇒, M(x) � d(x↓Vd); this shows M |= d, proving C |= d. For
the converse, suppose that it is not the case that for all x ∈ V , C(x) ⇒ d(x↓Vd).
Then there exists x0 ∈ V and α ∈ A such that α � C(x0) but α 6� d(x↓Vd

0).
Define model M by M(x0) = α and for all x 6= x0, M(x) = 0. It can be easily
seen that M |= C but M 6|= d, proving that C 6|= d.

This leads to the following result, essentially because the condition that⋂
β∈B Xβ ⊆ Xγ is equivalent to the condition {Xβ : β ∈ B} ⇒ Xγ (in the

subset lattice), and the proposition tells us that deduction only depends on ⇒.

Theorem 3. Suppose we have a function χ from A to 2Θ for some finite set Θ,
which we write as α 7→ Xα. For each c : Vc → A define cχ : Vc → 2Θ to be c
followed by χ, so that cχ(y) = Xc(y). Let C be a set of A-constraints. Define Cχ

to be {cχ : c ∈ C}. Suppose further that function χ satisfies the condition: for
all B ⊆ A and γ ∈ A,

B ⇒ γ ⇐⇒
⋂

β∈B

Xβ ⊆ Xγ .

Then C |= d if and only if Cχ |= dχ.

(Note that the the latter |= is based on models M : V → 2Θ.)

What this theorem shows is that if we have the appropriate property on the
embedding χ then we can determine deduction of the A-constraints by using
considering deduction of the 2Θ-constraints; for the latter we have the results
of the previous section: a simple sound and complete proof theory which gives
rise to an efficient computational procedure given appropriate structure on the
constraints’ variables.

It is easy to find an embedding with the appropriate properties. In particular
we can define Θ to be A and Xα to be {β ∈ A : β � α} (see below). However,
if A is large, working with subsets of A can be computationally expensive. In
the following subsection we give a way of constructing such an embedding which
can lead to much smaller Θ than A.

An algorithm for embedding a partial-ordered set into a lattice of
subsets.

First we give natural sufficient conditions for the above required property on the
embedding χ.

Lemma 2. Suppose α 7→ Xα satisfies the following properties:

(i) α � β ⇐⇒ Xα ⊆ Xβ;
(ii) For any B ⊆ A and θ ∈

⋂
β∈B Xβ, there exists α ∈ A with θ ∈ Xα ⊆⋂

β∈B Xβ.

Then for any B ⊆ A and γ ∈ A, B ⇒ γ ⇐⇒
⋂

β∈B Xβ ⊆ Xγ .

To prove this: because of (i), B ⇒ γ can be written as: for all α, [Xα ⊆⋂
β∈B Xβ implies Xα ⊆ Xγ]. This clearly is implied by

⋂
β∈B Xβ ⊆ Xγ . For

the converse, consider any θ ∈
⋂

β∈B Xβ ; by (ii) there exists α with θ ∈ Xα ⊆⋂
β∈B Xβ so θ ∈ Xα ⊆ Xγ , proving

⋂
β∈B Xβ ⊆ Xγ .

We will consider embeddings of a particular form. Let A′ be a subset of A.
For α ∈ A let XA′

α be the set {α′ ∈ A′ : α′ � α}. It can easily be seen that for
any A′, the mapping α 7→ XA′

α satisfies (ii) above (using α = θ), and half of
(i): if α � β then XA′

α ⊆ XA′

β , (by transitivity of �). Setting A′ = A − {0} (or
indeed A′ = A) we get the other half of (i): if XA′

α ⊆ XA′

β then α � β. However,
we can very often find a much smaller A′ that still satisfies both conditions (i)
and (ii) of the lemma, as shown below.

If set of elements B ⊆ A have a unique greatest lower bound α then XA′

α =⋂
β∈B XA′

β . A monotonicity property also holds: for A′′ ⊆ A′, XA′

α ⊆ XA′

β implies
XA′′

α ⊆ XA′′

β (because XA′′

α = XA′

α ∩ A′′). This makes the construction of a
particular A′ much easier: we can add elements to A′, knowing that this can’t
lead to any extra orderings XA′

α ⊆ XA′

β .

Construction of a particular A′ that satisfies the desired conditions
We list the elements of A in an order compatible with �, starting with 0, so
that α0 = 0, and if αi � αj then i ≤ j. We build up A′, element by element,
with the final set A′ being A|A|−1. We set A0 = ∅. For each i = 0, . . . , |A| − 1 we
will have Ai ⊆ {α0, . . . , αi}, with A0 ⊆ · · · ⊆ Ai−1 ⊆ Ai · · · ⊆ A|A|−1. We will
also arrange that for j, k ≤ i, XAi

αj
⊆ XAi

αk
implies αj � αk. The monotonicity

property ensures that when we increase Ai, this property still holds. In particular,
for each i, we just need to check that this property holds for j, k ≤ i with either
j = i or k = i: because for j, k ≤ i − 1 we have by induction X

Ai−1
αj ⊆ X

Ai−1
αk

implies αj � αk, so by monotonicity, XAi
αj
⊆ XAi

αk
implies αj � αk.

If we have for all j, k ≤ i with either j = i or k = i,

X
Ai−1
αj ⊆ X

Ai−1
αk implies αj � αk,

then we can set Ai = Ai−1. Otherwise we add extra elements that restore the
property. The violations of this property are of two types, according to whether

j = i or k = i. In the former case we can restore the property by including αi in
Ai; in the latter case by including αj in Ai.

If X
Ai−1
αi ⊆ X

Ai−1
αk for some k < i (and by the definition of the ordering we

don’t have αi � αk) then we can correct this by adding αi to Ai, ensuring that
XAi

αi
6⊆ XAi

αk
, since XAi

αi
contains αi but XAi

αk
doesn’t.

Suppose X
Ai−1
αj ⊆ X

Ai−1
αi for some j < i such that αj 6� αi. Then we correct

this by adding αj to Ai, ensuring that XAi
αj
6⊆ XAi

αi
.

So, in summary, we define, for each i = 1, . . . , A|A|−1, Ai = Ai−1 ∪ Yi ∪ Zi

where we set Yi = {αi} if there exists k < i with X
Ai−1
αi ⊆ X

Ai−1
αk ; otherwise we

set Yi = ∅. We set Zi to be the set of all αj such that (a) j < i, (b) αj 6� αi,
and (c) X

Ai−1
αj ⊆ X

Ai−1
αi .

The monotonicity property then ensures that, with A′ = A|A|−1, we have
XA′

α ⊆ XA′

β implies α � β, as required. As remarked earlier we have the converse,
so XA′

α ⊆ XA′

β if and only if α � β. In particular α 7→ XA′

α is one-to-one.

To summarise, we have shown that this embedding α 7→ Xα, when Xα =
{α′ ∈ A′ : α′ � α} satisfies the properties (i) and (ii) of the above lemma, and
hence the conditions of the theorem. So by the theorem, we can use this embed-
ding to compute consequences of sets of A-constraints, by using the proof theory
of section 3.1 applied to the lattice of subsets {Xα : α ∈ A}.

This particular construction also has the following nice property (α is said
to cover β if i.e., α � β and there does not exist γ with α � γ � β):

Proposition 4. If (A,�, 0, 1) is a finite distributive lattice then A′ as defined
in the above algorithm is the set of all α ∈ A such that there exists a unique
element β which α covers. We then have X0 = ∅, X1 = A′, and for all α, β ∈ A,
Xα∧β = Xα ∩ Xβ and Xα∨β = Xα ∪ Xβ, so that α 7→ Xα is an isomorphism
between distributive lattices.

The purpose of the construction is to produce an embedding into not too
large a set. In the worst case, when � is a total order, the set A′ is just A−{0},
so |A′| = |A| − 1. The other extreme is when A is the lattice of all subsets of a
set Ω. Then A′ is the set of singleton subsets of Ω, so |A′| = |Ω| = log2 |A|.

3.5 Finding complete tuples with degree greater than α, and
finding optimal tuples

For any α ∈ A, we can use standard FCSP algorithms to find tuples x ∈ V sat-
isfying each constraint at least to degree α. These are the tuples satisfying set of
(conventional) constraints Cα = {cα : c ∈ C}, where cα = {y ∈ Vc : c(y) � α}.
Complete tuple x ∈ V might then be considered optimal if it satisfies Cα for
some α maximal such that Cα is satisfiable; (one might also further constrain
the solutions with additional maximality criteria). Such maximal α can be found
using an iterative algorithm.

4 A Different Semantics for Partially Satisfied
Constraints

Consider partially ordered set (A, 0, 1,�) with A = {0, 1, α, β}, and 0 � α, β � 1,
but no order between α and β. Consider constraints c1 and c2 on a single boolean
variable given by: c1(a) = c2(a) = 1, c1(b) = α, c2(b) = β. With the semantics
given in the previous section, {c1, c2} entails the constraint d given by d(a) = 1,
d(b) = 0, which states that value b is impossible. This is because, for model M ,
M |= c1 if and only if M(b) � α, and M |= c2 if and only if M(b) � β. So
M |= {c1, c2} if and only if M(b) � α, β, hence M(b) = 0, since 0 is the only
element of A which is a lower bound for both α and β.

Now this is perfectly correct, and also reasonable if the constraints were con-
sidered as restricting possible A-valued assignments. However, often the intention
will not be precisely that: our input information may consist in the constraints
which assign elements to partial tuples, and where we are given some ordering
information between some of these elements. We can then generate the par-
tially ordered set (A, 0, 1,�), where A is the set of elements mentioned in the
constraints. However, these partially ordered elements may have come from an
unknown larger partially ordered set (A′, 0, 1,�′) which extends (A, 0, 1,�), i.e.,
A′ ⊇ A, and for α, β ∈ A, α � β implies α �′ β.

This leads to the following semantics for A-constraints. A model M is a
function from V to A′ where (A′, 0, 1,�′) extends (A, 0, 1,�). For A-constraint
c, we then define M |= c (M is a model of c, or M satisfies c) if for all x ∈ V ,
M(x) �′ c(x↓Vc). For set of constraints C and constraint d we then say C |=∗ d
if M |= d for any M satisfying every constraint in C.

We can proceed in a similar fashion as in 3.4. Suppose B ∪ {γ} ⊆ A and
(A′, 0, 1,�′) extends (A, 0, 1,�). A lower bound in A′ of γ is an element α′ ∈ A
with α′ �′ γ. Similarly a lower bound in A′ of B is a lower bound of every
element of B. We define B ⇒∗ γ if for every (A′, 0, 1,�′) extending (A, 0, 1,�),
every lower bound in A′ of B is a lower bound of γ. We give two intermediate
results.

Proposition 5. Let C ∪{d} be a set of A-constraints. With the above notation,
C |=∗ d if and only if for all x ∈ V , {c(x↓Vc) : c ∈ C} ⇒∗ d(x↓Vd).

Lemma 3. Suppose B ∪ {γ} ⊆ A. Then B ⇒∗ γ if and only if there exists
β ∈ B with β � γ.

Bringing the proposition and lemma together we have

Theorem 4. Let C ∪ {d} be a set of A-constraints. Then C |=∗ d if and only if
for all x ∈ V , there exists c ∈ C with c(x↓Vc) � d(x↓Vd).

This result indicates that the consequence relation |=∗ will often be much
weaker than the consequence |= defined in section 3, since ⇒∗ will often be a
much weaker relation than ⇒ (the antecedents B for ⇒∗ don’t interact).

Proposition 6. C |=∗ d if and only if for all z ∈ Vd, {c6�d(z) : c ∈ C} ∪ {z} is
unsatisfiable.

The result can be written in a different way, as this proposition shows. This
gives a computational procedure to determine the entailment C |=∗ d: for each
z ∈ Vd we check the satisfiability of a set of standard constraints. This can
be done using any of the standard methods, such as the approach described in
section 2.

The naturalness of this consequence relation depends on what we know and
don’t know about the partially ordered set. If (A, 0, 1,�) is a lattice, then this
consequence relation will often not be appropriate as it can be unnecessarily
weak: this is because we are only requiring the extension to extend the ordering
relation �, whereas it is often natural to only consider extensions that also
extend ∨ and ∧; for example, one might expect that a statement that (for a
constraint c) c(y1) is the greatest lower bound of c(y2) and c(y3) should not just
hold in A, but in any extension we consider.

This will lead to ⇒∗ just being ⇒ and consequence being the same as that
defined in section 3. However, this suggests that sometimes a richer representa-
tion of a partially ordered set may be appropriate, for example, as A = (A, 0, 1,�
,∧,∨) where ∧ and ∨ are partial operations on A: they are only defined for some
pairs of elements. When α∧β is defined, the result should be the greatest lowest
bound not only in A but in any extension of A; extensions A′ should extend
these partial functions as well as the ordering relation. We can then apply the
same approach as used above, but based on only these extensions.

This extra structure can be used, for example, to define mutual exclusivity
between elements in A: α ∧ β = 0, so that a constraint c with c(y) = α and a
constraint d with c(y) = β will jointly imply that y is impossible: M(y) = 0.

5 Summary

It has been shown that a logical formulation of finite CSPs, involving a semantics,
proof theory and computational procedures, generalises in a very simple way to
a logic of partially satisfied constraints. This formalism allows one to reason
with soft constraints that assign arbitrary partially ordered degrees to tuples,
representing the degree that the tuple satisfies the constraint.

In the case where the partially ordered set is a distributive lattice, the
logic can be viewed as a lattice-valued possibilistic logic of constraints, and
has the same consequence relation as that generated by idempotent semiring-
based CSPs. The logic can therefore be considered as giving a new semantics for
idempotent semiring-based CSPs.

Acknowledgements. This work was done mainly while I was at the Depart-
ment of Computer Science, Keele University, UK. It was supported by the RE-
VIGIS project, IST-1999-14189, and by Science Foundation Ireland under Grant
00/PI.1/C075. I am grateful also to the referee for their helpful comments.

References

1. Benferhat, S., Lagrue, S., Papini, O., Reasoning with partially ordered information
in a possibilistic framework, Proc. of the Ninth International Conference, Infor-
mation Processing and Management of Uncertainty in Knowledge-based Systems
(IPMU’2002); long version to appear in Fuzzy Sets and Systems.

2. Bistarelli, S., Montanari, U., Rossi, F., Semiring-based Constraint Solving and
Optimization, Journal of the ACM, vol. 44, no. 2, 201–236 (1997).

3. Bistarelli, S., Montanari, U., Rossi, F., Semiring-Based Constraint Logic Program-
ming: Syntax and Semantics, ACM Transactions on Programming Languages and
Systems, ACM Press New York, USA, Pages: 1–29 Vol. 23, issue 1, (2001).

4. Bistarelli, S., Montanari, U., Rossi, F., Soft Concurrent Constraint Programming,
Proc. ESOP, April 6–14, 2002, Grenoble, France Proceedings Springer LNCS vol.
2305, (2002).

5. Dubois, D., Fargier, H., Prade, H., The Calculus of Fuzzy Restrictions as a Basis for
Flexible Constraint Satisfaction, Proc. IEEE Int. Conf. on Fuzzy Systems, IEEE
(1993).

6. Dubois, D., Lang, J., Prade, H., Timed Possibilistic Logic, Fundamenta Informat-
icae, XV: 211–234 (1991).

7. Dubois, D., Lang, J., Prade, H., Possibilistic Logic, Handbook of Logic in Artificial
Intelligence and Logic Programming, D. Gabbay, C. Hogger, J. Robinson (eds.),
Vol. 3, 439–513, Oxford University Press (1994).

8. Fargier, H., Lang, J., Uncertainty in Constraint Satisfaction Problems: a Prob-
abilistic Approach, 2nd European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty (ECSQARU-93), Kruse, R., Clarke, M.
and Moral, S., (eds.), Springer Verlag, 97–104, (1993).

9. Freuder, E., and Wallace, R., Partial Constraint Satisfaction, Artificial Intelligence,
58, 1–3, 21–70 (1992).

10. Mackworth, A. K., The Logic of Constraint Satisfaction, Artificial Intelligence 58,
3–20, (1992).

11. Dechter, R., Bucket Elimination: A Unifying Framework for Reasoning, Artificial
Intelligence, 113, 41–85 (1999).

12. Dechter, R., and Pearl,J., Network-based Heuristics for Constraint Satisfaction
Problems, Artificial Intelligence, 34, 1–38, (1987).

13. Kohlas, J., and Shenoy, P., Volume 5: Algorithms for Uncertainty and Defeasi-
ble Reasoning J. Kohlas, S. Moral (eds.), Handbook of Defeasible Reasoning and
Uncertainty Management Systems, (Series eds.: D. Gabbay, P. Smets), Kluwer
Academic Publishers (2000).

14. Shenoy, P. P., and Shafer, G., Axioms for Probability and Belief Function Propa-
gation, in Uncertainty in Artificial Intelligence 4 , R. D. Shachter, T. S. Levitt, L.
N. Kanal, J. F. Lemmer (eds.), North Holland, also in Readings in Uncertain Rea-
soning , Shafer, G., and Pearl, J., (eds.) Morgan Kaufmann, San Mateo, California,
575–610 (1990).

15. Shenoy, P. P., Valuation-Based Systems: A Framework for Managing Uncertainty in
Expert Systems, pages 83–104, in Fuzzy Logic for the Management of Uncertainty,
Zadeh, L.A., & Kacprzyk, J., (eds.), John Wiley & Sons (1992).

