
 1

An Elegant and Efficient Implementation of
Russian Dolls Search for Variable Weighted CSP

Thierry Benoist1,2 and Michel Lemaître3

1 Bouygues e-lab, 1 av. Eugène Freyssinet,
78061 St Quentin en Yvelines Cedex, France

2 Laboratoire Informatique d’Avignon CNRS FRE 2487,
339 chemin des Meinajaries, Avignon Cedex, 84911, France

tbenoist@bouygues.com
3 ONERA Center of Toulouse

2 av. Edouard Belin, BP 4025, 31055 Toulouse Cedex 4, France
Michel.Lemaitre@cert.fr

Abstract. The Russian Dolls Search (RDS) algorithm is both a solving proce-
dure and a cost based filtering algorithm suitable for Weighted Constraint Satis-
faction Problems (WCSP). In the context of Variable Weighted CSP, we pro-
pose a declarative implementation of RDS filtering, using a set of auxiliary
variables and constraints. This approach allows relying on a Constraint Pro-
gramming (CP) solver instead of developing dedicated machinery. We prove
that this model yields strictly better propagation than the standard one and we
bring experimental results showing that both computation time and number of
explored nodes are significantly decreased.

Keywords: Russian Dolls Search, Variable Weighted Constraint Satisfaction
Problem, Constraint Programming.

1. Introduction

The Valued Constraint Satisfaction Problem (VCSP) framework is an extension of
the Constraint Satisfaction Problem (CSP) framework, allowing taking into account
costs, preferences and priorities. Hence, it is a convenient framework for constraint
optimization [9]. Following [3], we regard Weighted CSP (WCSP) as a specific sub-
class of VCSP for which the aggregation operator is the ordinary sum. In this paper,
we consider a further specialization of WCSP, namely the Variable WCSP (VWCSP)
framework, dedicated to the modeling of knapsack-like problems.

A VWCSP has a subset of 0-1 special variables called the selection variables.
Each selection variable Xi is given a weight ϕi, and is associated to a unary soft con-
straint (Xi = 1) of weight ϕi. There is no other soft constraint. All other constraints
are hard constraints. Moreover, the following property is required: when a selection
variable Xi takes the value 0 (the rejection value), all hard constraints involving Xi
must be satisfied.

The standard WCSP objective (minimizing the sum of the unsatisfied constraints)
is equivalent, in a VWCSP, to maximizing the sum of the weights of the selection

mailto:tbenoist@bouygues.com

 2

variables which are not instantiated to the rejection value. This framework covers a
wide range of applications. Typically most knapsack-like problems consisting in
selecting a subset of maximal weight among a given set of items subject to some hard
constraints can be seen as VWCSP.

The Russian Dolls algorithm [10] was first developed within this framework in or-
der to optimize the schedule of an Earth Observation Satellite [1]. The idea is to suc-
cessively solve growing nested sub-problems, starting by the schedule of the very last
tasks (photos) and ending by solving the whole problem. Each sub-problem provides
a good bound boosting the resolution of the next ones, what makes the whole process
much faster than a direct resolution of the whole problem.

This approach consists of a solving procedure considering nested sub-problems
one after another, and a dedicated cost based filtering mechanism (based on computed
bounds) aside of standard propagation of constraints of the problem. RDS is usually
combined with Forward Checking in a standalone WCSP optimizer. Alternatively
RDS can be integrated in a CP framework, embedding this filtering algorithm in a
global constraint [4]. This last approach presents numerous advantages: low level
tasks like events management on variables is supported by the CP kernel, expressive
and efficient (global) constraints are available and the objective function can be freely
defined. Embedding “soft” filtering in constraints was also a goal pursued by [7].

After a brief description of the original model we will propose, in the context of
VWCSP, a declarative implementation of RDS filtering, using a set of auxiliary vari-
ables and constraints. This allows relying on the CP solver instead of developing
parallel dedicated machinery to perform RDS filtering what can be a tricky task [4].
Incidentally, the whole procedure can be formulated within this model as a more
classical tree search. Besides we prove that this model yields better propagation than
the standard one and we bring experimental results showing that both computation
time and number of explored nodes are significantly decreased.

2. Definitions and notations

2.1. Framework

A Variable Weighted Constraint Satisfaction Problem (VWCSP) is defined as fol-
lows. We give here a Constraint Programming formulation of this problem.

• Variables: problem P involves n+m+1 variables.
o n binary variables (X1…Xn) with domain(Xi)⊆{0,1} (selection variables),
o m integer variables (Z1…Zm)
o one objective variable Ω

• Constraints:
o Ω is involved in a single constraint Ω=∑ϕiXi where ϕ1…..ϕn is a vector

of non-negative integers
o others constraints obey the following properties

 at least one Xi is involved,

 3

 when one of involved Xi equals 0, the constraint is satisfied1.
• Objective: Find a solution satisfying all constraints and maximizing Ω.

Note that a trivial solution of P is Xi=0 ∀i, Ω=0, and (Z1…Zm) taking arbitrary val-

ues. As for most “soft” problems the difficulty lies in optimization rather that satisfac-
tion. This framework is particularly suited to model problems where a maximum
number of objects have to be selected subject to a set of constraints: all constraints on
objects are only “activated” when their selection variable equals 1. Therefore finding
a maximum solution to the VWCSP is selecting the best subset of objects such that
(Z1…Zm) can be assigned values satisfying triggered constraints.

2.2. Example: a scheduling problem

In this example, three tasks can be performed on a disjunctive resource. Durations
are respectively (1,3,3), earliest starts (1,0,0), latest ends (4,5,4) and revenues (2,4,5).
The problem is to select a subset of tasks of maximum revenue. This problem can be
set as a VWCSP where Xi models the selection of task i and Zi represents the starting
time of task i when selected. The VWCSP reads as follows.

• Variables[min,max]: X1[0,1],X2[0,1],X3[0,1],Z1[1,3],Z2[0,2] Z3[0,1], Ω[0,11]
• Constraints :

o Ω = 2X1 + 4X2 + 5X3
o (X1=0) OR (X2=0) OR (Z1 + 1 ≤ Z2) OR (Z2 + 3 ≤ Z1)
o (X1=0) OR (X3=0) OR (Z1 + 1 ≤ Z3) OR (Z3 + 3 ≤ Z1)
o (X2=0) OR (X3=0) OR (Z2 + 3 ≤ Z3) OR (Z3 + 3 ≤ Z2)

An optimal solution of this scheduling problem is X1=1, X2=1, X3=0, Z1=1, Z2=2,
Z3=0, Ω=6.

3. The original algorithm

We describe in this section the original RDS algorithm. Each step of this algorithm
consists in computing an upper bound of a part of the objective sum, through the
exact resolution of a restricted problem.

We consider the VWCSP defined in section 2.1 We note Pj the sub problem where
Xi=0 ∀ i < j, and ωj the optimal solution of Pj (by convention ωn+1=0). In example 2.2
P2 is the problem restricted to tasks 2 and 3 and constraints holding on these tasks.
Note that P1=P.

Given an integer k≤n the Russian Dolls filtering algorithm for frontier k (noted
Rrds(P,k)) is based on the following decomposition of the objective function

1 In other words, constraints follow the pattern (Xi = 1 ∀ i ∈ I) ⇒ C, with I a non-empty

subset of [1,n].

 4

i

n

ki
ii

k

i
i XX ∑∑

=

−

=

+=Ω ϕϕ
1

1

(1)

(1)
With Vmin and Vmax respectively denoting the lower and upper bounds of the do-

main of variable V and using ωk as an upper bound of the second term of , two
filtering rules are added to the arc-consistency algorithm, in order to take this RDS
bound ωk into account:

ki

k

i
i X ωϕ +≤Ω ∑

−

=

max
1

1

max
(2)

(2)

minminmax
1

1
0 00

0

1 Ω≥++−≤∀ ∑
−

≠
=

kiii

k

ii
i

i XXki ωϕϕ
(3)

(3)Rule constrains the upper bound of the objective variable and rule detects
variables needed to be instantiated to 1 due the objective lower bound. Given ωi for
all i >j, these filtering rules can be added to a constraint propagation engine in order
to help solving Pj (thus obtaining ωj). Notice that using the standard RDS algorithm
to solve VWCSP requires some care to prevent unary constraints violations from
being counted twice (in the forward-checking bound and in the additional RDS pre-
vious optimal costs). Usually a frontier k=1+max{i ∈[j+1,n] | Xi

min = Xi
max} is main-

tained and only rules Rrds(P,k) associated to this frontier are propagated. Variables
beyond this frontier have not been instantiated neither directly (enumeration algo-
rithm) nor indirectly (propagation or forward checking).

The Russian Dolls Search consists in successively solving Pn,Pn-1,Pn-2,…P1 with
this technique instead of directly solving the original problem P1.
function Rds(P)
 {for j in n downto 1
 ωj := solve(Pj,{ωi | i > j})
 return ω1}

4. New RDS model

In the new RDS model proposed below, a recursive reformulation of the objective
sum allows relying on a CP solver to perform a stronger form of RDS filtering.

We enrich the model with n additional variables Ω1, Ω2 …Ωn and n constraints:
• Ω = ϕ Xn n n

• ∀ i < n Ω = ϕX + Ω i i i i+1

Given ωi for all i >j, we also post the constraint Ωi ≤ ωi ∀ i > j. We note Crds(P,j)
this set of additional constraints. The corresponding implicit filtering rules achieved
by bound-consistency are:

• Ωi
max

 ≤ ϕiXi
max + Ωi+1

max and Ωi
min

 ≥ ϕiXi
min + Ωi+1

min

 5

• ϕiXi
max ≤ Ωi

max - Ωi+1
min and ϕiXi

min
 ≥ Ωi

min - Ωi+1
max

• Ωi+1
max ≤ Ωi

max - ϕiXi
min and Ωi+1

min
 ≥ Ωi

min - ϕiXi
max

Proposition 1: Domains consistent with Crds(P,j) are always consistent with

Rrds(P,k)∀ k≥ j.

1

Proof: Adding equations Ωi
max

 ≤ ϕiXi
max + Ωi+1

max for i < k we obtain
maxmaxmax

1
max

kii X Ω+≤Ω=Ω ∑ϕ (4)

(4)Since k>j, we can use constraint Ωk ≤ ωk and is stronger or equal to . (2)

(2)

(3)

For any i0≤ k-1, adding equations ϕiXi
min

 ≥ Ωi
min - Ωi+1

max for i ≤ i0 to equations
Ωi

max
 ≤ ϕiXi

max + Ωi+1
max for i ∈[i0+1,k-1] yields

10 −≤∀ ki max
1

1

minmaxmax
1

1

min
0

0

00 i

i

i
iki

k

ii
iii XXX ∑∑

−

=

−

+=

−Ω≥Ω++ ϕϕϕ
(5)

(5)Since Ωk
max≤ ωk, is always at least as strong as .■

Proposition 2: Given ωi for all i >j, domains consistent with Rrds(P, 1+max{i

∈[j+1,n] | Xi
min = Xi

max}) are not necessary consistent with Crds(P,j).

2

Proof: With 5 variables, ϕi=1 ∀i, ω5=1, ω4=1, ω3=1, ω2=2. Some constraints of P
cause X2=0 and X5=0 when X1=1. Trying to solve P1 we set X1=1, resulting domains
are respectively [1,1],[0,0],[0,1],[0,1][0,0].

Therefore max{i ∈[j+1,n] | Xi
min = Xi

max}=5 and the upper bound provided by rule
 is just ∑Xi

max=3.
On the contrary Ω2

max
 ≤ X2

max +Ω3
max makes Ω2

max
 ≤ 1 and thus Ω1

max
 ≤ 2: the upper

bound on Ω is stronger with Crds. ■
Propositions and prove that the filtering performed by this new RDS model

Crds is strictly stronger than the classical algorithmic implementation with a single
frontier Rrds(k).

5. Implementation notes

Implementing Russian Dolls Search on VWCSP with the new model described in
section 4 not only provides a strictly stronger filtering but is also much easier to im-
plement. Indeed it relies on filtering rules of linear equations that are available in any
constraint solver and it does not require maintaining a frontier between past and fu-
ture variables. Such an implementation using n additional variables and n (ternary)
linear constraint takes full advantage of the declarativity of constraint programming.

As for the global algorithm it can be implemented as an n-ary root choice point in
the search tree. Going down the ith branch of this choice point is restricting to prob-
lem Pi (setting X1… Xi-1 to 0). Going up this ith branch we register the current best
known objective value as an upper bound of Ωi. Note the classical improvement cut
Ω ≥ lb+1 where lb is the gain of the best solution found so far is automatically han-

 6

dled by the tree exploration mechanism of the CP solver. Together with RDS bound
ωi+1 and constraint Ωi = ϕiXi + Ωi+1 this improvement cut triggers Xi=1 when starting
to consider problem Pi (no improving solution can be found without using the new
added variable). This expression of a control strategy through the addition of vari-
ables and constraints can be compared with the way Local Search exploration was
modelled by [6]. This is also similar to the CP-oriented modelling of Max-CSP pro-
posed in [8]

Finally the classical heuristic consisting in first trying to extend the best solution of

Pi to a solution of Pi-1 can be embedded in a “replay” value selection heuristic. This
strategy consists in first choosing for variable Xj the value it had in the current best
solution. It shall be noted that this heuristic is not specific to Russian Dolls Search: it
may be useful in any CP tree search. For instance in a scheduling problem, it may
avoid spending time recomputing the daily schedule for Friday if the values of the
best current solution are still valid for this day (after changes in the top of the tree,
say on Monday). Tending to steer to the best current solution is also the principle of
the path-relinking strategy [11].

6. Experimental results

We have compared an implementation of the new model for Russian Dolls Search
on VWCSP (called "LightRDS" in the following) with the implementation of the
standard (and general) RDS algorithm described in [4]. Both implementations are
built on top of the Constraint Programming framework CHOCO [2]. The comparison
was done on a set of randomly generated instances of a scheduling problem, namely,
the problem of selecting and scheduling the observations of an Earth observing agile
satellite. It is a simplified version of a real-world problem, described in [5]. The
simplification is still a NP-hard optimisation problem2. It is known [10] that the RDS
algorithm is particularly well suited for WCSP instances having a small bandwidth
constraint graph. This is the case for the instances used in the comparison. Both im-
plemented algorithms use the same static variable and value instantiation orderings.
While LightRDS is not constrained to a static variable instantiation algorithm, a dy-
namic variable instantiation ordering does not improve its performance, at least for
the instances used in the comparison. Both algorithms make use of the same initial
bounds for the objective value, at the beginning of each RDS step. The figures 1 and
2 show the performances of the algorithms when the size of instances increases. Each
point corresponds to the mean CPU time (figure 1) and mean number of created
nodes in the search tree (figure 2) for 10 complete resolutions of instances of the
same size. Here, the size is the number of candidate observations in the instance.

2 We thank François Laburthe for a first version of the random instance generator.

 7

0

10

20

30

40

50

60

70

80

80 100 120 140 160 180 200

C
P

U
 T

im
e

(s
ec

on
ds

)

nbCandidates

LightRDS
RDS

Fig. 1. Comparison of computational times

0

50

100

150

200

250

300

80 100 120 140 160 180 200

T
re

e
se

ar
ch

 s
iz

e
(#

 n
od

es
/1

00
0)

nbCandidates

LightRDS
RDS

Fig. 2. Comparison of tree search size

The overall result of the comparison is the following: LightRDS is roughly 2.5
times more efficient than the standard RDS, both in terms of CPU times and in num-
ber of created nodes. The later result on the size of the search trees confirms that
LightRDS does more pruning than standard RDS.

At last, it has been checked that the standard Branch and Bound optimization algo-
rithm provided in CHOCO, using the best ordering heuristics we could find, is not
able to compete with the (Light)RDS on this type of problems, which confirms the
interest of the RDS scheme on this kind of problems. The figure 3 gives the mean
CPU time for 5 complete resolutions using the standard CHOCO Branch and Bound
(SCBB) for the same first instances than those used in figures 1 and 2.

 8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

40 50 60 70 80 90 100

C
P

U
 T

im
e

(s
ec

on
ds

)

nbCandidates

SCBB

Fig. 3. CPU time without RDS

7. Generalization to WCSP

7.1. Equivalent model

As pointed out in the introduction, the VWCSP framework considered in this
paper is a specialization of the WCSP framework: any VWCSP can be reformulated
as a WCSP where only unary constraints (equality to the rejection value) are
weighted. Conversely, any WCSP can be reformulated into a VWCSP by the following trans-
formation. For each constraint c we add a binary variable Xc and an implication3 con-
straint “Xc==1 ⇒(c is satisfied)”. If ϕc was the penalty4 of constraint c, then the gain
associated to variable Xc is ϕc. Maximizing the total gain of this VWCSP is equivalent
to minimizing the sum of penalties in the original WCSP. This equivalence of both
frameworks suggests that transposing our new RDS model to WCSP should be an
easy task.

Indeed it can be applied on the same static order of variables. If V1… Vn are the
variables of the considered WCSP we can defined Pj as the problem restricted to
variables Vj,Vj+1…Vn, constraints Ci holding on these variables and associated binary
variables {Xc , c∈ Ci}. With the convention Ωn+1 =0 we can define

1
1

, +
−∈

Ω+=Ω≤∀ ∑
+

i
CCc

cci
ii

Xni ϕ (6)

Hence the same RDS algorithm can be applied.

3 Such logical constraints are available in most CP solver.
4 We assume that no gradual notion of constraint violation is used: constraint c is either satis-

fied (no penalty) or violated (penalty ϕc).

 9

7.2. Coexistence with Forward-Checking

Although the above generalization of the new model to WCSP is formally correct,
we will explain in this section why we believe that it is not an interesting approach in
practice. An efficient filtering algorithm dedicated to WCSP is the so-called Forward-
Checking (FC) [9]. It is based on the following partition of constraints: ∀ i, Fi is the
set of all constraints whose only non-instantiated variable is Vi, F0 is the set of all
constraints with two non-instantiated variables or more (note that it excludes unary
constraints from F0), and F* is the set of all fully instantiated constraints. It is impor-
tant to note that this partition is dynamic: at the top of an enumeration tree most con-
straints belong to F0, then they enter one of the Fi and end in the F* set once fully
instantiated. The total penalty of the problem is the sum of penalties of each subset
and the Forward-Checking filtering is based on the computation of lower bounds of
penalties occurring in each subset Fi. For each possible value v of Vi all constraints of
Fi are fully instantiated and we note ϕi(v) the sum of induced penalties. Thus
lbi=min{ϕi(v), v in Vi} is a valid lower bound of penalties occurring in Fi. With ϕ* the
sum of penalties in F*, the resulting lower bound of the total penalty is ϕ*+∑lbi. This
lower bound is the base of the Forward-Checking filtering. For instance if
ϕ*+∑j≠ilbj+ϕi(v) is larger than the current best cost, then value v can be removed from
the domain of Vi.

It shall be noted that both lower bounds (FC and RDS) do not naturally cooperate.
With formulation (6) both filterings are performed independently. RDS is more effi-
cient at the top of the tree whereas FC works better on nearly instantiated problems,
but both algorithms do not interact. In other words RDS bounds are not used inside
Forward-Checking. To achieve this cooperation, FC is usually modified as follows:
the RDS bound ωi of Pi is used as a lower bound of penalties of F0, with Pi the largest
RDS sub problem included in F0. The resulting unified algorithm takes full advantage
of both bounds.

It seems difficult to achieve such a tight integration of both views when RDS is
statically modeled by constraints (6). Indeed due to the dynamicity of partition {F0,
F1,…,Fn,F*}, penalties of F0 cannot be recursively reformulated with constraints like
Ω. In fact no variable can be associated to penalties of F0 because the evolution of its
lower bound is not monotonous along a descent in a search tree (it always ends at 0).
Finally we conclude that RDS needs to be algorithmically introduced inside FC to
obtain state-of-the-art efficiency on WCSP. Therefore the RDS model proposed in
this paper for VWCSP cannot be profitably generalized to WCSP, at least not the way
we tried to…

8. Conclusions

In this paper we revisited Russian Dolls Search for Variable Weighted CSP. We
described a simple, declarative and static constraint model whose propagation yields a
strictly stronger filtering than the original algorithm. This simplification is apparently
limited to Variable Weighted CSP but it shall be noted that this VWCSP framework

 10

already covers a wide range of applications. It encompasses knapsack problems, prize
collecting problems… and all problems whose objective is to select a maximal num-
ber of items whatever constraints this selection is submitted to. For such problems
constraint programming is often a powerful framework for the design of rich and
efficient constraint models. When the small bandwidth of the constraint graph sug-
gests that a Russian Dolls strategy might be efficient, the simplicity of the proposed
RDS model allows testing this approach with no need of implementing a dedicated
filtering algorithm. Adding a few auxiliary variables and reformulating the objective
sum recursively is sufficient to perform an RDS search.

References

1. J. Agnèse, N. Bataille, E. Bensana, D. Blumstein and G. Verfaillie. Exact and Ap-
proximate methods for the Daily Management of an Earth Observation Satellite. In
Proc. of the 5th ESA Workshop on Artificial Intelligence and Knowledge Based Sys-
tems for Space 1995.

2. François Laburthe. Choco: implementing a CP kernel. In CP00 Post Conference
Workshop on Techniques for Implementing Constraint programming Systems
(TRICS), Singapore, September 2000.

3. J. Larrosa, T. Schiex. In the quest of the best form of local consistency for Weighted
CSP. In Proceedings of IJCAI03, Acapulco, Mexico, 2003.

4. M. Lemaître, G. Verfaillie, E. Bourreau, and F. Laburthe. Integrating algorithms for
weighted CSP in a constraint programming framework. In ICLP'01 - Workshop Pro-
ceedings of SOFT'01, Paphos, Cyprus, 26 November-1 December 2001

5. M. Lemaître, G. Verfaillie, F. Jouhaud, J.-M. Lachiver, N. Bataille. Selecting and
scheduling observations of agile satellites. In Aerospace Science and Technology 6
(2002) 367-381

6. G. Pesant, M. Gendreau. A view of local search in constraint programming. In CP-
96, pages 353-366, 1996.

7. T. Petit, J.C. Régin and C. Bessière. Specific Filtering Algorithms of Over-
Constrained Problems. In CP’01, LNCS 2239 pages 451-463, 2001.

8. J.-C. Regin, T. Petit, C. Bessière, J.-F. Puget. An Original Constraint Based Ap-
proach for Solving over Constrained Problems. In Proceedings of CP00, pages 543-
548, Singapore, 2000.

9. T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems :
Hard and Easy Problems. In Proc. of IJCAI-95, 631--637, Montréal, Canada, 1995.

10. G. Verfaillie, M. Lemaître, and T. Schiex. Russian Doll Search for Solving Con-
straint Optimization Problems. In Proc. of AAAI-96, 181--187, Portland, OR, 1996.

11. F. Glover, M. Laguna, and R. Martl. Fundamentals of scatter search and path relink-
ing. Control and Cybernetics, 39:653-684, 2000.

