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Abstract. The Russian Dolls Search (RDS) algorithm is both a solving proce-
dure and a cost based filtering algorithm suitable for Weighted Constraint Satis-
faction Problems (WCSP). In the context of Variable Weighted CSP, we pro-
pose a declarative implementation of RDS filtering, using a set of auxiliary 
variables and constraints. This approach allows relying on a Constraint Pro-
gramming (CP) solver instead of developing dedicated machinery. We prove 
that this model yields strictly better propagation than the standard one and we 
bring experimental results showing that both computation time and number of 
explored nodes are significantly decreased.  
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1. Introduction 

The Valued Constraint Satisfaction Problem (VCSP) framework is an extension of 
the Constraint Satisfaction Problem (CSP) framework, allowing taking into account 
costs, preferences and priorities. Hence, it is a convenient framework for constraint 
optimization [9]. Following [3], we regard Weighted CSP (WCSP) as a specific sub-
class of VCSP for which the aggregation operator is the ordinary sum. In this paper, 
we consider a further specialization of WCSP, namely the Variable WCSP (VWCSP) 
framework, dedicated to the modeling of knapsack-like problems.  

A VWCSP has a subset of 0-1 special variables called the selection variables.  
Each selection variable Xi is given a weight ϕi, and is associated to a unary soft con-
straint (Xi = 1) of weight ϕi. There is no other soft constraint.  All other constraints 
are hard constraints.  Moreover, the following property is required: when a selection 
variable Xi takes the value 0 (the rejection value), all hard constraints involving Xi 
must be satisfied.  

The standard WCSP objective (minimizing the sum of the unsatisfied constraints) 
is equivalent, in a VWCSP, to maximizing the sum of the weights of the selection 
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variables which are not instantiated to the rejection value. This framework covers a 
wide range of applications. Typically most knapsack-like problems consisting in 
selecting a subset of maximal weight among a given set of items subject to some hard 
constraints can be seen as VWCSP. 

The Russian Dolls algorithm [10] was first developed within this framework in or-
der to optimize the schedule of an Earth Observation Satellite [1]. The idea is to suc-
cessively solve growing nested sub-problems, starting by the schedule of the very last 
tasks (photos) and ending by solving the whole problem. Each sub-problem provides 
a good bound boosting the resolution of the next ones, what makes the whole process 
much faster than a direct resolution of the whole problem.  

This approach consists of a solving procedure considering nested sub-problems 
one after another, and a dedicated cost based filtering mechanism (based on computed 
bounds) aside of standard propagation of constraints of the problem. RDS is usually 
combined with Forward Checking in a standalone WCSP optimizer. Alternatively 
RDS can be integrated in a CP framework, embedding this filtering algorithm in a 
global constraint [4]. This last approach presents numerous advantages: low level 
tasks like events management on variables is supported by the CP kernel, expressive 
and efficient (global) constraints are available and the objective function can be freely 
defined. Embedding “soft” filtering in constraints was also a goal pursued by [7]. 

After a brief description of the original model we will propose, in the context of 
VWCSP, a declarative implementation of RDS filtering, using a set of auxiliary vari-
ables and constraints. This allows relying on the CP solver instead of developing 
parallel dedicated machinery to perform RDS filtering what can be a tricky task [4].  
Incidentally, the whole procedure can be formulated within this model as a more 
classical tree search. Besides we prove that this model yields better propagation than 
the standard one and we bring experimental results showing that both computation 
time and number of explored nodes are significantly decreased. 

2. Definitions and notations 

2.1. Framework 

A  Variable Weighted Constraint Satisfaction Problem (VWCSP) is defined as fol-
lows. We give here a Constraint Programming formulation of this problem. 

•  Variables: problem P involves n+m+1 variables. 
o n binary variables (X1…Xn) with domain(Xi)⊆{0,1} (selection variables), 
o m integer variables (Z1…Zm) 
o one objective variable Ω 

•  Constraints:  
o Ω is involved in a single constraint Ω=∑ϕiXi where ϕ1…..ϕn is a vector 

of non-negative integers  
o others constraints obey the following properties 

 at least one Xi is involved, 
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 when one of involved Xi equals 0, the constraint is satisfied1. 
•  Objective: Find a solution satisfying all constraints and maximizing Ω. 

 
Note that a trivial solution of P is Xi=0 ∀i,  Ω=0, and (Z1…Zm) taking arbitrary val-

ues. As for most “soft” problems the difficulty lies in optimization rather that satisfac-
tion. This framework is particularly suited to model problems where a maximum 
number of objects have to be selected subject to a set of constraints: all constraints on 
objects are only “activated” when their selection variable equals 1. Therefore finding 
a maximum solution to the VWCSP is selecting the best subset of objects such that 
(Z1…Zm) can be assigned values satisfying triggered constraints. 

2.2. Example: a scheduling problem 

In this example, three tasks can be performed on a disjunctive resource. Durations 
are respectively (1,3,3), earliest starts (1,0,0), latest ends (4,5,4) and revenues (2,4,5). 
The problem is to select a subset of tasks of maximum revenue. This problem can be 
set as a VWCSP where Xi models the selection of task i and Zi represents the starting 
time of task i when selected. The VWCSP reads as follows.  

• Variables[min,max]: X1[0,1],X2[0,1],X3[0,1],Z1[1,3],Z2[0,2] Z3[0,1], Ω[0,11] 
•  Constraints :  

o Ω = 2X1 + 4X2 + 5X3 
o (X1=0) OR (X2=0) OR (Z1 + 1 ≤ Z2) OR (Z2 + 3 ≤ Z1) 
o (X1=0) OR (X3=0) OR (Z1 + 1 ≤ Z3) OR (Z3 + 3 ≤ Z1) 
o (X2=0) OR (X3=0) OR (Z2 + 3 ≤ Z3) OR (Z3 + 3 ≤ Z2) 

An optimal solution of this scheduling problem is X1=1, X2=1, X3=0, Z1=1, Z2=2, 
Z3=0, Ω=6. 

3. The original algorithm 

We describe in this section the original RDS algorithm. Each step of this algorithm 
consists in computing an upper bound of a part of the objective sum, through the 
exact resolution of a restricted problem. 

We consider the VWCSP defined in section 2.1 We note Pj the sub problem where 
Xi=0 ∀ i < j, and ωj the optimal solution of Pj (by convention ωn+1=0). In example 2.2 
P2 is the problem restricted to tasks 2 and 3 and constraints holding on these tasks. 
Note that P1=P. 

Given an integer k≤n the Russian Dolls filtering algorithm for frontier k (noted 
Rrds(P,k)) is based on the following decomposition of the objective function 

                                                           
1 In other words, constraints follow the pattern (Xi = 1 ∀ i ∈ I) ⇒ C, with  I a non-empty 

subset of [1,n]. 
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(3)Rule  constrains the upper bound of the objective variable and rule  detects 
variables needed to be instantiated to 1 due the objective lower bound. Given ωi for 
all i >j, these filtering rules can be added to a constraint propagation engine in order 
to help solving Pj (thus obtaining ωj). Notice that using the standard RDS algorithm 
to solve VWCSP requires some care to prevent unary constraints violations from 
being counted twice (in the forward-checking bound and in the additional RDS pre-
vious optimal costs). Usually a frontier k=1+max{i ∈[j+1,n] | Xi

min = Xi
max} is main-

tained and only rules Rrds(P,k) associated to this frontier are propagated. Variables 
beyond this frontier have not been instantiated neither directly (enumeration algo-
rithm) nor indirectly (propagation or forward checking).    

The Russian Dolls Search consists in successively solving Pn,Pn-1,Pn-2,…P1 with 
this technique instead of directly solving the original problem P1. 
function Rds(P) 
   {for j in n downto 1 
        ωj := solve(Pj,{ωi | i > j}) 
    return ω1}   

4. New RDS model 

In the new RDS model proposed below, a recursive reformulation of the objective 
sum allows relying on a CP solver to perform a stronger form of RDS filtering. 

We enrich the model with n additional variables Ω1, Ω2 …Ωn and n constraints: 
•  Ω  = ϕ Xn n n

• ∀ i < n   Ω = ϕX  + Ω   i i i i+1

Given ωi for all i >j, we also post the constraint Ωi ≤ ωi ∀ i > j. We note Crds(P,j) 
this set of additional constraints. The corresponding implicit filtering rules achieved 
by bound-consistency are: 

•  Ωi
max

 ≤ ϕiXi
max + Ωi+1

max and Ωi
min

 ≥ ϕiXi
min + Ωi+1

min 
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•  ϕiXi
max ≤ Ωi

max - Ωi+1
min and ϕiXi
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•  Ωi+1
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Proposition 1: Domains consistent with Crds(P,j) are always consistent with 

Rrds(P,k)∀ k≥ j. 

1
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(5)Since Ωk
max≤ ωk,  is always at least as strong as .■ 

 
Proposition 2: Given ωi for all i >j, domains consistent with Rrds(P, 1+max{i 

∈[j+1,n] | Xi
min = Xi

max}) are not necessary consistent with Crds(P,j). 

2

Proof: With 5 variables, ϕi=1 ∀i, ω5=1, ω4=1, ω3=1, ω2=2. Some constraints of P 
cause X2=0 and X5=0 when X1=1. Trying to solve P1 we set X1=1, resulting domains 
are respectively [1,1],[0,0],[0,1],[0,1][0,0].  

Therefore max{i ∈[j+1,n] | Xi
min = Xi

max}=5 and the upper bound provided by rule 
 is just ∑Xi

max=3. 
On the contrary Ω2

max
 ≤ X2

max +Ω3
max makes Ω2

max
 ≤ 1 and thus Ω1

max
 ≤ 2: the upper 

bound on Ω is stronger with Crds. ■ 
Propositions  and  prove that the filtering performed by this new RDS model 

Crds is strictly stronger than the classical algorithmic implementation with a single 
frontier Rrds(k).  

5. Implementation notes 

Implementing Russian Dolls Search on VWCSP with the new model described in 
section 4 not only provides a strictly stronger filtering but is also much easier to im-
plement. Indeed it relies on filtering rules of linear equations that are available in any 
constraint solver and it does not require maintaining a frontier between past and fu-
ture variables. Such an implementation using n additional variables and n (ternary) 
linear constraint takes full advantage of the declarativity of constraint programming.  

As for the global algorithm it can be implemented as an n-ary root choice point in 
the search tree. Going down the ith branch of this choice point is restricting to prob-
lem Pi (setting X1… Xi-1 to 0). Going up this ith branch we register the current best 
known objective value as an upper bound of Ωi. Note the classical improvement cut 
Ω ≥ lb+1 where lb is the gain of the best solution found so far is automatically han-
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dled by the tree exploration mechanism of the CP solver. Together with RDS bound 
ωi+1 and constraint Ωi = ϕiXi + Ωi+1 this improvement cut triggers Xi=1 when starting 
to consider problem Pi (no improving solution can be found without using the new 
added variable). This expression of a control strategy through the addition of vari-
ables and constraints can be compared with the way Local Search exploration was 
modelled by [6]. This is also similar to the CP-oriented modelling of Max-CSP pro-
posed in [8] 

 
Finally the classical heuristic consisting in first trying to extend the best solution of 

Pi to a solution of Pi-1 can be embedded in a “replay” value selection heuristic. This 
strategy consists in first choosing for variable Xj the value it had in the current best 
solution.  It shall be noted that this heuristic is not specific to Russian Dolls Search: it 
may be useful in any CP tree search. For instance in a scheduling problem, it may 
avoid spending time recomputing the daily schedule for Friday if the values of the 
best current solution are still valid for this day (after changes in the top of the tree, 
say on Monday). Tending to steer to the best current solution is also the principle of 
the path-relinking strategy [11].  

6. Experimental results 

We have compared an implementation of the new model for Russian Dolls Search 
on VWCSP (called "LightRDS" in the following) with the implementation of the 
standard (and general) RDS algorithm described in [4]. Both implementations are 
built on top of the Constraint Programming framework CHOCO [2]. The comparison 
was done on a set of randomly generated instances of a scheduling problem, namely, 
the problem of selecting and scheduling the observations of an Earth observing agile 
satellite.  It is a simplified version of a real-world problem, described in [5]. The 
simplification is still a NP-hard optimisation problem2.  It is known [10] that the RDS 
algorithm is particularly well suited for WCSP instances having a small bandwidth 
constraint graph. This is the case for the instances used in the comparison. Both im-
plemented algorithms use the same static variable and value instantiation orderings.  
While LightRDS is not constrained to a static variable instantiation algorithm, a dy-
namic variable instantiation ordering does not improve its performance, at least for 
the instances used in the comparison. Both algorithms make use of the same initial 
bounds for the objective value, at the beginning of each RDS step. The figures 1 and 
2 show the performances of the algorithms when the size of instances increases.  Each 
point corresponds to the mean CPU time (figure 1) and mean number of created 
nodes in the search tree (figure 2) for 10 complete resolutions of instances of the 
same size. Here, the size is the number of candidate observations in the instance.  

 

                                                           
2 We thank François Laburthe for a first version of the random instance generator. 
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Fig. 1. Comparison of computational times 
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Fig. 2. Comparison of tree search size 

The overall result of the comparison is the following: LightRDS is roughly 2.5 
times more efficient than the standard RDS, both in terms of CPU times and in num-
ber of created nodes. The later result on the size of the search trees confirms that 
LightRDS does more pruning than standard RDS.  

At last, it has been checked that the standard Branch and Bound optimization algo-
rithm provided in CHOCO, using the best ordering heuristics we could find, is not 
able to compete with the (Light)RDS on this type of problems, which confirms the 
interest of the RDS scheme on this kind of problems. The figure 3 gives the mean 
CPU time for 5 complete resolutions using the standard CHOCO Branch and Bound 
(SCBB) for the same first instances than those used in figures 1 and 2. 
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Fig. 3. CPU time without RDS 

7. Generalization to WCSP 

7.1. Equivalent model 

As pointed out in the introduction, the VWCSP framework considered in this 
paper is a specialization of the WCSP framework: any VWCSP can be reformulated 
as a WCSP where only unary constraints (equality to the rejection value) are 
weighted.  Conversely, any WCSP can be reformulated into a VWCSP by the following trans-
formation. For each constraint c we add a binary variable Xc and an implication3 con-
straint “Xc==1 ⇒(c is satisfied)”. If ϕc was the penalty4 of constraint c, then the gain 
associated to variable Xc is ϕc. Maximizing the total gain of this VWCSP is equivalent 
to minimizing the sum of penalties in the original WCSP. This equivalence of both 
frameworks suggests that transposing our new RDS model to WCSP should be an 
easy task. 

Indeed it can be applied on the same static order of variables. If V1… Vn are the 
variables of the considered WCSP we can defined Pj as the problem restricted to 
variables Vj,Vj+1…Vn, constraints Ci  holding on these variables and associated binary 
variables  {Xc , c∈ Ci}. With the convention Ωn+1 =0 we can define 

1
1

, +
−∈

Ω+=Ω≤∀ ∑
+

i
CCc

cci
ii

Xni ϕ  (6) 

Hence the same RDS algorithm can be applied.  
                                                           
3 Such logical constraints are available in most CP solver. 
4 We assume that no gradual notion of constraint violation is used: constraint c is either satis-

fied (no penalty) or violated (penalty ϕc). 
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7.2. Coexistence with Forward-Checking 

Although the above generalization of the new model to WCSP is formally correct, 
we will explain in this section why we believe that it is not an interesting approach in 
practice. An efficient filtering algorithm dedicated to WCSP is the so-called Forward-
Checking (FC) [9]. It is based on the following partition of constraints: ∀ i, Fi is the 
set of all constraints whose only non-instantiated variable is Vi, F0 is the set of all 
constraints with two non-instantiated variables or more (note that it excludes unary 
constraints from F0), and F* is the set of all fully instantiated constraints. It is impor-
tant to note that this partition is dynamic: at the top of an enumeration tree most con-
straints belong to F0, then they enter one of the Fi and end in the F* set once fully 
instantiated. The total penalty of the problem is the sum of penalties of each subset 
and the Forward-Checking filtering is based on the computation of lower bounds of 
penalties occurring in each subset Fi. For each possible value v of Vi all constraints of 
Fi are fully instantiated and we note ϕi(v) the sum of induced penalties. Thus 
lbi=min{ϕi(v), v in Vi} is a valid lower bound of penalties occurring in Fi. With ϕ* the 
sum of penalties in F*, the resulting lower bound of the total penalty is ϕ*+∑lbi. This 
lower bound is the base of the Forward-Checking filtering. For instance if 
ϕ*+∑j≠ilbj+ϕi(v) is larger than the current best cost, then value v can be removed from 
the domain of Vi.   

It shall be noted that both lower bounds (FC and RDS) do not naturally cooperate. 
With formulation (6) both filterings are performed independently. RDS is more effi-
cient at the top of the tree whereas FC works better on nearly instantiated problems, 
but both algorithms do not interact. In other words RDS bounds are not used inside 
Forward-Checking. To achieve this cooperation, FC is usually modified as follows: 
the RDS bound ωi of Pi is used as a lower bound of penalties of F0, with Pi the largest 
RDS sub problem included in F0. The resulting unified algorithm takes full advantage 
of both bounds.  

It seems difficult to achieve such a tight integration of both views when RDS is 
statically modeled by constraints (6). Indeed due to the dynamicity of partition {F0, 
F1,…,Fn,F*}, penalties of F0 cannot be recursively reformulated with constraints like 
Ω. In fact no variable can be associated to penalties of F0 because the evolution of its 
lower bound is not monotonous along a descent in a search tree (it always ends at 0). 
Finally we conclude that RDS needs to be algorithmically introduced inside FC to 
obtain state-of-the-art efficiency on WCSP. Therefore the RDS model proposed in 
this paper for VWCSP cannot be profitably generalized to WCSP, at least not the way 
we tried to… 

8. Conclusions 

In this paper we revisited Russian Dolls Search for Variable Weighted CSP. We 
described a simple, declarative and static constraint model whose propagation yields a 
strictly stronger filtering than the original algorithm. This simplification is apparently 
limited to Variable Weighted CSP but it shall be noted that this VWCSP framework 
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already covers a wide range of applications. It encompasses knapsack problems, prize 
collecting problems… and all problems whose objective is to select a maximal num-
ber of items whatever constraints this selection is submitted to. For such problems 
constraint programming is often a powerful framework for the design of rich and 
efficient constraint models. When the small bandwidth of the constraint graph sug-
gests that a Russian Dolls strategy might be efficient, the simplicity of the proposed 
RDS model allows testing this approach with no need of implementing a dedicated 
filtering algorithm. Adding a few auxiliary variables and reformulating the objective 
sum recursively is sufficient to perform an RDS search. 
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