
Document Object Model (DOM) Level 3 Core
Specification

Version 1.0

W3C Recommendation 07 April 2004
This version:

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
Latest version:

http://www.w3.org/TR/DOM-Level-3-Core
Previous version:

http://www.w3.org/TR/2004/PR-DOM-Level-3-Core-20040205/

Editors:
Arnaud Le Hors, IBM
Philippe Le Hégaret, W3C
Lauren Wood, SoftQuad, Inc. (WG Chair emerita, for DOM Level 1 and 2)
Gavin Nicol, Inso EPS (for DOM Level 1)
Jonathan Robie, Texcel Research and Software AG (for DOM Level 1 and 2)
Mike Champion, Arbortext and Software AG (for DOM Level 1 and 2)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: XML file, plain text, PostScript file, PDF
file, single HTML file, and ZIP file.

See also translations of this document.

Copyright ©2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Core Level 3, a platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the content, structure and
style of documents. The Document Object Model Core Level 3 builds on the Document Object Model
Core Level 2 [DOM Level 2 Core].

1

Document Object Model (DOM) Level 3 Core Specification

http://www.w3.org/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2004/PR-DOM-Level-3-Core-20040205/
http://www.w3.org/2004/01/DOM-Level-3-errata
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/xml-source.xml
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.txt
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.ps
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.html
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.zip
http://www.w3.org/2004/01/DOM-Level-3-translations
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

This version enhances DOM Level 2 Core by completing the mapping between DOM and the XML
Information Set [XML Information Set], including the support for XML Base [XML Base], adding the
ability to attach user information to DOM Nodes or to bootstrap a DOM implementation, providing
mechanisms to resolve namespace prefixes or to manipulate "ID" attributes, giving to type information,
etc.

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document contains the Document Object Model Level 3 Core specification and is a W3C
Recommendation. It has been produced as part of the W3C DOM Activity. The authors of this document
are the DOM Working Group participants. For more information about DOM, readers can also refer to
DOM FAQ and DOM Conformance Test Suites.

It is based on the feedback received during the Proposed Recommendation period. Changes since the
Proposed Recommendation version and an implementation report are available. Please refer to the errata
for this document, which may include some normative corrections.

Comments on this document should be sent to the public mailing list www-dom@w3.org (public archive).

This is a stable document and has been endorsed by the W3C Membership and the participants of the
DOM working group. The English version of this specification is the only normative version. See also
translations.

Patent disclosures relevant to this specification may be found on the Working Group’s patent disclosure
page. This document has been produced under the 24 January 2002 CPP as amended by the W3C Patent
Policy Transition Procedure. An individual who has actual knowledge of a patent which the individual
believes contains Essential Claim(s) with respect to this specification should disclose the information in
accordance with section 6 of the W3C Patent Policy.

Table of contents
................ 5Expanded Table of Contents
.............. 9W3C Copyright Notices and Licenses
.............. 13What is the Document Object Model?

............... 211. Document Object Model Core

................. 121Appendix A: Changes

.............. 125Appendix B: Namespaces Algorithms

................ 147Appendix C: Infoset Mapping

.............. 145Appendix D: Configuration Settings

............ 133Appendix E: Accessing code point boundaries

2

Status of this document

http://www.w3.org/TR/
http://www.w3.org/2004/02/Process-20040205/tr.html#RecsW3C
http://www.w3.org/2004/02/Process-20040205/tr.html#RecsW3C
http://www.w3.org/DOM/Activity.html
http://www.w3.org/DOM/
http://www.w3.org/DOM/faq.html
http://www.w3.org/DOM/Test/
http://www.w3.org/2004/02/19-dom-level-3-issues/issues.html
http://www.w3.org/2004/03/DOM-Level-3-Core-changes.html
http://www.w3.org/2004/03/DOM-Level-3-Core-changes.html
http://www.w3.org/2003/10/DOM-Level-3-Core-implementations.html
http://www.w3.org/2004/01/DOM-Level-3-errata
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/2004/01/DOM-Level-3-translations
http://www.w3.org/2002/08/02-DOM-Disclosures.html
http://www.w3.org/2002/08/02-DOM-Disclosures.html
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

................ 135Appendix F: IDL Definitions

.............. 165Appendix G: Java Language Binding

............ 185Appendix H: ECMAScript Language Binding

............... 203Appendix I: Acknowledgements

.................... 205Glossary

.................... 209References

..................... 213Index

3

Table of contents

4

Table of contents

Expanded Table of Contents
................ 5Expanded Table of Contents
.............. 9W3C Copyright Notices and Licenses
.......... 9W3C® Document Copyright Notice and License
........... 10W3C® Software Copyright Notice and License
............... 11W3C® Short Software Notice
.............. 13What is the Document Object Model?
................... 13Introduction
............. 13What the Document Object Model is
............ 15What the Document Object Model is not
........... 16Where the Document Object Model came from
............... 16Entities and the DOM Core
................. 16DOM Architecture
.................. 17Conformance
............ 18DOM Interfaces and DOM Implementations

............... 211 Document Object Model Core

............ 211.1 Overview of the DOM Core Interfaces

............. 211.1.1 The DOM Structure Model

.............. 221.1.2 Memory Management

.............. 221.1.3 Naming Conventions

.......... 231.1.4 Inheritance vs. Flattened Views of the API

.................. 231.2 Basic Types

.............. 231.2.1 The DOMString Type

............. 241.2.2 The DOMTimeStamp Type

............. 251.2.3 The DOMUserData Type

.............. 251.2.4 The DOMObject Type

............... 251.3 General Considerations

............ 251.3.1 String Comparisons in the DOM

................ 261.3.2 DOM URIs

............... 261.3.3 XML Namespaces

................. 281.3.4 Base URIs

............ 281.3.5 Mixed DOM Implementations

................ 291.3.6 DOM Features

................ 301.3.7 Bootstrapping

............ 301.4 Fundamental Interfaces: Core Module

............. 1141.5 Extended Interfaces: XML Module

................. 121Appendix A: Changes

................. 121A.1 New sections

........ 121A.2 Changes to DOM Level 2 Core interfaces and exceptions

................ 122A.3 New DOM features

5

Expanded Table of Contents

.................. 122A.4 New types

................. 123A.5 New interfaces

................... 124A.6 Objects

.............. 125Appendix B: Namespaces Algorithms

.............. 125B.1 Namespace Normalization

............... 127B.1.1 Scope of a Binding

........... 128B.1.2 Conflicting Namespace Declaration

.............. 129B.2 Namespace Prefix Lookup

.............. 130B.3 Default Namespace Lookup

............... 131B.4 Namespace URI Lookup

................ 147Appendix C: Infoset Mapping

............... 147C.1 Document Node Mapping

............. 147C.1.1 Infoset to Document Node

............. 148C.1.2 Document Node to Infoset

............... 149C.2 Element Node Mapping

............. 149C.2.1 Infoset to Element Node

.............. 150C.2.2 Element Node to Infoset

................ 151C.3 Attr Node Mapping

.............. 151C.3.1 Infoset to Attr Node

............... 153C.3.2 Attr Node to Infoset

............ 153C.4 ProcessingInstruction Node Mapping

.......... 153C.4.1 Infoset to ProcessingInstruction Node

........... 154C.4.2 ProcessingInstruction Node to Infoset

............. 155C.5 EntityReference Node Mapping

............ 155C.5.1 Infoset to EntityReference Node

............ 156C.5.2 EntityReference Node to Infoset

........... 156C.6 Text and CDATASection Nodes Mapping

.............. 156C.6.1 Infoset to Text Node

.......... 157C.6.2 Text and CDATASection Nodes to Infoset

............... 158C.7 Comment Node Mapping

............. 158C.7.1 Infoset to Comment Node

............. 159C.7.2 Comment Node to Infoset

............. 159C.8 DocumentType Node Mapping

............ 160C.8.1 Infoset to DocumentType Node

............ 161C.8.2 DocumentType Node to Infoset

................ 161C.9 Entity Node Mapping

.............. 161C.9.1 Infoset to Entity Node

.............. 162C.9.2 Entity Node to Infoset

............... 163C.10 Notation Node Mapping

............. 163C.10.1 Infoset to Notation Node

............. 164C.10.2 Notation Node to Infoset

.............. 145Appendix D: Configuration Settings

............... 145D.1 Configuration Scenarios

6

Expanded Table of Contents

............ 133Appendix E: Accessing code point boundaries

.................. 133E.1 Introduction

................... 133E.2 Methods

................ 135Appendix F: IDL Definitions

.............. 165Appendix G: Java Language Binding

............... 165G.1 Java Binding Extension

................ 172G.2 Other Core interfaces

............ 185Appendix H: ECMAScript Language Binding

............. 185H.1 ECMAScript Binding Extension

................ 185H.2 Other Core interfaces

............... 203Appendix I: Acknowledgements

................ 203I.1 Production Systems

.................... 205Glossary

.................... 209References

................ 2091 Normative References

................ 2102 Informative References

..................... 213Index

7

Expanded Table of Contents

8

Expanded Table of Contents

W3C Copyright Notices and Licenses
Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

This document is published under the W3C® Document Copyright Notice and License [p.9] . The
bindings within this document are published under the W3C® Software Copyright Notice and License
[p.10] . The software license requires "Notice of any changes or modifications to the W3C files, including
the date changes were made." Consequently, modified versions of the DOM bindings must document that
they do not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no
longer be ’w3c.org’; in the case of the Java language binding, the package names can no longer be in the
’org.w3c’ package.

W3C ® Document Copyright Notice and License
Note: This section is a copy of the W3C® Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Public documents on the W3C site are provided by the copyright holders under the following license. By
using and/or copying this document, or the W3C document from which this statement is linked, you (the
licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the W3C document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice (hypertext is

preferred, but a textual representation is permitted) of the form: "Copyright © [$date-of-document]
World Wide Web Consortium, (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231"

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those

9

W3C Copyright Notices and Licenses

http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/IPR-FAQ

requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C ® Software Copyright Notice and License
Note: This section is a copy of the W3C® Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related items) is being
provided by the copyright holders under the following license. By obtaining, using and/or copying this
work, you (the licensee) agree that you have read, understood, and will comply with the following terms
and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the

W3C® Short Software Notice [p.11] should be included (hypertext is preferred, text is permitted)
within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

10

W3C® Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C ® Short Software Notice
Note: This section is a copy of the W3C® Short Software Notice and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology,
European Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
This work is distributed under the W3C® Software License [1] in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

[1] http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

11

W3C® Short Software Notice

http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/

12

W3C® Short Software Notice

What is the Document Object Model?
Editors:

Philippe Le Hégaret, W3C
Lauren Wood, SoftQuad Software Inc. (for DOM Level 2)
Jonathan Robie, Texcel (for DOM Level 1)

Introduction
The Document Object Model (DOM) is an application programming interface (API [p.205]) for valid
HTML [p.206] and well-formed XML [p.208] documents. It defines the logical structure of documents
and the way a document is accessed and manipulated. In the DOM specification, the term "document" is
used in the broad sense - increasingly, XML is being used as a way of representing many different kinds
of information that may be stored in diverse systems, and much of this would traditionally be seen as data
rather than as documents. Nevertheless, XML presents this data as documents, and the DOM may be used
to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the
DOM interfaces [p.206] for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard
programming interface that can be used in a wide variety of environments and applications [p.205] . The
DOM is designed to be used with any programming language. In order to provide a precise,
language-independent specification of the DOM interfaces, we have chosen to define the specifications in
Object Management Group (OMG) IDL [OMG IDL], as defined in the CORBA 2.3.1 specification
[CORBA]. In addition to the OMG IDL specification, we provide language bindings [p.207] for Java
[Java] and ECMAScript [ECMAScript] (an industry-standard scripting language based on JavaScript
[JavaScript] and JScript [JScript]). Because of language binding restrictions, a mapping has to be applied
between the OMG IDL and the programming language in used. For example, while the DOM uses IDL
attributes in the definition of interfaces, Java does not allow interfaces to contain attributes:

// example 1: removing the first child of an element using ECMAScript
mySecondTrElement.removeChild(mySecondTrElement.firstChild);

// example 2: removing the first child of an element using Java
mySecondTrElement.removeChild(mySecondTrElement.getFirstChild());

Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify
interfaces [p.206] . Various other IDLs could have been used ([COM], [Java IDL], [MIDL], ...). In
general, IDLs are designed for specific computing environments. The Document Object Model can be
implemented in any computing environment, and does not require the object binding runtimes generally
associated with such IDLs.

13

What is the Document Object Model?

What the Document Object Model is
The DOM is a programming API [p.205] for documents. It is based on an object structure that closely
resembles the structure of the documents it models [p.207] . For instance, consider this table, taken from
an XHTML document:

<table>
 <tbody>
 <tr>
 <td>Shady Grove</td>
 <td>Aeolian</td>
 </tr>
 <tr>
 <td>Over the River, Charlie</td>
 <td>Dorian</td>
 </tr>
 </tbody>
</table>

A graphical representation of the DOM of the example table, with whitespaces in element content (often
abusively called "ignorable whitespace") removed, is:

Figure: graphical representation of the DOM of the example table [SVG 1.0 version]

An example of DOM manipulation using ECMAScript would be:

// access the tbody element from the table element
var myTbodyElement = myTableElement.firstChild;

// access its second tr element
// The list of children starts at 0 (and not 1).
var mySecondTrElement = myTbodyElement.childNodes[1];

// remove its first td element

14

What the Document Object Model is

mySecondTrElement.removeChild(mySecondTrElement.firstChild);

// change the text content of the remaining td element
mySecondTrElement.firstChild.firstChild.data = "Peter";

In the DOM, documents have a logical structure which is very much like a tree; to be more precise, which
is like a "forest" or "grove", which can contain more than one tree. Each document contains zero or one
doctype nodes, one document element node, and zero or more comments or processing instructions; the
document element serves as the root of the element tree for the document. However, the DOM does not
specify that documents must be implemented as a tree or a grove, nor does it specify how the relationships
among objects be implemented. The DOM is a logical model that may be implemented in any convenient
manner. In this specification, we use the term structure model to describe the tree-like representation of a
document. We also use the term "tree" when referring to the arrangement of those information items
which can be reached by using "tree-walking" methods; (this does not include attributes). One important
property of DOM structure models is structural isomorphism: if any two Document Object Model
implementations are used to create a representation of the same document, they will create the same
structure model, in accordance with the XML Information Set [XML Information Set].

Note: There may be some variations depending on the parser being used to build the DOM. For instance,
the DOM may not contain white spaces in element content if the parser discards them.

The name "Document Object Model" was chosen because it is an "object model [p.207] " in the traditional
object oriented design sense: documents are modeled using objects, and the model encompasses not only
the structure of a document, but also the behavior of a document and the objects of which it is composed.
In other words, the nodes in the above diagram do not represent a data structure, they represent objects,
which have functions and identity. As an object model, the DOM identifies:

the interfaces and objects used to represent and manipulate a document
the semantics of these interfaces and objects - including both behavior and attributes
the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model [p.205] ,
not by an object model. In an abstract data model [p.205] , the model is centered around the data. In object
oriented programming languages, the data itself is encapsulated in objects that hide the data, protecting it
from direct external manipulation. The functions associated with these objects determine how the objects
may be manipulated, and they are part of the object model.

What the Document Object Model is not
This section is designed to give a more precise understanding of the DOM by distinguishing it from other
systems that may seem to be like it.

The Document Object Model is not a binary specification. DOM programs written in the same
language binding will be source code compatible across platforms, but the DOM does not define any
form of binary interoperability.
The Document Object Model is not a way of persisting objects to XML or HTML. Instead of
specifying how objects may be represented in XML, the DOM specifies how XML and HTML
documents are represented as objects, so that they may be used in object oriented programs.

15

What the Document Object Model is not

The Document Object Model is not a set of data structures; it is an object model [p.207] that specifies
interfaces. Although this document contains diagrams showing parent/child relationships, these are
logical relationships defined by the programming interfaces, not representations of any particular
internal data structures.
The Document Object Model does not define what information in a document is relevant or how
information in a document is structured. For XML, this is specified by the XML Information Set
[XML Information Set]. The DOM is simply an API [p.205] to this information set.
The Document Object Model, despite its name, is not a competitor to the Component Object Model
[COM]. COM, like CORBA, is a language independent way to specify interfaces and objects; the
DOM is a set of interfaces and objects designed for managing HTML and XML documents. The
DOM may be implemented using language-independent systems like COM or CORBA; it may also
be implemented using language-specific bindings like the Java or ECMAScript bindings specified in
this document.

Where the Document Object Model came from
The DOM originated as a specification to allow JavaScript scripts and Java programs to be portable
among Web browsers. "Dynamic HTML" was the immediate ancestor of the Document Object Model,
and it was originally thought of largely in terms of browsers. However, when the DOM Working Group
was formed at W3C, it was also joined by vendors in other domains, including HTML or XML editors and
document repositories. Several of these vendors had worked with SGML before XML was developed; as a
result, the DOM has been influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an API for SGML/XML
editors or document repositories, and these object models have also influenced the DOM.

Entities and the DOM Core
In the fundamental DOM interfaces, there are no objects representing entities. Numeric character
references, and references to the pre-defined entities in HTML and XML, are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <p>This is a dog & a cat</p>

the "&" will be replaced by the character "&", and the text in the P element will form a single
continuous sequence of characters. Since numeric character references and pre-defined entities are not
recognized as such in CDATA sections, or in the SCRIPT and STYLE elements in HTML, they are not
replaced by the single character they appear to refer to. If the example above were enclosed in a CDATA
section, the "&" would not be replaced by "&"; neither would the <p> be recognized as a start tag.
The representation of general entities, both internal and external, are defined within the extended (XML)
interfaces of Document Object Model Core [p.21] .

Note: When a DOM representation of a document is serialized as XML or HTML text, applications will
need to check each character in text data to see if it needs to be escaped using a numeric or pre-defined
entity. Failing to do so could result in invalid HTML or XML. Also, implementations [p.206] should be
aware of the fact that serialization into a character encoding ("charset") that does not fully cover ISO
10646 may fail if there are characters in markup or CDATA sections that are not present in the encoding.

16

Where the Document Object Model came from

DOM Architecture
The DOM specifications provide a set of APIs that forms the DOM API. Each DOM specification defines
one or more modules and each module is associated with one feature name. For example, the DOM Core
specification (this specification) defines two modules:

The Core module, which contains the fundamental interfaces that must be implemented by all DOM
conformant implementations, is associated with the feature name "Core";
The XML module, which contains the interfaces that must be implemented by all conformant XML
1.0 [XML 1.0] (and higher) DOM implementations, is associated with the feature name "XML".

The following representation contains all DOM modules, represented using their feature names, defined
along the DOM specifications:

Figure: A view of the DOM Architecture [SVG 1.0 version]

A DOM implementation can then implement one (i.e. only the Core module) or more modules depending
on the host application. A Web user agent is very likely to implement the "MouseEvents" module, while a
server-side application will have no use of this module and will probably not implement it.

17

DOM Architecture

Conformance
This section explains the different levels of conformance to DOM Level 3. DOM Level 3 consists of 16
modules. It is possible to conform to DOM Level 3, or to a DOM Level 3 module.

An implementation is DOM Level 3 conformant if it supports the Core module defined in this document
(see Fundamental Interfaces: Core Module [p.30]). An implementation conforms to a DOM Level 3
module if it supports all the interfaces for that module and the associated semantics.

Here is the complete list of DOM Level 3.0 modules and the features used by them. Feature names are
case-insensitive.

Core module
defines the feature "Core" [p.30] .

XML module
Defines the feature "XML" [p.114] .

Events module
defines the feature "Events" in [DOM Level 3 Events].

User interface Events module
defines the feature "UIEvents" in [DOM Level 3 Events].

Mouse Events module
defines the feature "MouseEvents" in [DOM Level 3 Events].

Text Events module
defines the feature "TextEvents" in [DOM Level 3 Events].

Keyboard Events module
defines the feature "KeyboardEvents" in [DOM Level 3 Events].

Mutation Events module
defines the feature "MutationEvents" in [DOM Level 3 Events].

Mutation name Events module
defines the feature "MutationNameEvents" in [DOM Level 3 Events].

HTML Events module
defines the feature "HTMLEvents" in [DOM Level 3 Events].

Load and Save module
defines the feature "LS" in [DOM Level 3 Load and Save].

Asynchronous load module
defines the feature "LS-Async" in [DOM Level 3 Load and Save].

Validation module
defines the feature "Validation" in [DOM Level 3 Validation].

XPath module
defines the feature "XPath" in [DOM Level 3 XPath].

A DOM implementation must not return true to the
DOMImplementation.hasFeature(feature, version) [p.40] method [p.207] of the
DOMImplementation [p.37] interface for that feature unless the implementation conforms to that
module. The version number for all features used in DOM Level 3.0 is "3.0".

18

Conformance

http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-LS/load-save.html
http://www.w3.org/TR/DOM-Level-3-LS/load-save.html
http://www.w3.org/TR/DOM-Level-3-Val/validation.html
http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html

DOM Interfaces and DOM Implementations
The DOM specifies interfaces which may be used to manage XML or HTML documents. It is important
to realize that these interfaces are an abstraction - much like "abstract base classes" in C++, they are a
means of specifying a way to access and manipulate an application’s internal representation of a
document. Interfaces do not imply a particular concrete implementation. Each DOM application is free to
maintain documents in any convenient representation, as long as the interfaces shown in this specification
are supported. Some DOM implementations will be existing programs that use the DOM interfaces to
access software written long before the DOM specification existed. Therefore, the DOM is designed to
avoid implementation dependencies; in particular,

1. Attributes defined in the IDL do not imply concrete objects which must have specific data members -
in the language bindings, they are translated to a pair of get()/set() functions, not to a data member.
Read-only attributes have only a get() function in the language bindings.

2. DOM applications may provide additional interfaces and objects not found in this specification and
still be considered DOM conformant.

3. Because we specify interfaces and not the actual objects that are to be created, the DOM cannot know
what constructors to call for an implementation. In general, DOM users call the createX() methods on
the Document class to create document structures, and DOM implementations create their own
internal representations of these structures in their implementations of the createX() functions.

The Level 2 interfaces were extended to provide both Level 2 and Level 3 functionality.

DOM implementations in languages other than Java or ECMAScript may choose bindings that are
appropriate and natural for their language and run time environment. For example, some systems may
need to create a Document3 class which inherits from a Document class and contains the new methods
and attributes.

DOM Level 3 does not specify multithreading mechanisms.

19

DOM Interfaces and DOM Implementations

20

DOM Interfaces and DOM Implementations

1. Document Object Model Core
Editors:

Arnaud Le Hors, IBM
Philippe Le Hégaret, W3C
Gavin Nicol, Inso EPS (for DOM Level 1)
Lauren Wood, SoftQuad, Inc. (for DOM Level 1)
Mike Champion, Arbortext and Software AG (for DOM Level 1 from November 20, 1997)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)

This specification defines a set of objects and interfaces for accessing and manipulating document objects.
The functionality specified (the Core functionality) is sufficient to allow software developers and Web
script authors to access and manipulate parsed HTML [HTML 4.01] and XML [XML 1.0] content inside
conforming products. The DOM Core API [p.205] also allows creation and population of a Document
[p.41] object using only DOM API calls. A solution for loading a Document and saving it persistently is
proposed in [DOM Level 3 Load and Save].

1.1 Overview of the DOM Core Interfaces

1.1.1 The DOM Structure Model

The DOM presents documents as a hierarchy of Node [p.56] objects that also implement other, more
specialized interfaces. Some types of nodes may have child [p.205] nodes of various types, and others are
leaf nodes that cannot have anything below them in the document structure. For XML and HTML, the
node types, and which node types they may have as children, are as follows:

Document [p.41] -- Element [p.85] (maximum of one), ProcessingInstruction [p.118] ,
Comment [p.99] , DocumentType [p.115] (maximum of one)
DocumentFragment [p.40] -- Element [p.85] , ProcessingInstruction [p.118] ,
Comment [p.99] , Text [p.95] , CDATASection [p.114] , EntityReference [p.118]
DocumentType [p.115] -- no children
EntityReference [p.118] -- Element [p.85] , ProcessingInstruction [p.118] ,
Comment [p.99] , Text [p.95] , CDATASection [p.114] , EntityReference
Element [p.85] -- Element, Text [p.95] , Comment [p.99] , ProcessingInstruction
[p.118] , CDATASection [p.114] , EntityReference [p.118]
Attr [p.81] -- Text [p.95] , EntityReference [p.118]
ProcessingInstruction [p.118] -- no children
Comment [p.99] -- no children
Text [p.95] -- no children
CDATASection [p.114] -- no children
Entity [p.116] -- Element [p.85] , ProcessingInstruction [p.118] , Comment [p.99] ,
Text [p.95] , CDATASection [p.114] , EntityReference [p.118]
Notation [p.116] -- no children

21

1. Document Object Model Core

The DOM also specifies a NodeList [p.73] interface to handle ordered lists of Nodes [p.56] , such as
the children of a Node [p.56] , or the elements [p.206] returned by the
Element.getElementsByTagNameNS(namespaceURI, localName) [p.88] method, and also
a NamedNodeMap [p.73] interface to handle unordered sets of nodes referenced by their name attribute,
such as the attributes of an Element [p.85] . NodeList [p.73] and NamedNodeMap [p.73] objects in
the DOM are live; that is, changes to the underlying document structure are reflected in all relevant
NodeList and NamedNodeMap objects. For example, if a DOM user gets a NodeList object
containing the children of an Element [p.85] , then subsequently adds more children to that element
[p.206] (or removes children, or modifies them), those changes are automatically reflected in the
NodeList, without further action on the user’s part. Likewise, changes to a Node [p.56] in the tree are
reflected in all references to that Node in NodeList and NamedNodeMap objects.

Finally, the interfaces Text [p.95] , Comment [p.99] , and CDATASection [p.114] all inherit from the
CharacterData [p.78] interface.

1.1.2 Memory Management

Most of the APIs defined by this specification are interfaces rather than classes. That means that an
implementation need only expose methods with the defined names and specified operation, not implement
classes that correspond directly to the interfaces. This allows the DOM APIs to be implemented as a thin
veneer on top of legacy applications with their own data structures, or on top of newer applications with
different class hierarchies. This also means that ordinary constructors (in the Java or C++ sense) cannot be
used to create DOM objects, since the underlying objects to be constructed may have little relationship to
the DOM interfaces. The conventional solution to this in object-oriented design is to define factory
methods that create instances of objects that implement the various interfaces. Objects implementing some
interface "X" are created by a "createX()" method on the Document [p.41] interface; this is because all
DOM objects live in the context of a specific Document.

The Core DOM APIs are designed to be compatible with a wide range of languages, including both
general-user scripting languages and the more challenging languages used mostly by professional
programmers. Thus, the DOM APIs need to operate across a variety of memory management
philosophies, from language bindings that do not expose memory management to the user at all, through
those (notably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require
the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for
re-use. To ensure a consistent API across these platforms, the DOM does not address memory
management issues at all, but instead leaves these for the implementation. Neither of the explicit language
bindings defined by the DOM API (for ECMAScript [p.206] and Java) require any memory management
methods, but DOM bindings for other languages (especially C or C++) may require such support. These
extensions will be the responsibility of those adapting the DOM API to a specific language, not the DOM
Working Group.

22

1.1.2 Memory Management

1.1.3 Naming Conventions

While it would be nice to have attribute and method names that are short, informative, internally
consistent, and familiar to users of similar APIs, the names also should not clash with the names in legacy
APIs supported by DOM implementations. Furthermore, both OMG IDL [OMG IDL] and ECMAScript
[ECMAScript] have significant limitations in their ability to disambiguate names from different
namespaces that make it difficult to avoid naming conflicts with short, familiar names. So, DOM names
tend to be long and descriptive in order to be unique across all environments.

The Working Group has also attempted to be internally consistent in its use of various terms, even though
these may not be common distinctions in other APIs. For example, the DOM API uses the method name
"remove" when the method changes the structural model, and the method name "delete" when the method
gets rid of something inside the structure model. The thing that is deleted is not returned. The thing that is
removed may be returned, when it makes sense to return it.

1.1.4 Inheritance vs. Flattened Views of the API

The DOM Core APIs [p.205] present two somewhat different sets of interfaces to an XML/HTML
document: one presenting an "object oriented" approach with a hierarchy of inheritance [p.206] , and a
"simplified" view that allows all manipulation to be done via the Node [p.56] interface without requiring
casts (in Java and other C-like languages) or query interface calls in COM [p.205] environments. These
operations are fairly expensive in Java and COM, and the DOM may be used in performance-critical
environments, so we allow significant functionality using just the Node interface. Because many other
users will find the inheritance [p.206] hierarchy easier to understand than the "everything is a Node"
approach to the DOM, we also support the full higher-level interfaces for those who prefer a more
object-oriented API [p.205] .

In practice, this means that there is a certain amount of redundancy in the API [p.205] . The Working
Group considers the "inheritance [p.206] " approach the primary view of the API, and the full set of
functionality on Node [p.56] to be "extra" functionality that users may employ, but that does not eliminate
the need for methods on other interfaces that an object-oriented analysis would dictate. (Of course, when
the O-O analysis yields an attribute or method that is identical to one on the Node interface, we don’t
specify a completely redundant one.) Thus, even though there is a generic Node.nodeName [p.62]
attribute on the Node interface, there is still a Element.tagName [p.86] attribute on the Element
[p.85] interface; these two attributes must contain the same value, but the it is worthwhile to support both,
given the different constituencies the DOM API [p.205] must satisfy.

1.2 Basic Types
To ensure interoperability, this specification specifies the following basic types used in various DOM
modules. Even though the DOM uses the basic types in the interfaces, bindings may use different types
and normative bindings are only given for Java and ECMAScript in this specification.

23

1.2 Basic Types

1.2.1 The DOMString Type

The DOMString [p.24] type is used to store [Unicode] characters as a sequence of 16-bit units [p.205]
using UTF-16 as defined in [Unicode] and Amendment 1 of [ISO/IEC 10646].

Characters are fully normalized as defined in appendix B of [XML 1.1] if:

the parameter "normalize-characters [p.109] " was set to true while loading the document or the
document was certified as defined in [XML 1.1];
the parameter "normalize-characters [p.109] " was set to true while using the method
Document.normalizeDocument() [p.54] , or while using the method Node.normalize()
[p.71] ;

Note that, with the exceptions of Document.normalizeDocument() [p.54] and
Node.normalize() [p.71] , manipulating characters using DOM methods does not guarantee to
preserve a fully-normalized text.

Type Definition DOMString

A DOMString [p.24] is a sequence of 16-bit units [p.205] .
IDL Definition

valuetype DOMString sequence<unsigned short>;

The UTF-16 encoding was chosen because of its widespread industry practice. Note that for both HTML
and XML, the document character set (and therefore the notation of numeric character references) is based
on UCS [ISO/IEC 10646]. A single numeric character reference in a source document may therefore in
some cases correspond to two 16-bit units in a DOMString [p.24] (a high surrogate and a low surrogate).
For issues related to string comparisons, refer to String Comparisons in the DOM [p.25] .

For Java and ECMAScript, DOMString [p.24] is bound to the String type because both languages
also use UTF-16 as their encoding.

Note: As of August 2000, the OMG IDL specification ([OMG IDL]) included a wstring type. However,
that definition did not meet the interoperability criteria of the DOM API [p.205] since it relied on
negotiation to decide the width and encoding of a character.

1.2.2 The DOMTimeStamp Type

The DOMTimeStamp [p.24] type is used to store an absolute or relative time.

Type Definition DOMTimeStamp

A DOMTimeStamp [p.24] represents a number of milliseconds.
IDL Definition

24

1.2.1 The DOMString Type

http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm

typedef unsigned long long DOMTimeStamp;

For Java, DOMTimeStamp [p.24] is bound to the long type. For ECMAScript, DOMTimeStamp is
bound to the Date type because the range of the integer type is too small.

1.2.3 The DOMUserData Type

The DOMUserData [p.25] type is used to store application data.

Type Definition DOMUserData

A DOMUserData [p.25] represents a reference to application data.
IDL Definition

typedef any DOMUserData;

For Java, DOMUserData [p.25] is bound to the Object type. For ECMAScript, DOMUserData is
bound to any type.

1.2.4 The DOMObject Type

The DOMObject [p.25] type is used to represent an object.

Type Definition DOMObject

A DOMObject [p.25] represents an object reference.
IDL Definition

typedef Object DOMObject;

For Java and ECMAScript, DOMObject [p.25] is bound to the Object type.

1.3 General Considerations

1.3.1 String Comparisons in the DOM

The DOM has many interfaces that imply string matching. For XML, string comparisons are
case-sensitive and performed with a binary comparison [p.208] of the 16-bit units [p.205] of the
DOMStrings [p.24] . However, for case-insensitive markup languages, such as HTML 4.01 or earlier,
these comparisons are case-insensitive where appropriate.

Note that HTML processors often perform specific case normalizations (canonicalization) of the markup
before the DOM structures are built. This is typically using uppercase for element [p.206] names and
lowercase for attribute names. For this reason, applications should also compare element and attribute
names returned by the DOM implementation in a case-insensitive manner.

25

1.3 General Considerations

The character normalization, i.e. transforming into their fully normalized form as as defined in [XML 1.1],
is assumed to happen at serialization time. The DOM Level 3 Load and Save module [DOM Level 3 Load
and Save] provides a serialization mechanism (see the DOMSerializer interface, section 2.3.1) and
uses the DOMConfiguration [p.106] parameters "normalize-characters [p.109] " and
"check-character-normalization [p.107] " to assure that text is fully normalized [XML 1.1]. Other
serialization mechanisms built on top of the DOM Level 3 Core also have to assure that text is fully
normalized.

1.3.2 DOM URIs

The DOM specification relies on DOMString [p.24] values as resource identifiers, such that the
following conditions are met:

1. An absolute identifier absolutely identifies a resource on the Web;
2. Simple string equality establishes equality of absolute resource identifiers, and no other equivalence

of resource identifiers is considered significant to the DOM specification;
3. A relative identifier is easily detected and made absolute relative to an absolute identifier;
4. Retrieval of content of a resource may be accomplished where required.

The term "absolute URI" refers to a complete resource identifier and the term "relative URI" refers to an
incomplete resource identifier.

Within the DOM specifications, these identifiers are called URIs, "Uniform Resource Identifiers", but this
is meant abstractly. The DOM implementation does not necessarily process its URIs according to the URI
specification [IETF RFC 2396]. Generally the particular form of these identifiers must be ignored.

When is not possible to completely ignore the type of a DOM URI, either because a relative identifier
must be made absolute or because content must be retrieved, the DOM implementation must at least
support identifier types appropriate to the content being processed. [HTML 4.01], [XML 1.0], and
associated namespace specification [XML Namespaces] rely on [IETF RFC 2396] to determine
permissible characters and resolving relative URIs. Other specifications such as namespaces in XML 1.1
[XML Namespaces 1.1] may rely on alternative resource identifier types that may, for example, include
non-ASCII characters, necessitating support for alternative resource identifier types where required by
applicable specifications.

1.3.3 XML Namespaces

DOM Level 2 and 3 support XML namespaces [XML Namespaces] by augmenting several interfaces of
the DOM Level 1 Core to allow creating and manipulating elements [p.206] and attributes associated to a
namespace. When [XML 1.1] is in use (see Document.xmlVersion [p.43]), DOM Level 3 also
supports [XML Namespaces 1.1].

As far as the DOM is concerned, special attributes used for declaring XML namespaces are still exposed
and can be manipulated just like any other attribute. However, nodes are permanently bound to namespace
URIs [p.207] as they get created. Consequently, moving a node within a document, using the DOM, in no
case results in a change of its namespace prefix [p.207] or namespace URI. Similarly, creating a node with
a namespace prefix and namespace URI, or changing the namespace prefix of a node, does not result in

26

1.3.2 DOM URIs

http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm
http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm

any addition, removal, or modification of any special attributes for declaring the appropriate XML
namespaces. Namespace validation is not enforced; the DOM application is responsible. In particular,
since the mapping between prefixes and namespace URIs is not enforced, in general, the resulting
document cannot be serialized naively. For example, applications may have to declare every namespace in
use when serializing a document.

In general, the DOM implementation (and higher) doesn’t perform any URI normalization or
canonicalization. The URIs given to the DOM are assumed to be valid (e.g., characters such as white
spaces are properly escaped), and no lexical checking is performed. Absolute URI references are treated
as strings and compared literally [p.208] . How relative namespace URI references are treated is
undefined. To ensure interoperability only absolute namespace URI references (i.e., URI references
beginning with a scheme name and a colon) should be used. Applications should use the value null as
the namespaceURI parameter for methods if they wish to have no namespace. In programming
languages where empty strings can be differentiated from null, empty strings, when given as a namespace
URI, are converted to null. This is true even though the DOM does no lexical checking of URIs.

Note: Element.setAttributeNS(null, ...) [p.91] puts the attribute in the per-element-type
partitions as defined in XML Namespace Partitions in [XML Namespaces].

Note: In the DOM, all namespace declaration attributes are by definition bound to the namespace URI:
"http://www.w3.org/2000/xmlns/". These are the attributes whose namespace prefix [p.207] or qualified
name [p.207] is "xmlns" as introduced in [XML Namespaces 1.1].

In a document with no namespaces, the child [p.205] list of an EntityReference [p.118] node is
always the same as that of the corresponding Entity [p.116] . This is not true in a document where an
entity contains unbound namespace prefixes [p.207] . In such a case, the descendants [p.205] of the
corresponding EntityReference nodes may be bound to different namespace URIs [p.207] ,
depending on where the entity references are. Also, because, in the DOM, nodes always remain bound to
the same namespace URI, moving such EntityReference nodes can lead to documents that cannot be
serialized. This is also true when the DOM Level 1 method
Document.createEntityReference(name) [p.49] is used to create entity references that
correspond to such entities, since the descendants [p.205] of the returned EntityReference are
unbound. While DOM Level 3 does have support for the resolution of namespace prefixes, use of such
entities and entity references should be avoided or used with extreme care.

The "NS" methods, such as Document.createElementNS(namespaceURI,
qualifiedName) [p.48] and Document.createAttributeNS(namespaceURI,
qualifiedName) [p.46] , are meant to be used by namespace aware applications. Simple applications
that do not use namespaces can use the DOM Level 1 methods, such as
Document.createElement(tagName) [p.48] and Document.createAttribute(name)
[p.45] . Elements and attributes created in this way do not have any namespace prefix, namespace URI, or
local name.

Note: DOM Level 1 methods are namespace ignorant. Therefore, while it is safe to use these methods
when not dealing with namespaces, using them and the new ones at the same time should be avoided.
DOM Level 1 methods solely identify attribute nodes by their Node.nodeName [p.62] . On the
contrary, the DOM Level 2 methods related to namespaces, identify attribute nodes by their

27

1.3.3 XML Namespaces

http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/2000/xmlns/

Node.namespaceURI [p.61] and Node.localName [p.61] . Because of this fundamental difference,
mixing both sets of methods can lead to unpredictable results. In particular, using
Element.setAttributeNS(namespaceURI, qualifiedName, value) [p.91] , an element
[p.206] may have two attributes (or more) that have the same Node.nodeName, but different
Node.namespaceURIs. Calling Element.getAttribute(name) [p.86] with that nodeName
could then return any of those attributes. The result depends on the implementation. Similarly, using
Element.setAttributeNode(newAttr) [p.92] , one can set two attributes (or more) that have
different Node.nodeNames but the same Node.prefix [p.62] and Node.namespaceURI. In this
case Element.getAttributeNodeNS(namespaceURI, localName) [p.87] will return either
attribute, in an implementation dependent manner. The only guarantee in such cases is that all methods
that access a named item by its nodeName will access the same item, and all methods which access a
node by its URI and local name will access the same node. For instance,
Element.setAttribute(name, value) [p.91] and
Element.setAttributeNS(namespaceURI, qualifiedName, value) [p.91] affect the
node that Element.getAttribute(name) [p.86] and
Element.getAttributeNS(namespaceURI, localName) [p.87] , respectively, return.

1.3.4 Base URIs

The DOM Level 3 adds support for the [base URI] property defined in [XML Information Set] by
providing a new attribute on the Node [p.56] interface that exposes this information. However, unlike the
Node.namespaceURI [p.61] attribute, the Node.baseURI [p.61] attribute is not a static piece of
information that every node carries. Instead, it is a value that is dynamically computed according to [XML
Base]. This means its value depends on the location of the node in the tree and moving the node from one
place to another in the tree may affect its value. Other changes, such as adding or changing an xml:base
attribute on the node being queried or one of its ancestors may also affect its value.

One consequence of this it that when external entity references are expanded while building a Document
[p.41] one may need to add, or change, an xml:base attribute to the Element [p.85] nodes originally
contained in the entity being expanded so that the Node.baseURI [p.61] returns the correct value. In the
case of ProcessingInstruction [p.118] nodes originally contained in the entity being expanded
the information is lost. [DOM Level 3 Load and Save] handles elements as described here and generates a
warning in the latter case.

1.3.5 Mixed DOM Implementations

As new XML vocabularies are developed, those defining the vocabularies are also beginning to define
specialized APIs for manipulating XML instances of those vocabularies. This is usually done by
extending the DOM to provide interfaces and methods that perform operations frequently needed by their
users. For example, the MathML [MathML 2.0] and SVG [SVG 1.1] specifications have developed DOM
extensions to allow users to manipulate instances of these vocabularies using semantics appropriate to
images and mathematics, respectively, as well as the generic DOM XML semantics. Instances of SVG or
MathML are often embedded in XML documents conforming to a different schema such as XHTML.

28

1.3.4 Base URIs

While the Namespaces in XML specification [XML Namespaces] provides a mechanism for integrating
these documents at the syntax level, it has become clear that the DOM Level 2 Recommendation [DOM
Level 2 Core] is not rich enough to cover all the issues that have been encountered in having these
different DOM implementations be used together in a single application. DOM Level 3 deals with the
requirements brought about by embedding fragments written according to a specific markup language (the
embedded component) in a document where the rest of the markup is not written according to that specific
markup language (the host document). It does not deal with fragments embedded by reference or linking.

A DOM implementation supporting DOM Level 3 Core should be able to collaborate with subcomponents
implementing specific DOMs to assemble a compound document that can be traversed and manipulated
via DOM interfaces as if it were a seamless whole.

The normal typecast operation on an object should support the interfaces expected by legacy code for a
given document type. Typecasting techniques may not be adequate for selecting between multiple DOM
specializations of an object which were combined at run time, because they may not all be part of the
same object as defined by the binding’s object model. Conflicts are most obvious with the Document
[p.41] object, since it is shared as owner by the rest of the document. In a homogeneous document,
elements rely on the Document for specialized services and construction of specialized nodes. In a
heterogeneous document, elements from different modules expect different services and APIs from the
same Document object, since there can only be one owner and root of the document hierarchy.

1.3.6 DOM Features

Each DOM module defines one or more features, as listed in the conformance section (Conformance
[p.17]). Features are case-insensitive and are also defined for a specific set of versions. For example, this
specification defines the features "Core" and "XML", for the version "3.0". Versions "1.0" and
"2.0" can also be used for features defined in the corresponding DOM Levels. To avoid possible
conflicts, as a convention, names referring to features defined outside the DOM specification should be
made unique. Applications could then request for features to be supported by a DOM implementation
using the methods DOMImplementationSource.getDOMImplementation(features) [p.36]
or DOMImplementationSource.getDOMImplementationList(features) [p.37] , check
the features supported by a DOM implementation using the method
DOMImplementation.hasFeature(feature, version) [p.40] , or by a specific node using
Node.isSupported(feature, version) [p.70] . Note that when using the methods that take a
feature and a version as parameters, applications can use null or empty string for the version parameter
if they don’t wish to specify a particular version for the specified feature.

Up to the DOM Level 2 modules, all interfaces, that were an extension of existing ones, were accessible
using binding-specific casting mechanisms if the feature associated to the extension was supported. For
example, an instance of the EventTarget interface could be obtained from an instance of the Node
[p.56] interface if the feature "Events" was supported by the node.

As discussed Mixed DOM Implementations [p.28] , DOM Level 3 Core should be able to collaborate with
subcomponents implementing specific DOMs. For that effect, the methods
DOMImplementation.getFeature(feature, version) [p.39] and
Node.getFeature(feature, version) [p.66] were introduced. In the case of
DOMImplementation.hasFeature(feature, version) [p.40] and

29

1.3.6 DOM Features

Node.isSupported(feature, version) [p.70] , if a plus sign "+" is prepended to any feature
name, implementations are considered in which the specified feature may not be directly castable but
would require discovery through DOMImplementation.getFeature(feature, version)
[p.39] and Node.getFeature(feature, version) [p.66] . Without a plus, only features whose
interfaces are directly castable are considered.

// example 1, without prepending the "+"
if (myNode.isSupported("Events", "3.0")) {
 EventTarget evt = (EventTarget) myNode;
 // ...
}
// example 2, with the "+"
if (myNode.isSupported("+Events", "3.0")) {
 // (the plus sign "+" is irrelevant for the getFeature method itself
 // and is ignored by this method anyway)
 EventTarget evt = (EventTarget) myNode.getFeature("Events", "3.0");
 // ...
}

1.3.7 Bootstrapping

Because previous versions of the DOM specification only defined a set of interfaces, applications had to
rely on some implementation dependent code to start from. However, hard-coding the application to a
specific implementation prevents the application from running on other implementations and from using
the most-suitable implementation of the environment. At the same time, implementations may also need to
load modules or perform other setup to efficiently adapt to different and sometimes mutually-exclusive
feature sets.

To solve these problems this specification introduces a DOMImplementationRegistry object with a
function that lets an application find implementations, based on the specific features it requires. How this
object is found and what it exactly looks like is not defined here, because this cannot be done in a
language-independent manner. Instead, each language binding defines its own way of doing this. See Java
Language Binding [p.165] and ECMAScript Language Binding [p.185] for specifics.

In all cases, though, the DOMImplementationRegistry provides a getDOMImplementation
method accepting a features string, which is passed to every known DOMImplementationSource
[p.36] until a suitable DOMImplementation [p.37] is found and returned. The
DOMImplementationRegistry also provides a getDOMImplementationList method
accepting a features string, which is passed to every known DOMImplementationSource, and
returns a list of suitable DOMImplementations. Those two methods are the same as the ones found on
the DOMImplementationSource interface.

Any number of DOMImplementationSource [p.36] objects can be registered. A source may return
one or more DOMImplementation [p.37] singletons or construct new DOMImplementation
objects, depending upon whether the requested features require specialized state in the
DOMImplementation object.

30

1.3.7 Bootstrapping

1.4 Fundamental Interfaces: Core Module
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM, including all HTML DOM implementations [DOM Level 2
HTML], unless otherwise specified.

A DOM application may use the DOMImplementation.hasFeature(feature, version)
[p.40] method with parameter values "Core" and "3.0" (respectively) to determine whether or not this
module is supported by the implementation. Any implementation that conforms to DOM Level 3 or a
DOM Level 3 module must conform to the Core module. Please refer to additional information about
conformance in this specification. The DOM Level 3 Core module is backward compatible with the DOM
Level 2 Core [DOM Level 2 Core] module, i.e. a DOM Level 3 Core implementation who returns true
for "Core" with the version number "3.0" must also return true for this feature when the
version number is "2.0", "" or, null.

Exception DOMException

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an operation is
impossible to perform (either for logical reasons, because data is lost, or because the implementation
has become unstable). In general, DOM methods return specific error values in ordinary processing
situations, such as out-of-bound errors when using NodeList [p.73] .

Implementations should raise other exceptions under other circumstances. For example,
implementations should raise an implementation-dependent exception if a null argument is passed
when null was not expected.

Some languages and object systems do not support the concept of exceptions. For such systems, error
conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.
IDL Definition

exception DOMException {
 unsigned short code;
};
// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;
// Introduced in DOM Level 2:
const unsigned short INVALID_STATE_ERR = 11;
// Introduced in DOM Level 2:
const unsigned short SYNTAX_ERR = 12;
// Introduced in DOM Level 2:

31

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

const unsigned short INVALID_MODIFICATION_ERR = 13;
// Introduced in DOM Level 2:
const unsigned short NAMESPACE_ERR = 14;
// Introduced in DOM Level 2:
const unsigned short INVALID_ACCESS_ERR = 15;
// Introduced in DOM Level 3:
const unsigned short VALIDATION_ERR = 16;
// Introduced in DOM Level 3:
const unsigned short TYPE_MISMATCH_ERR = 17;

Definition group ExceptionCode

An integer indicating the type of error generated.

Note: Other numeric codes are reserved for W3C for possible future use.

Defined Constants
DOMSTRING_SIZE_ERR

If the specified range of text does not fit into a DOMString [p.24] .
HIERARCHY_REQUEST_ERR

If any Node [p.56] is inserted somewhere it doesn’t belong.
INDEX_SIZE_ERR

If index or size is negative, or greater than the allowed value.
INUSE_ATTRIBUTE_ERR

If an attempt is made to add an attribute that is already in use elsewhere.
INVALID_ACCESS_ERR, introduced in DOM Level 2.

If a parameter or an operation is not supported by the underlying object.
INVALID_CHARACTER_ERR

If an invalid or illegal character is specified, such as in an XML name.
INVALID_MODIFICATION_ERR, introduced in DOM Level 2.

If an attempt is made to modify the type of the underlying object.
INVALID_STATE_ERR, introduced in DOM Level 2.

If an attempt is made to use an object that is not, or is no longer, usable.
NAMESPACE_ERR, introduced in DOM Level 2.

If an attempt is made to create or change an object in a way which is incorrect with
regard to namespaces.

NOT_FOUND_ERR
If an attempt is made to reference a Node [p.56] in a context where it does not exist.

NOT_SUPPORTED_ERR
If the implementation does not support the requested type of object or operation.

NO_DATA_ALLOWED_ERR
If data is specified for a Node [p.56] which does not support data.

NO_MODIFICATION_ALLOWED_ERR
If an attempt is made to modify an object where modifications are not allowed.

SYNTAX_ERR, introduced in DOM Level 2.
If an invalid or illegal string is specified.

TYPE_MISMATCH_ERR, introduced in DOM Level 3.
If the type of an object is incompatible with the expected type of the parameter
associated to the object.

32

1.4 Fundamental Interfaces: Core Module

VALIDATION_ERR, introduced in DOM Level 3.
If a call to a method such as insertBefore or removeChild would make the
Node [p.56] invalid with respect to "partial validity" [p.207] , this exception would be
raised and the operation would not be done. This code is used in [DOM Level 3
Validation]. Refer to this specification for further information.

WRONG_DOCUMENT_ERR
If a Node [p.56] is used in a different document than the one that created it (that
doesn’t support it).

Interface DOMStringList (introduced in DOM Level 3)

The DOMStringList interface provides the abstraction of an ordered collection of DOMString
[p.24] values, without defining or constraining how this collection is implemented. The items in the
DOMStringList are accessible via an integral index, starting from 0.
IDL Definition

// Introduced in DOM Level 3:
interface DOMStringList {
 DOMString item(in unsigned long index);
 readonly attribute unsigned long length;
 boolean contains(in DOMString str);
};

Attributes
length of type unsigned long, readonly

The number of DOMString [p.24] s in the list. The range of valid child node indices is 0
to length-1 inclusive.

Methods
contains

Test if a string is part of this DOMStringList.
Parameters
str of type DOMString [p.24]

The string to look for.
Return Value

boolean true if the string has been found, false otherwise.

No Exceptions
item

Returns the indexth item in the collection. If index is greater than or equal to the
number of DOMString [p.24] s in the list, this returns null.
Parameters
index of type unsigned long

Index into the collection.
Return Value

DOMString
[p.24]

The DOMString at the indexth position in the
DOMStringList, or null if that is not a valid index.

33

1.4 Fundamental Interfaces: Core Module

No Exceptions
Interface NameList (introduced in DOM Level 3)

The NameList interface provides the abstraction of an ordered collection of parallel pairs of name
and namespace values (which could be null values), without defining or constraining how this
collection is implemented. The items in the NameList are accessible via an integral index, starting
from 0.
IDL Definition

// Introduced in DOM Level 3:
interface NameList {
 DOMString getName(in unsigned long index);
 DOMString getNamespaceURI(in unsigned long index);
 readonly attribute unsigned long length;
 boolean contains(in DOMString str);
 boolean containsNS(in DOMString namespaceURI,
 in DOMString name);
};

Attributes
length of type unsigned long, readonly

The number of pairs (name and namespaceURI) in the list. The range of valid child node
indices is 0 to length-1 inclusive.

Methods
contains

Test if a name is part of this NameList.
Parameters
str of type DOMString [p.24]

The name to look for.
Return Value

boolean true if the name has been found, false otherwise.

No Exceptions
containsNS

Test if the pair namespaceURI/name is part of this NameList.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI to look for.
name of type DOMString

The name to look for.
Return Value

boolean true if the pair namespaceURI/name has been found, false otherwise.

No Exceptions

34

1.4 Fundamental Interfaces: Core Module

getName
Returns the indexth name item in the collection.
Parameters
index of type unsigned long

Index into the collection.
Return Value

DOMString
[p.24]

The name at the indexth position in the NameList, or null if
there is no name for the specified index or if the index is out of
range.

No Exceptions
getNamespaceURI

Returns the indexth namespaceURI item in the collection.
Parameters
index of type unsigned long

Index into the collection.
Return Value

DOMString
[p.24]

The namespace URI at the indexth position in the NameList, or
null if there is no name for the specified index or if the index is
out of range.

No Exceptions
Interface DOMImplementationList (introduced in DOM Level 3)

The DOMImplementationList interface provides the abstraction of an ordered collection of
DOM implementations, without defining or constraining how this collection is implemented. The
items in the DOMImplementationList are accessible via an integral index, starting from 0.
IDL Definition

// Introduced in DOM Level 3:
interface DOMImplementationList {
 DOMImplementation item(in unsigned long index);
 readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of DOMImplementation [p.37] s in the list. The range of valid child node
indices is 0 to length-1 inclusive.

Methods
item

Returns the indexth item in the collection. Ie7h 399 -13.2 oeQ Level

index of type unsigned long
Index into the collection.

Return Value

DOMImplementation
[p.37]

The DOMImplementation at the indexth position
in the DOMImplementationList, or null if that is
not a valid index.

No Exceptions
Interface DOMImplementationSource (introduced in DOM Level 3)

This interface permits a DOM implementer to supply one or more implementations, based upon
requested features and versions, as specified in DOM Features [p.29] . Each implemented
DOMImplementationSource object is listed in the binding-specific list of available sources so
that its DOMImplementation [p.37] objects are made available.
IDL Definition

// Introduced in DOM Level 3:
interface DOMImplementationSource {
 DOMImplementation getDOMImplementation(in DOMString features);
 DOMImplementationList getDOMImplementationList(in DOMString features);
};

Methods
getDOMImplementation

A method to request the first DOM implementation that supports the specified features.
Parameters
features of type DOMString [p.24]

A string that specifies which features and versions are required. This is a space
separated list in which each feature is specified by its name optionally followed by a
space and a version number.
This method returns the first item of the list returned by
getDOMImplementationList.
As an example, the string "XML 3.0 Traversal +Events 2.0" will request a
DOM implementation that supports the module "XML" for its 3.0 version, a module
that support of the "Traversal" module for any version, and the module "Events" for
its 2.0 version. The module "Events" must be accessible using the method
Node.getFeature() [p.66] and DOMImplementation.getFeature()
[p.39] .

Return Value

DOMImplementation
[p.37]

The first DOM implementation that support the desired
features, or null if this source has none.

No Exceptions

36

1.4 Fundamental Interfaces: Core Module

getDOMImplementationList
A method to request a list of DOM implementations that support the specified features and
versions, as specified in DOM Features [p.29] .
Parameters
features of type DOMString [p.24]

A string that specifies which features and versions are required. This is a space
separated list in which each feature is specified by its name optionally followed by a
space and a version number. This is something like: "XML 3.0 Traversal +Events 2.0"

Return Value

DOMImplementationList
[p.35]

A list of DOM implementations that support the
desired features.

No Exceptions
Interface DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.
IDL Definition

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
 // Introduced in DOM Level 3:
 DOMObject getFeature(in DOMString feature,
 in DOMString version);
};

Methods
createDocument introduced in DOM Level 2

Creates a DOM Document object of the specified type with its document element.
Note that based on the DocumentType [p.115] given to create the document, the
implementation may instantiate specialized Document [p.41] objects that support
additional features than the "Core", such as "HTML" [DOM Level 2 HTML]. On the other
hand, setting the DocumentType after the document was created makes this very
unlikely to happen. Alternatively, specialized Document creation methods, such as
createHTMLDocument [DOM Level 2 HTML], can be used to obtain specific types of
Document objects.
Parameters

37

1.4 Fundamental Interfaces: Core Module

namespaceURI of type DOMString [p.24]
The namespace URI [p.207] of the document element to create or null.

qualifiedName of type DOMString
The qualified name [p.207] of the document element to be created or null.

doctype of type DocumentType [p.115]
The type of document to be created or null.
When doctype is not null, its Node.ownerDocument [p.62] attribute is set to
the document being created.

Return Value

Document
[p.41]

A new Document object with its document element. If the
NamespaceURI, qualifiedName, and doctype are null, the
returned Document is empty with no document element.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name is not an XML name according to [XML 1.0].

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null, or if the qualifiedName is null
and the namespaceURI is different from null, or if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [XML Namespaces],
or if the DOM implementation does not support the "XML"
feature but a non-null namespace URI was provided, since
namespaces were defined by XML.

WRONG_DOCUMENT_ERR: Raised if doctype has already
been used with a different document or was created from a
different implementation.

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

createDocumentType introduced in DOM Level 2
Creates an empty DocumentType [p.115] node. Entity declarations and notations are not
made available. Entity reference expansions and default attribute additions do not occur..
Parameters
qualifiedName of type DOMString [p.24]

The qualified name [p.207] of the document type to be created.

38

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/XML/1998/namespace

publicId of type DOMString
The external subset public identifier.

systemId of type DOMString
The external subset system identifier.

Return Value

DocumentType
[p.115]

A new DocumentType node with
Node.ownerDocument [p.62] set to null.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name is not an XML name according to [XML 1.0].

NAMESPACE_ERR: Raised if the qualifiedName is
malformed.

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

getFeature introduced in DOM Level 3
This method returns a specialized object which implements the specialized APIs of the
specified feature and version, as specified in DOM Features [p.29] . The specialized object
may also be obtained by using binding-specific casting methods but is not necessarily
expected to, as discussed in Mixed DOM Implementations [p.28] . This method also allow
the implementation to provide specialized objects which do not support the
DOMImplementation interface.
Parameters
feature of type DOMString [p.24]

The name of the feature requested. Note that any plus sign "+" prepended to the name
of the feature will be ignored since it is not significant in the context of this method.

version of type DOMString
This is the version number of the feature to test.

Return Value

DOMObject
[p.25]

Returns an object which implements the specialized APIs of the
specified feature and version, if any, or null if there is no object
which implements interfaces associated with that feature. If the
DOMObject returned by this method implements the
DOMImplementation interface, it must delegate to the primary
core DOMImplementation and not return results inconsistent with
the primary core DOMImplementation such as hasFeature,
getFeature, etc.

39

1.4 Fundamental Interfaces: Core Module

No Exceptions
hasFeature

Test if the DOM implementation implements a specific feature and version, as specified in
DOM Features [p.29] .
Parameters
feature of type DOMString [p.24]

The name of the feature to test.
version of type DOMString

This is the version number of the feature to test.
Return Value

boolean true if the feature is implemented in the specified version, false
otherwise.

No Exceptions
Interface DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document [p.41] object. It is very common
to want to be able to extract a portion of a document’s tree or to create a new fragment of a
document. Imagine implementing a user command like cut or rearranging a document by moving
fragments around. It is desirable to have an object which can hold such fragments and it is quite
natural to use a Node for this purpose. While it is true that a Document object could fulfill this role,
a Document object can potentially be a heavyweight object, depending on the underlying
implementation. What is really needed for this is a very lightweight object. DocumentFragment
is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node [p.56] -- may
take DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any
sub-trees defining the structure of the document. DocumentFragment nodes do not need to be
well-formed XML documents [p.208] (although they do need to follow the rules imposed upon
well-formed XML parsed entities, which can have multiple top nodes). For example, a
DocumentFragment might have only one child and that child node could be a Text [p.95] node.
Such a structure model represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document [p.41] (or indeed any other Node
[p.56] that may take children) the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the Node. This makes the DocumentFragment
very useful when the user wishes to create nodes that are siblings [p.208] ; the
DocumentFragment acts as the parent of these nodes so that the user can use the standard
methods from the Node interface, such as Node.insertBefore [p.67] and
Node.appendChild [p.64] .
IDL Definition

40

1.4 Fundamental Interfaces: Core Module

interface DocumentFragment : Node {
};

Interface Document

The Document interface represents the entire HTML or XML document. Conceptually, it is the root
[p.207] of the document tree, and provides the primary access to the document’s data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context
of a Document, the Document interface also contains the factory methods needed to create these
objects. The Node [p.56] objects created have a ownerDocument attribute which associates them
with the Document within whose context they were created.
IDL Definition

interface Document : Node {
 // Modified in DOM Level 3:
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
 // Introduced in DOM Level 3:
 readonly attribute DOMString inputEncoding;
 // Introduced in DOM Level 3:
 readonly attribute DOMString xmlEncoding;

41

1.4 Fundamental Interfaces: Core Module

 // Introduced in DOM Level 3:
 attribute boolean xmlStandalone;
 // raises(DOMException) on setting

 // Introduced in DOM Level 3:
 attribute DOMString xmlVersion;
 // raises(DOMException) on setting

 // Introduced in DOM Level 3:
 attribute boolean strictErrorChecking;
 // Introduced in DOM Level 3:
 attribute DOMString documentURI;
 // Introduced in DOM Level 3:
 Node adoptNode(in Node source)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute DOMConfiguration domConfig;
 // Introduced in DOM Level 3:
 void normalizeDocument();
 // Introduced in DOM Level 3:
 Node renameNode(in Node n,
 in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
};

Attributes
doctype of type DocumentType [p.115] , readonly, modified in DOM Level 3

The Document Type Declaration (see DocumentType [p.115]) associated with this
document. For XML documents without a document type declaration this returns null.
For HTML documents, a DocumentType object may be returned, independently of the
presence or absence of document type declaration in the HTML document.
This provides direct access to the DocumentType [p.115] node, child node of this
Document. This node can be set at document creation time and later changed through the
use of child nodes manipulation methods, such as Node.insertBefore [p.67] , or
Node.replaceChild [p.71] . Note, however, that while some implementations may
instantiate different types of Document objects supporting additional features than the
"Core", such as "HTML" [DOM Level 2 HTML], based on the DocumentType specified
at creation time, changing it afterwards is very unlikely to result in a change of the features
supported.

documentElement of type Element [p.85] , readonly
This is a convenience [p.205] attribute that allows direct access to the child node that is the
document element [p.206] of the document.

documentURI of type DOMString [p.24] , introduced in DOM Level 3
The location of the document or null if undefined or if the Document was created using
DOMImplementation.createDocument [p.37] . No lexical checking is performed
when setting this attribute; this could result in a null value returned when using
Node.baseURI [p.61] .
Beware that when the Document supports the feature "HTML" [DOM Level 2 HTML],
the href attribute of the HTML BASE element takes precedence over this attribute when
computing Node.baseURI [p.61] .

42

1.4 Fundamental Interfaces: Core Module

domConfig of type DOMConfiguration [p.106] , readonly, introduced in DOM Level 3
The configuration used when Document.normalizeDocument() [p.54] is invoked.

implementation of type DOMImplementation [p.37] , readonly
The DOMImplementation [p.37] object that handles this document. A DOM
application may use objects from multiple implementations.

inputEncoding of type DOMString [p.24] , readonly, introduced in DOM Level 3
An attribute specifying the encoding used for this document at the time of the parsing. This
is null when it is not known, such as when the Document was created in memory.

strictErrorChecking of type boolean, introduced in DOM Level 3
An attribute specifying whether error checking is enforced or not. When set to false, the
implementation is free to not test every possible error case normally defined on DOM
operations, and not raise any DOMException [p.31] on DOM operations or report errors
while using Document.normalizeDocument() [p.54] . In case of error, the behavior
is undefined. This attribute is true by default.

xmlEncoding of type DOMString [p.24] , readonly, introduced in DOM Level 3
An attribute specifying, as part of the XML declaration, the encoding of this document.
This is null when unspecified or when it is not known, such as when the Document was
created in memory.

xmlStandalone of type boolean, introduced in DOM Level 3
An attribute specifying, as part of the XML declaration, whether this document is
standalone. This is false when unspecified.

Note: No verification is done on the value when setting this attribute. Applications should
use Document.normalizeDocument() [p.54] with the "validate [p.110] " parameter
to verify if the value matches the validity constraint for standalone document declaration
as defined in [XML 1.0].

Exceptions on setting

DOMException
[p.31]

NOT_SUPPORTED_ERR: Raised if this document does not
support the "XML" feature.

xmlVersion of type DOMString [p.24] , introduced in DOM Level 3
An attribute specifying, as part of the XML declaration, the version number of this
document. If there is no declaration and if this document supports the "XML" feature, the
value is "1.0". If this document does not support the "XML" feature, the value is always
null. Changing this attribute will affect methods that check for invalid characters in XML
names. Application should invoke Document.normalizeDocument() [p.54] in
order to check for invalid characters in the Node [p.56] s that are already part of this
Document.
DOM applications may use the DOMImplementation.hasFeature(feature,
version) [p.40] method with parameter values "XMLVersion" and "1.0" (respectively)
to determine if an implementation supports [XML 1.0]. DOM applications may use the
same method with parameter values "XMLVersion" and "1.1" (respectively) to determine
if an implementation supports [XML 1.1]. In both cases, in order to support XML, an
implementation must also support the "XML" feature defined in this specification.

43

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml-20040204#NT-XMLDecl
http://www.w3.org/TR/2004/REC-xml-20040204#NT-XMLDecl
http://www.w3.org/TR/2004/REC-xml-20040204#sec-rmd
http://www.w3.org/TR/2004/REC-xml-20040204#NT-XMLDecl

Document objects supporting a version of the "XMLVersion" feature must not raise a
NOT_SUPPORTED_ERR [p.32] exception for the same version number when using
Document.xmlVersion [p.43] .
Exceptions on setting

DOMException
[p.31]

NOT_SUPPORTED_ERR: Raised if the version is set to a
value that is not supported by this Document or if this
document does not support the "XML" feature.

Methods
adoptNode introduced in DOM Level 3

Attempts to adopt a node from another document to this document. If supported, it changes
the ownerDocument of the source node, its children, as well as the attached attribute
nodes if there are any. If the source node has a parent it is first removed from the child list
of its parent. This effectively allows moving a subtree from one document to another
(unlike importNode() which create a copy of the source node instead of moving it).
When it fails, applications should use Document.importNode() [p.52] instead. Note
that if the adopted node is already part of this document (i.e. the source and target
document are the same), this method still has the effect of removing the source node from
the child list of its parent, if any. The following list describes the specifics for each type of
node.
ATTRIBUTE_NODE

The ownerElement attribute is set to null and the specified flag is set to
true on the adopted Attr [p.81] . The descendants of the source Attr are
recursively adopted.

DOCUMENT_FRAGMENT_NODE
The descendants of the source node are recursively adopted.

DOCUMENT_NODE
Document nodes cannot be adopted.

DOCUMENT_TYPE_NODE
DocumentType [p.115] nodes cannot be adopted.

ELEMENT_NODE
Specified attribute nodes of the source element are adopted. Default attributes are
discarded, though if the document being adopted into defines default attributes for this
element name, those are assigned. The descendants of the source element are
recursively adopted.

ENTITY_NODE
Entity [p.116] nodes cannot be adopted.

ENTITY_REFERENCE_NODE
Only the EntityReference [p.118] node itself is adopted, the descendants are
discarded, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity
name, its value is assigned.

NOTATION_NODE
Notation [p.116] nodes cannot be adopted.

44

1.4 Fundamental Interfaces: Core Module

PROCESSING_INSTRUCTION_NODE, TEXT_NODE, CDATA_SECTION_NODE,
COMMENT_NODE

These nodes can all be adopted. No specifics.

Note: Since it does not create new nodes unlike the Document.importNode() [p.52]
method, this method does not raise an INVALID_CHARACTER_ERR [p.32] exception,
and applications should use the Document.normalizeDocument() [p.54] method to
check if an imported name is not an XML name according to the XML version in use.

Parameters
source of type Node [p.56]

The node to move into this document.
Return Value

Node
[p.56]

The adopted node, or null if this operation fails, such as when the source
node comes from a different implementation.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: Raised if the source node is of type
DOCUMENT, DOCUMENT_TYPE.

NO_MODIFICATION_ALLOWED_ERR: Raised when the
source node is readonly.

createAttribute
Creates an Attr [p.81] of the given name. Note that the Attr instance can then be set on
an Element [p.85] using the setAttributeNode method.
To create an attribute with a qualified name [p.207] and namespace URI [p.207] , use the
createAttributeNS method.
Parameters
name of type DOMString [p.24]

The name of the attribute.
Return Value

Attr
[p.81]

A new Attr object with the nodeName attribute set to name, and
localName, prefix, and namespaceURI set to null. The value of
the attribute is the empty string.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified name is
not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

45

1.4 Fundamental Interfaces: Core Module

createAttributeNS introduced in DOM Level 2
Creates an attribute of the given qualified name [p.207] and namespace URI [p.207] .
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute to create.
qualifiedName of type DOMString

The qualified name [p.207] of the attribute to instantiate.
Return Value

Attr
[p.81]

A new Attr object with the following attributes:

Attribute Value

Node.nodeName [p.62] qualifiedName

Node.namespaceURI
[p.61]

namespaceURI

Node.prefix [p.62] prefix, extracted from qualifiedName,
or null if there is no prefix

Node.localName [p.61] local name, extracted from
qualifiedName

Attr.name [p.84] qualifiedName

Node.nodeValue [p.62] the empty string

Exceptions

46

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified
qualifiedName is not an XML name according to the XML
version in use specified in the Document.xmlVersion [p.43]
attribute.

NAMESPACE_ERR: Raised if the qualifiedName is a
malformed qualified name [p.207] , if the qualifiedName has
a prefix and the namespaceURI is null, if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", if the
qualifiedName or its prefix is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/", or if the namespaceURI is
"http://www.w3.org/2000/xmlns/" and neither the
qualifiedName nor its prefix is "xmlns".

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

createCDATASection
Creates a CDATASection [p.114] node whose value is the specified string.
Parameters
data of type DOMString [p.24]

The data for the CDATASection [p.114] contents.
Return Value

CDATASection [p.114] The new CDATASection object.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createComment
Creates a Comment [p.99] node given the specified string.
Parameters
data of type DOMString [p.24]

The data for the node.
Return Value

Comment [p.99] The new Comment object.

47

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/
http://www.w3.org/2000/xmlns/

No Exceptions
createDocumentFragment

Creates an empty DocumentFragment [p.40] object.
Return Value

DocumentFragment [p.40] A new DocumentFragment.

No Parameters
No Exceptions

createElement
Creates an element of the type specified. Note that the instance returned implements the
Element [p.85] interface, so attributes can be specified directly on the returned object.
In addition, if there are known attributes with default values, Attr [p.81] nodes
representing them are automatically created and attached to the element.
To create an element with a qualified name [p.207] and namespace URI [p.207] , use the
createElementNS method.
Parameters
tagName of type DOMString [p.24]

The name of the element type to instantiate. For XML, this is case-sensitive, otherwise
it depends on the case-sensitivity of the markup language in use. In that case, the
name is mapped to the canonical form of that markup by the DOM implementation.

Return Value

Element
[p.85]

A new Element object with the nodeName attribute set to
tagName, and localName, prefix, and namespaceURI set to
null.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified name is
not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

createElementNS introduced in DOM Level 2
Creates an element of the given qualified name [p.207] and namespace URI [p.207] .
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the element to create.
qualifiedName of type DOMString

The qualified name [p.207] of the element type to instantiate.
Return Value

48

1.4 Fundamental Interfaces: Core Module

Element
[p.85]

A new Element object with the following attributes:

Attribute Value

Node.nodeName [p.62] qualifiedName

Node.namespaceURI
[p.61]

namespaceURI

Node.prefix [p.62] prefix, extracted from
qualifiedName, or null if there is
no prefix

Node.localName [p.61] local name, extracted from
qualifiedName

Element.tagName
[p.86]

qualifiedName

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified
qualifiedName is not an XML name according to the XML
version in use specified in the Document.xmlVersion [p.43]
attribute.

NAMESPACE_ERR: Raised if the qualifiedName is a
malformed qualified name [p.207] , if the qualifiedName has
a prefix and the namespaceURI is null, or if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [XML Namespaces],
or if the qualifiedName or its prefix is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/", or if the namespaceURI is
"http://www.w3.org/2000/xmlns/" and neither the
qualifiedName nor its prefix is "xmlns".

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

createEntityReference
Creates an EntityReference [p.118] object. In addition, if the referenced entity is
known, the child list of the EntityReference node is made the same as that of the
corresponding Entity [p.116] node.

49

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/
http://www.w3.org/2000/xmlns/

Note: If any descendant of the Entity [p.116] node has an unbound namespace prefix
[p.207] , the corresponding descendant of the created EntityReference [p.118] node
is also unbound; (its namespaceURI is null). The DOM Level 2 and 3 do not support
any mechanism to resolve namespace prefixes in this case.

Parameters
name of type DOMString [p.24]

The name of the entity to reference.
Unlike Document.createElementNS [p.48] or
Document.createAttributeNS [p.46] , no namespace well-formed checking is
done on the entity name. Applications should invoke
Document.normalizeDocument() [p.54] with the parameter "namespaces
[p.109] " set to true in order to ensure that the entity name is namespace
well-formed.

Return Value

EntityReference [p.118] The new EntityReference object.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified name is
not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

NOT_SUPPORTED_ERR: Raised if this document is an HTML
document.

createProcessingInstruction
Creates a ProcessingInstruction [p.118] node given the specified name and data
strings.
Parameters
target of type DOMString [p.24]

The target part of the processing instruction.
Unlike Document.createElementNS [p.48] or
Document.createAttributeNS [p.46] , no namespace well-formed checking is
done on the target name. Applications should invoke
Document.normalizeDocument() [p.54] with the parameter "namespaces
[p.109] " set to true in order to ensure that the target name is namespace
well-formed.

data of type DOMString
The data for the node.

Return Value

ProcessingInstruction
[p.118]

The new ProcessingInstruction
object.

50

1.4 Fundamental Interfaces: Core Module

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified target
is not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

NOT_SUPPORTED_ERR: Raised if this document is an HTML
document.

createTextNode
Creates a Text [p.95] node given the specified string.
Parameters
data of type DOMString [p.24]

The data for the node.
Return Value

Text [p.95] The new Text object.

No Exceptions
getElementById introduced in DOM Level 2

Returns the Element [p.85] that has an ID attribute with the given value. If no such
element exists, this returns null. If more than one element has an ID attribute with that
value, what is returned is undefined.
The DOM implementation is expected to use the attribute Attr.isId [p.83] to determine
if an attribute is of type ID.

Note: Attributes with the name "ID" or "id" are not of type ID unless so defined.

Parameters
elementId of type DOMString [p.24]

The unique id value for an element.
Return Value

Element [p.85] The matching element or null if there is none.

No Exceptions
getElementsByTagName

Returns a NodeList [p.73] of all the Elements [p.85] in document order [p.206] with a
given tag name and are contained in the document.
Parameters
tagname of type DOMString [p.24]

The name of the tag to match on. The special value "*" matches all tags. For XML,
the tagname parameter is case-sensitive, otherwise it depends on the case-sensitivity
of the markup language in use.

Return Value

51

1.4 Fundamental Interfaces: Core Module

NodeList
[p.73]

A new NodeList object containing all the matched Elements
[p.85] .

No Exceptions
getElementsByTagNameNS introduced in DOM Level 2

Returns a NodeList [p.73] of all the Elements [p.85] with a given local name [p.207]
and namespace URI [p.207] in document order [p.206] .
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the elements to match on. The special value "*"
matches all namespaces.

localName of type DOMString
The local name [p.207] of the elements to match on. The special value "*" matches all
local names.

Return Value

NodeList
[p.73]

A new NodeList object containing all the matched Elements
[p.85] .

No Exceptions
importNode introduced in DOM Level 2

Imports a node from another document to this document, without altering or removing the
source node from the original document; this method creates a new copy of the source
node. The returned node has no parent; (parentNode is null).
For all nodes, importing a node creates a node object owned by the importing document,
with attribute values identical to the source node’s nodeName and nodeType, plus the
attributes related to namespaces (prefix, localName, and namespaceURI). As in the
cloneNode operation, the source node is not altered. User data associated to the imported
node is not carried over. However, if any UserDataHandlers [p.102] has been
specified along with the associated data these handlers will be called with the appropriate
parameters before this method returns.
Additional information is copied as appropriate to the nodeType, attempting to mirror the
behavior expected if a fragment of XML or HTML source was copied from one document
to another, recognizing that the two documents may have different DTDs in the XML case.
The following list describes the specifics for each type of node.
ATTRIBUTE_NODE

The ownerElement attribute is set to null and the specified flag is set to
true on the generated Attr [p.81] . The descendants [p.205] of the source Attr are
recursively imported and the resulting nodes reassembled to form the corresponding
subtree.
Note that the deep parameter has no effect on Attr [p.81] nodes; they always carry
their children with them when imported.

DOCUMENT_FRAGMENT_NODE
If the deep option was set to true, the descendants [p.205] of the source
DocumentFragment [p.40] are recursively imported and the resulting nodes

52

1.4 Fundamental Interfaces: Core Module

reassembled under the imported DocumentFragment to form the corresponding
subtree. Otherwise, this simply generates an empty DocumentFragment.

DOCUMENT_NODE
Document nodes cannot be imported.

DOCUMENT_TYPE_NODE
DocumentType [p.115] nodes cannot be imported.

ELEMENT_NODE
Specified attribute nodes of the source element are imported, and the generated Attr
[p.81] nodes are attached to the generated Element [p.85] . Default attributes are not
copied, though if the document being imported into defines default attributes for this
element name, those are assigned. If the importNode deep parameter was set to
true, the descendants [p.205] of the source element are recursively imported and the
resulting nodes reassembled to form the corresponding subtree.

ENTITY_NODE
Entity [p.116] nodes can be imported, however in the current release of the DOM
the DocumentType [p.115] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId, systemId, and notationName attributes are copied.
If a deep import is requested, the descendants [p.205] of the the source Entity
[p.116] are recursively imported and the resulting nodes reassembled to form the
corresponding subtree.

ENTITY_REFERENCE_NODE
Only the EntityReference [p.118] itself is copied, even if a deep import is
requested, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity
name, its value is assigned.

NOTATION_NODE
Notation [p.116] nodes can be imported, however in the current release of the
DOM the DocumentType [p.115] is readonly. Ability to add these imported nodes
to a DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId and systemId attributes are copied.
Note that the deep parameter has no effect on this type of nodes since they cannot
have any children.

PROCESSING_INSTRUCTION_NODE
The imported node copies its target and data values from those of the source
node.
Note that the deep parameter has no effect on this type of nodes since they cannot
have any children.

TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE
These three types of nodes inheriting from CharacterData [p.78] copy their data
and length attributes from those of the source node.
Note that the deep parameter has no effect on these types of nodes since they cannot
have any children.

Parameters
importedNode of type Node [p.56]

The node to import.

53

1.4 Fundamental Interfaces: Core Module

deep of type boolean
If true, recursively import the subtree under the specified node; if false, import
only the node itself, as explained above. This has no effect on nodes that cannot have
any children, and on Attr [p.81] , and EntityReference [p.118] nodes.

Return Value

Node [p.56] The imported node that belongs to this Document.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: Raised if the type of node being
imported is not supported.

INVALID_CHARACTER_ERR: Raised if one of the imported
names is not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute. This
may happen when importing an XML 1.1 [XML 1.1] element into
an XML 1.0 document, for instance.

normalizeDocument introduced in DOM Level 3
This method acts as if the document was going through a save and load cycle, putting the
document in a "normal" form. As a consequence, this method updates the replacement tree
of EntityReference [p.118] nodes and normalizes Text [p.95] nodes, as defined in
the method Node.normalize() [p.71] .
Otherwise, the actual result depends on the features being set on the
Document.domConfig [p.43] object and governing what operations actually take place.
Noticeably this method could also make the document namespace well-formed [p.207]
according to the algorithm described in Namespace Normalization [p.125] , check the
character normalization, remove the CDATASection [p.114] nodes, etc. See
DOMConfiguration [p.106] for details.

// Keep in the document the information defined
// in the XML Information Set (Java example)
DOMConfiguration docConfig = myDocument.getDomConfig();
docConfig.setParameter("infoset", Boolean.TRUE);
myDocument.normalizeDocument();

Mutation events, when supported, are generated to reflect the changes occurring on the
document.
If errors occur during the invocation of this method, such as an attempt to update a
read-only node [p.207] or a Node.nodeName [p.62] contains an invalid character
according to the XML version in use, errors or warnings
(DOMError.SEVERITY_ERROR [p.104] or DOMError.SEVERITY_WARNING
[p.104]) will be reported using the DOMErrorHandler [p.105] object associated with
the "error-handler [p.108] " parameter. Note this method might also report fatal errors
(DOMError.SEVERITY_FATAL_ERROR [p.104]) if an implementation cannot recover
from an error.

54

1.4 Fundamental Interfaces: Core Module

No Parameters
No Return Value
No Exceptions

renameNode introduced in DOM Level 3
Rename an existing node of type ELEMENT_NODE or ATTRIBUTE_NODE.
When possible this simply changes the name of the given node, otherwise this creates a
new node with the specified name and replaces the existing node with the new node as
described below.
If simply changing the name of the given node is not possible, the following operations are
performed: a new node is created, any registered event listener is registered on the new
node, any user data attached to the old node is removed from that node, the old node is
removed from its parent if it has one, the children are moved to the new node, if the
renamed node is an Element [p.85] its attributes are moved to the new node, the new
node is inserted at the position the old node used to have in its parent’s child nodes list if it
has one, the user data that was attached to the old node is attached to the new node.
When the node being renamed is an Element [p.85] only the specified attributes are
moved, default attributes originated from the DTD are updated according to the new
element name. In addition, the implementation may update default attributes from other
schemas. Applications should use Document.normalizeDocument() [p.54] to
guarantee these attributes are up-to-date.
When the node being renamed is an Attr [p.81] that is attached to an Element [p.85] ,
the node is first removed from the Element attributes map. Then, once renamed, either by
modifying the existing node or creating a new one as described above, it is put back.
In addition,

a user data event NODE_RENAMED is fired,
when the implementation supports the feature "MutationNameEvents", each mutation
operation involved in this method fires the appropriate event, and in the end the event
{http://www.w3.org/2001/xml-events, DOMElementNameChanged}
or {http://www.w3.org/2001/xml-events,
DOMAttributeNameChanged} is fired.

Parameters
n of type Node [p.56]

The node to rename.
namespaceURI of type DOMString [p.24]

The new namespace URI [p.207] .
qualifiedName of type DOMString

The new qualified name [p.207] .
Return Value

Node
[p.56]

The renamed node. This is either the specified node or the new node that
was created to replace the specified node.

Exceptions

55

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

NOT_SUPPORTED_ERR: Raised when the type of the specified
node is neither ELEMENT_NODE nor ATTRIBUTE_NODE, or if
the implementation does not support the renaming of the
document element [p.206] .

INVALID_CHARACTER_ERR: Raised if the new qualified
name is not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

WRONG_DOCUMENT_ERR: Raised when the specified node
was created from a different document than this document.

NAMESPACE_ERR: Raised if the qualifiedName is a
malformed qualified name [p.207] , if the qualifiedName has
a prefix and the namespaceURI is null, or if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [XML Namespaces].
Also raised, when the node being renamed is an attribute, if the
qualifiedName, or its prefix, is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/".

Interface Node

The Node interface is the primary datatype for the entire Document Object Model. It represents a
single node in the document tree. While all objects implementing the Node interface expose methods
for dealing with children, not all objects implementing the Node interface may have children. For
example, Text [p.95] nodes may not have children, and adding children to such nodes results in a
DOMException [p.31] being raised.

The attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (e.g., nodeValue for an Element
[p.85] or attributes for a Comment [p.99]), this returns null. Note that the specialized
interfaces may contain additional and more convenient mechanisms to get and set the relevant
information.
IDL Definition

interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;

56

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/

 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 // Modified in DOM Level 3:
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node removeChild(in Node oldChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Modified in DOM Level 3:
 void normalize();
 // Introduced in DOM Level 2:
 boolean isSupported(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 // Introduced in DOM Level 2:
 boolean hasAttributes();
 // Introduced in DOM Level 3:
 readonly attribute DOMString baseURI;

 // DocumentPosition
 const unsigned short DOCUMENT_POSITION_DISCONNECTED = 0x01;

57

1.4 Fundamental Interfaces: Core Module

 const unsigned short DOCUMENT_POSITION_PRECEDING = 0x02;
 const unsigned short DOCUMENT_POSITION_FOLLOWING = 0x04;
 const unsigned short DOCUMENT_POSITION_CONTAINS = 0x08;
 const unsigned short DOCUMENT_POSITION_CONTAINED_BY = 0x10;
 const unsigned short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 0x20;

 // Introduced in DOM Level 3:
 unsigned short compareDocumentPosition(in Node other)
 raises(DOMException);
 // Introduced in DOM Level 3:
 attribute DOMString textContent;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 // Introduced in DOM Level 3:
 boolean isSameNode(in Node other);
 // Introduced in DOM Level 3:
 DOMString lookupPrefix(in DOMString namespaceURI);
 // Introduced in DOM Level 3:
 boolean isDefaultNamespace(in DOMString namespaceURI);
 // Introduced in DOM Level 3:
 DOMString lookupNamespaceURI(in DOMString prefix);
 // Introduced in DOM Level 3:
 boolean isEqualNode(in Node arg);
 // Introduced in DOM Level 3:
 DOMObject getFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 3:
 DOMUserData setUserData(in DOMString key,
 in DOMUserData data,
 in UserDataHandler handler);
 // Introduced in DOM Level 3:
 DOMUserData getUserData(in DOMString key);
};

Definition group NodeType

An integer indicating which type of node this is.

Note: Numeric codes up to 200 are reserved to W3C for possible future use.

Defined Constants
ATTRIBUTE_NODE

The node is an Attr [p.81] .
CDATA_SECTION_NODE

The node is a CDATASection [p.114] .
COMMENT_NODE

The node is a Comment [p.99] .
DOCUMENT_FRAGMENT_NODE

The node is a DocumentFragment [p.40] .
DOCUMENT_NODE

The node is a Document [p.41] .

58

1.4 Fundamental Interfaces: Core Module

DOCUMENT_TYPE_NODE
The node is a DocumentType [p.115] .

ELEMENT_NODE
The node is an Element [p.85] .

ENTITY_NODE
The node is an Entity [p.116] .

ENTITY_REFERENCE_NODE
The node is an EntityReference [p.118] .

NOTATION_NODE
The node is a Notation [p.116] .

PROCESSING_INSTRUCTION_NODE
The node is a ProcessingInstruction [p.118] .

TEXT_NODE
The node is a Text [p.95] node.

The values of nodeName, nodeValue, and attributes vary according to the node type as
follows:

Interface nodeName nodeValue attributes

Attr [p.81] same as Attr.name [p.84] same as Attr.value [p.84] null

CDATASection [p.114] "#cdata-section" same as CharacterData.data
[p.79] , the content of the CDATA
Section

null

Comment [p.99] "#comment" same as CharacterData.data
[p.79] , the content of the comment

null

Document [p.41] "#document" null null

DocumentFragment [p.40] "#document-fragment" null null

DocumentType [p.115] same as DocumentType.name [p.116] null null

Element [p.85] same as Element.tagName [p.86] null NamedNodeMap
[p.73]

Entity [p.116] entity name null null

EntityReference [p.118] name of entity referenced null null

Notation [p.116] notation name null null

ProcessingInstruction
[p.118]

same as
ProcessingInstruction.target
[p.119]

same as
ProcessingInstruction.data
[p.119]

null

Text [p.95] "#text" same as CharacterData.data
[p.79] , the content of the text node

null

Definition group DocumentPosition

A bitmask indicating the relative document position of a node with respect to another node.

If the two nodes being compared are the same node, then no flags are set on the return.

Otherwise, the order of two nodes is determined by looking for common containers -- containers
which contain both. A node directly contains any child nodes. A node also directly contains any
other nodes attached to it such as attributes contained in an element or entities and notations

59

1.4 Fundamental Interfaces: Core Module

contained in a document type. Nodes contained in contained nodes are also contained, but
less-directly as the number of intervening containers increases.

If there is no common container node, then the order is based upon order between the root
container of each node that is in no container. In this case, the result is disconnected and
implementation-specific. This result is stable as long as these outer-most containing nodes
remain in memory and are not inserted into some other containing node. This would be the case
when the nodes belong to different documents or fragments, and cloning the document or
inserting a fragment might change the order.

If one of the nodes being compared contains the other node, then the container precedes the
contained node, and reversely the contained node follows the container. For example, when
comparing an element against its own attribute or child, the element node precedes its attribute
node and its child node, which both follow it.

If neither of the previous cases apply, then there exists a most-direct container common to both
nodes being compared. In this case, the order is determined based upon the two determining
nodes directly contained in this most-direct common container that either are or contain the
corresponding nodes being compared.

If these two determining nodes are both child nodes, then the natural DOM order of these
determining nodes within the containing node is returned as the order of the corresponding
nodes. This would be the case, for example, when comparing two child elements of the same
element.

If one of the two determining nodes is a child node and the other is not, then the corresponding
node of the child node follows the corresponding node of the non-child node. This would be the
case, for example, when comparing an attribute of an element with a child element of the same
element.

If neither of the two determining node is a child node and one determining node has a greater
value of nodeType than the other, then the corresponding node precedes the other. This would
be the case, for example, when comparing an entity of a document type against a notation of the
same document type.

If neither of the two determining node is a child node and nodeType is the same for both
determining nodes, then an implementation-dependent order between the determining nodes is
returned. This order is stable as long as no nodes of the same nodeType are inserted into or
removed from the direct container. This would be the case, for example, when comparing two
attributes of the same element, and inserting or removing additional attributes might change the
order between existing attributes.
Defined Constants

DOCUMENT_POSITION_CONTAINED_BY
The node is contained by the reference node. A node which is contained is always
following, too.

DOCUMENT_POSITION_CONTAINS
The node contains the reference node. A node which contains is always preceding,
too.

60

1.4 Fundamental Interfaces: Core Module

DOCUMENT_POSITION_DISCONNECTED
The two nodes are disconnected. Order between disconnected nodes is always
implementation-specific.

DOCUMENT_POSITION_FOLLOWING
The node follows the reference node.

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC
The determination of preceding versus following is implementation-specific.

DOCUMENT_POSITION_PRECEDING
The second node precedes the reference node.

Attributes
attributes of type NamedNodeMap [p.73] , readonly

A NamedNodeMap [p.73] containing the attributes of this node (if it is an Element
[p.85]) or null otherwise.

baseURI of type DOMString [p.24] , readonly, introduced in DOM Level 3
The absolute base URI of this node or null if the implementation wasn’t able to obtain an
absolute URI. This value is computed as described in Base URIs [p.28] . However, when
the Document [p.41] supports the feature "HTML" [DOM Level 2 HTML], the base URI
is computed using first the value of the href attribute of the HTML BASE element if any,
and the value of the documentURI attribute from the Document interface otherwise.

childNodes of type NodeList [p.73] , readonly
A NodeList [p.73] that contains all children of this node. If there are no children, this is
a NodeList containing no nodes.

firstChild of type Node [p.56] , readonly
The first child of this node. If there is no such node, this returns null.

lastChild of type Node [p.56] , readonly
The last child of this node. If there is no such node, this returns null.

localName of type DOMString [p.24] , readonly, introduced in DOM Level 2
Returns the local part of the qualified name [p.207] of this node.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as Document.createElement() [p.48] ,
this is always null.

namespaceURI of type DOMString [p.24] , readonly, introduced in DOM Level 2
The namespace URI [p.207] of this node, or null if it is unspecified (see XML
Namespaces [p.26]).
This is not a computed value that is the result of a namespace lookup based on an
examination of the namespace declarations in scope. It is merely the namespace URI given
at creation time.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as Document.createElement() [p.48] ,
this is always null.

Note: Per the Namespaces in XML Specification [XML Namespaces] an attribute does not
inherit its namespace from the element it is attached to. If an attribute is not explicitly
given a namespace, it simply has no namespace.

61

1.4 Fundamental Interfaces: Core Module

nextSibling of type Node [p.56] , readonly
The node immediately following this node. If there is no such node, this returns null.

nodeName of type DOMString [p.24] , readonly
The name of this node, depending on its type; see the table above.

nodeType of type unsigned short, readonly
A code representing the type of the underlying object, as defined above.

nodeValue of type DOMString [p.24]
The value of this node, depending on its type; see the table above. When it is defined to be
null, setting it has no effect, including if the node is read-only [p.207] .
Exceptions on setting

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly and if it is not defined to be null.

Exceptions on retrieval

DOMException
[p.31]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.24] variable on the
implementation platform.

ownerDocument of type Document [p.41] , readonly, modified in DOM Level 2
The Document [p.41] object associated with this node. This is also the Document object
used to create new nodes. When this node is a Document or a DocumentType [p.115]
which is not used with any Document yet, this is null.

parentNode of type Node [p.56] , readonly
The parent [p.207] of this node. All nodes, except Attr [p.81] , Document [p.41] ,
DocumentFragment [p.40] , Entity [p.116] , and Notation [p.116] may have a
parent. However, if a node has just been created and not yet added to the tree, or if it has
been removed from the tree, this is null.

prefix of type DOMString [p.24] , introduced in DOM Level 2
The namespace prefix [p.207] of this node, or null if it is unspecified. When it is defined
to be null, setting it has no effect, including if the node is read-only [p.207] .
Note that setting this attribute, when permitted, changes the nodeName attribute, which
holds the qualified name [p.207] , as well as the tagName and name attributes of the
Element [p.85] and Attr [p.81] interfaces, when applicable.
Setting the prefix to null makes it unspecified, setting it to an empty string is
implementation dependent.
Note also that changing the prefix of an attribute that is known to have a default value, does
not make a new attribute with the default value and the original prefix appear, since the
namespaceURI and localName do not change.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.41] interface, this is always null.
Exceptions on setting

62

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified prefix
contains an illegal character according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NAMESPACE_ERR: Raised if the specified prefix is
malformed per the Namespaces in XML specification, if the
namespaceURI of this node is null, if the specified prefix is
"xml" and the namespaceURI of this node is different from
"http://www.w3.org/XML/1998/namespace", if this node is an
attribute and the specified prefix is "xmlns" and the
namespaceURI of this node is different from
"http://www.w3.org/2000/xmlns/", or if this node is an attribute
and the qualifiedName of this node is "xmlns" [XML
Namespaces].

previousSibling of type Node [p.56] , readonly
The node immediately preceding this node. If there is no such node, this returns null.

textContent of type DOMString [p.24] , introduced in DOM Level 3
This attribute returns the text content of this node and its descendants. When it is defined to
be null, setting it has no effect. On setting, any possible children this node may have are
removed and, if it the new string is not empty or null, replaced by a single Text [p.95]
node containing the string this attribute is set to.
On getting, no serialization is performed, the returned string does not contain any markup.
No whitespace normalization is performed and the returned string does not contain the
white spaces in element content (see the attribute
Text.isElementContentWhitespace [p.96]). Similarly, on setting, no parsing is
performed either, the input string is taken as pure textual content.
The string returned is made of the text content of this node depending on its type, as
defined below:

63

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/

Node type Content

ELEMENT_NODE,
ATTRIBUTE_NODE, ENTITY_NODE,
ENTITY_REFERENCE_NODE,
DOCUMENT_FRAGMENT_NODE

concatenation of the textContent
attribute value of every child node,
excluding COMMENT_NODE and
PROCESSING_INSTRUCTION_NODE
nodes. This is the empty string if the node
has no children.

TEXT_NODE,
CDATA_SECTION_NODE,
COMMENT_NODE,
PROCESSING_INSTRUCTION_NODE

nodeValue

DOCUMENT_NODE,
DOCUMENT_TYPE_NODE,
NOTATION_NODE

null

Exceptions on setting

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

DOMException
[p.31]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.24] variable on the
implementation platform.

Methods
appendChild modified in DOM Level 3

Adds the node newChild to the end of the list of children of this node. If the newChild
is already in the tree, it is first removed.
Parameters
newChild of type Node [p.56]

The node to add.
If it is a DocumentFragment [p.40] object, the entire contents of the document
fragment are moved into the child list of this node

Return Value

Node [p.56] The node added.

Exceptions

64

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to append is one of this node’s ancestors [p.205] or
this node itself, or if this node is of type Document [p.41] and
the DOM application attempts to append a second
DocumentType [p.115] or Element [p.85] node.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly or if the previous parent of the node being inserted is
readonly.

NOT_SUPPORTED_ERR: if the newChild node is a child of
the Document [p.41] node, this exception might be raised if the
DOM implementation doesn’t support the removal of the
DocumentType [p.115] child or Element [p.85] child.

cloneNode
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The
duplicate node has no parent (parentNode is null) and no user data. User data
associated to the imported node is not carried over. However, if any
UserDataHandlers [p.102] has been specified along with the associated data these
handlers will be called with the appropriate parameters before this method returns.
Cloning an Element [p.85] copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method does not
copy any children it contains unless it is a deep clone. This includes text contained in an the
Element since the text is contained in a child Text [p.95] node. Cloning an Attr [p.81]
directly, as opposed to be cloned as part of an Element cloning operation, returns a
specified attribute (specified is true). Cloning an Attr always clones its children,
since they represent its value, no matter whether this is a deep clone or not. Cloning an
EntityReference [p.118] automatically constructs its subtree if a corresponding
Entity [p.116] is available, no matter whether this is a deep clone or not. Cloning any
other type of node simply returns a copy of this node.
Note that cloning an immutable subtree results in a mutable copy, but the children of an
EntityReference [p.118] clone are readonly [p.207] . In addition, clones of
unspecified Attr [p.81] nodes are specified. And, cloning Document [p.41] ,
DocumentType [p.115] , Entity [p.116] , and Notation [p.116] nodes is
implementation dependent.
Parameters
deep of type boolean

If true, recursively clone the subtree under the specified node; if false, clone only
the node itself (and its attributes, if it is an Element [p.85]).

Return Value

65

1.4 Fundamental Interfaces: Core Module

Node [p.56] The duplicate node.

No Exceptions
compareDocumentPosition introduced in DOM Level 3

Compares the reference node, i.e. the node on which this method is being called, with a
node, i.e. the one passed as a parameter, with regard to their position in the document and
according to the document order [p.206] .
Parameters
other of type Node [p.56]

The node to compare against the reference node.
Return Value

unsigned
short

Returns how the node is positioned relatively to the reference
node.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: when the compared nodes are from
different DOM implementations that do not coordinate to return
consistent implementation-specific results.

getFeature introduced in DOM Level 3
This method returns a specialized object which implements the specialized APIs of the
specified feature and version, as specified in DOM Features [p.29] . The specialized object
may also be obtained by using binding-specific casting methods but is not necessarily
expected to, as discussed in Mixed DOM Implementations [p.28] . This method also allow
the implementation to provide specialized objects which do not support the Node interface.
Parameters
feature of type DOMString [p.24]

The name of the feature requested. Note that any plus sign "+" prepended to the name
of the feature will be ignored since it is not significant in the context of this method.

version of type DOMString
This is the version number of the feature to test.

Return Value

DOMObject
[p.25]

Returns an object which implements the specialized APIs of the
specified feature and version, if any, or null if there is no object
which implements interfaces associated with that feature. If the
DOMObject returned by this method implements the Node
interface, it must delegate to the primary core Node and not return
results inconsistent with the primary core Node such as attributes,
childNodes, etc.

66

1.4 Fundamental Interfaces: Core Module

No Exceptions
getUserData introduced in DOM Level 3

Retrieves the object associated to a key on a this node. The object must first have been set
to this node by calling setUserData with the same key.
Parameters
key of type DOMString [p.24]

The key the object is associated to.
Return Value

DOMUserData
[p.25]

Returns the DOMUserData associated to the given key on this
node, or null if there was none.

No Exceptions
hasAttributes introduced in DOM Level 2

Returns whether this node (if it is an element) has any attributes.
Return Value

boolean Returns true if this node has any attributes, false otherwise.

No Parameters
No Exceptions

hasChildNodes
Returns whether this node has any children.
Return Value

boolean Returns true if this node has any children, false otherwise.

No Parameters
No Exceptions

insertBefore modified in DOM Level 3
Inserts the node newChild before the existing child node refChild. If refChild is
null, insert newChild at the end of the list of children.
If newChild is a DocumentFragment [p.40] object, all of its children are inserted, in
the same order, before refChild. If the newChild is already in the tree, it is first
removed.

Note: Inserting a node before itself is implementation dependent.

Parameters
newChild of type Node [p.56]

The node to insert.
refChild of type Node

The reference node, i.e., the node before which the new node must be inserted.
Return Value

67

1.4 Fundamental Interfaces: Core Module

Node [p.56] The node being inserted.

Exceptions

DOMException
[p.31]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to insert is one of this node’s ancestors [p.205] or
this node itself, or if this node is of type Document [p.41] and
the DOM application attempts to insert a second
DocumentType [p.115] or Element [p.85] node.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly or if the parent of the node being inserted is readonly.

NOT_FOUND_ERR: Raised if refChild is not a child of this
node.

NOT_SUPPORTED_ERR: if this node is of type Document
[p.41] , this exception might be raised if the DOM
implementation doesn’t support the insertion of a
DocumentType [p.115] or Element [p.85] node.

isDefaultNamespace introduced in DOM Level 3
This method checks if the specified namespaceURI is the default namespace or not.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI to look for.
Return Value

boolean Returns true if the specified namespaceURI is the default
namespace, false otherwise.

No Exceptions
isEqualNode introduced in DOM Level 3

Tests whether two nodes are equal.
This method tests for equality of nodes, not sameness (i.e., whether the two nodes are
references to the same object) which can be tested with Node.isSameNode() [p.69] .
All nodes that are the same will also be equal, though the reverse may not be true.
Two nodes are equal if and only if the following conditions are satisfied:

The two nodes are of the same type.
The following string attributes are equal: nodeName, localName,

68

1.4 Fundamental Interfaces: Core Module

namespaceURI, prefix, nodeValue. This is: they are both null, or they have
the same length and are character for character identical.
The attributes NamedNodeMaps [p.73] are equal. This is: they are both null,
or they have the same length and for each node that exists in one map there is a node
that exists in the other map and is equal, although not necessarily at the same index.
The childNodes NodeLists [p.73] are equal. This is: they are both null, or
they have the same length and contain equal nodes at the same index. Note that
normalization can affect equality; to avoid this, nodes should be normalized before
being compared.

For two DocumentType [p.115] nodes to be equal, the following conditions must also be
satisfied:

The following string attributes are equal: publicId, systemId,
internalSubset.
The entities NamedNodeMaps [p.73] are equal.
The notations NamedNodeMaps [p.73] are equal.

On the other hand, the following do not affect equality: the ownerDocument, baseURI,
and parentNode attributes, the specified attribute for Attr [p.81] nodes, the
schemaTypeInfo attribute for Attr and Element [p.85] nodes, the
Text.isElementContentWhitespace [p.96] attribute for Text [p.95] nodes, as
well as any user data or event listeners registered on the nodes.

Note: As a general rule, anything not mentioned in the description above is not significant
in consideration of equality checking. Note that future versions of this specification may
take into account more attributes and implementations conform to this specification are
expected to be updated accordingly.

Parameters
arg of type Node [p.56]

The node to compare equality with.
Return Value

boolean Returns true if the nodes are equal, false otherwise.

No Exceptions
isSameNode introduced in DOM Level 3

Returns whether this node is the same node as the given one.
This method provides a way to determine whether two Node references returned by the
implementation reference the same object. When two Node references are references to the
same object, even if through a proxy, the references may be used completely
interchangeably, such that all attributes have the same values and calling the same DOM
method on either reference always has exactly the same effect.
Parameters
other of type Node [p.56]

The node to test against.
Return Value

69

1.4 Fundamental Interfaces: Core Module

boolean Returns true if the nodes are the same, false otherwise.

No Exceptions
isSupported introduced in DOM Level 2

Tests whether the DOM implementation implements a specific feature and that feature is
supported by this node, as specified in DOM Features [p.29] .
Parameters
feature of type DOMString [p.24]

The name of the feature to test.
version of type DOMString

This is the version number of the feature to test.
Return Value

boolean Returns true if the specified feature is supported on this node, false
otherwise.

No Exceptions
lookupNamespaceURI introduced in DOM Level 3

Look up the namespace URI associated to the given prefix, starting from this node.
See Namespace URI Lookup [p.131] for details on the algorithm used by this method.
Parameters
prefix of type DOMString [p.24]

The prefix to look for. If this parameter is null, the method will return the default
namespace URI if any.

Return Value

DOMString
[p.24]

Returns the associated namespace URI or null if none is
found.

No Exceptions
lookupPrefix introduced in DOM Level 3

Look up the prefix associated to the given namespace URI, starting from this node. The
default namespace declarations are ignored by this method.
See Namespace Prefix Lookup [p.129] for details on the algorithm used by this method.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI to look for.
Return Value

DOMString
[p.24]

Returns an associated namespace prefix if found or null if none is
found. If more than one prefix are associated to the namespace
prefix, the returned namespace prefix is implementation dependent.

70

1.4 Fundamental Interfaces: Core Module

No Exceptions
normalize modified in DOM Level 3

Puts all Text [p.95] nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references) separates
Text nodes, i.e., there are neither adjacent Text nodes nor empty Text nodes. This can
be used to ensure that the DOM view of a document is the same as if it were saved and
re-loaded, and is useful when operations (such as XPointer [XPointer] lookups) that depend
on a particular document tree structure are to be used. If the parameter
"normalize-characters [p.109] " of the DOMConfiguration [p.106] object attached to
the Node.ownerDocument [p.62] is true, this method will also fully normalize the
characters of the Text nodes.

Note: In cases where the document contains CDATASections [p.114] , the normalize
operation alone may not be sufficient, since XPointers do not differentiate between Text
[p.95] nodes and CDATASection [p.114] nodes.

No Parameters
No Return Value
No Exceptions

removeChild modified in DOM Level 3
Removes the child node indicated by oldChild from the list of children, and returns it.
Parameters
oldChild of type Node [p.56]

The node being removed.
Return Value

Node [p.56] The node removed.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this
node.

NOT_SUPPORTED_ERR: if this node is of type Document
[p.41] , this exception might be raised if the DOM
implementation doesn’t support the removal of the
DocumentType [p.115] child or the Element [p.85] child.

replaceChild modified in DOM Level 3
Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node.
If newChild is a DocumentFragment [p.40] object, oldChild is replaced by all of

71

1.4 Fundamental Interfaces: Core Module

the DocumentFragment children, which are inserted in the same order. If the
newChild is already in the tree, it is first removed.

Note: Replacing a node with itself is implementation dependent.

Parameters
newChild of type Node [p.56]

The new node to put in the child list.
oldChild of type Node

The node being replaced in the list.
Return Value

Node [p.56] The node replaced.

Exceptions

DOMException
[p.31]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to put in is one of this node’s ancestors [p.205] or
this node itself, or if this node is of type Document [p.41] and
the result of the replacement operation would add a second
DocumentType [p.115] or Element [p.85] on the Document
node.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node or
the parent of the new node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this
node.

NOT_SUPPORTED_ERR: if this node is of type Document
[p.41] , this exception might be raised if the DOM
implementation doesn’t support the replacement of the
DocumentType [p.115] child or Element [p.85] child.

setUserData introduced in DOM Level 3
Associate an object to a key on this node. The object can later be retrieved from this node
by calling getUserData with the same key.
Parameters
key of type DOMString [p.24]

The key to associate the object to.

72

1.4 Fundamental Interfaces: Core Module

data of type DOMUserData [p.25]
The object to associate to the given key, or null to remove any existing association
to that key.

handler of type UserDataHandler [p.102]
The handler to associate to that key, or null.

Return Value

DOMUserData
[p.25]

Returns the DOMUserData previously associated to the given
key on this node, or null if there was none.

No Exceptions
Interface NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without
defining or constraining how this collection is implemented. NodeList objects in the DOM are live
[p.22] .

The items in the NodeList are accessible via an integral index, starting from 0.
IDL Definition

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the
number of nodes in the list, this returns null.
Parameters
index of type unsigned long

Index into the collection.
Return Value

Node
[p.56]

The node at the indexth position in the NodeList, or null if that is
not a valid index.

No Exceptions
Interface NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that
can be accessed by name. Note that NamedNodeMap does not inherit from NodeList [p.73] ;
NamedNodeMaps are not maintained in any particular order. Objects contained in an object

73

1.4 Fundamental Interfaces: Core Module

implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM
specifies an order to these Nodes.

NamedNodeMap objects in the DOM are live [p.22] .
IDL Definition

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
};

Attributes
length of type unsigned long, readonly

The number of nodes in this map. The range of valid child node indices is 0 to length-1
inclusive.

Methods
getNamedItem

Retrieves a node specified by name.
Parameters
name of type DOMString [p.24]

The nodeName of a node to retrieve.
Return Value

Node
[p.56]

A Node (of any type) with the specified nodeName, or null if it does
not identify any node in this map.

No Exceptions
getNamedItemNS introduced in DOM Level 2

Retrieves a node specified by local name and namespace URI.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters

74

1.4 Fundamental Interfaces: Core Module

namespaceURI of type DOMString [p.24]
The namespace URI [p.207] of the node to retrieve.

localName of type DOMString
The local name [p.207] of the node to retrieve.

Return Value

Node
[p.56]

A Node (of any type) with the specified local name and namespace URI,
or null if they do not identify any node in this map.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

item
Returns the indexth item in the map. If index is greater than or equal to the number of
nodes in this map, this returns null.
Parameters
index of type unsigned long

Index into this map.
Return Value

Node
[p.56]

The node at the indexth position in the map, or null if that is not a
valid index.

No Exceptions
removeNamedItem

Removes a node specified by name. When this map contains the attributes attached to an
element, if the removed attribute is known to have a default value, an attribute immediately
appears containing the default value as well as the corresponding namespace URI, local
name, and prefix when applicable.
Parameters
name of type DOMString [p.24]

The nodeName of the node to remove.
Return Value

Node [p.56] The node removed from this map if a node with such a name exists.

Exceptions

75

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

NOT_FOUND_ERR: Raised if there is no node named name
in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map
is readonly.

removeNamedItemNS introduced in DOM Level 2
Removes a node specified by local name and namespace URI. A removed attribute may be
known to have a default value when this map contains the attributes attached to an element,
as returned by the attributes attribute of the Node [p.56] interface. If so, an attribute
immediately appears containing the default value as well as the corresponding namespace
URI, local name, and prefix when applicable.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the node to remove.
localName of type DOMString

The local name [p.207] of the node to remove.
Return Value

Node
[p.56]

The node removed from this map if a node with such a local name and
namespace URI exists.

Exceptions

DOMException
[p.31]

NOT_FOUND_ERR: Raised if there is no node with the
specified namespaceURI and localName in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

setNamedItem
Adds a node using its nodeName attribute. If a node with that name is already present in
this map, it is replaced by the new one. Replacing a node by itself has no effect.
As the nodeName attribute is used to derive the name which the node must be stored
under, multiple nodes of certain types (those that have a "special" string value) cannot be
stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.
Parameters

76

1.4 Fundamental Interfaces: Core Module

arg of type Node [p.56]
A node to store in this map. The node will later be accessible using the value of its
nodeName attribute.

Return Value

Node
[p.56]

If the new Node replaces an existing node the replaced Node is returned,
otherwise null is returned.

Exceptions

DOMException
[p.31]

WRONG_DOCUMENT_ERR: Raised if arg was created from
a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.81]
that is already an attribute of another Element [p.85] object.
The DOM user must explicitly clone Attr nodes to re-use them
in other elements.

HIERARCHY_REQUEST_ERR: Raised if an attempt is made to
add a node doesn’t belong in this NamedNodeMap. Examples
would include trying to insert something other than an Attr node
into an Element’s map of attributes, or a non-Entity node into the
DocumentType’s map of Entities.

setNamedItemNS introduced in DOM Level 2
Adds a node using its namespaceURI and localName. If a node with that namespace
URI and that local name is already present in this map, it is replaced by the new one.
Replacing a node by itself has no effect.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
arg of type Node [p.56]

A node to store in this map. The node will later be accessible using the value of its
namespaceURI and localName attributes.

Return Value

Node
[p.56]

If the new Node replaces an existing node the replaced Node is returned,
otherwise null is returned.

Exceptions

77

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

WRONG_DOCUMENT_ERR: Raised if arg was created from
a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.81]
that is already an attribute of another Element [p.85] object.
The DOM user must explicitly clone Attr nodes to re-use them
in other elements.

HIERARCHY_REQUEST_ERR: Raised if an attempt is made to
add a node doesn’t belong in this NamedNodeMap. Examples
would include trying to insert something other than an Attr node
into an Element’s map of attributes, or a non-Entity node into the
DocumentType’s map of Entities.

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

Interface CharacterData

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. For clarity this set is defined here rather than on each object that uses
these attributes and methods. No DOM objects correspond directly to CharacterData, though
Text [p.95] and others do inherit the interface from it. All offsets in this interface start from 0.

As explained in the DOMString [p.24] interface, text strings in the DOM are represented in
UTF-16, i.e. as a sequence of 16-bit units. In the following, the term 16-bit units [p.205] is used
whenever necessary to indicate that indexing on CharacterData is done in 16-bit units.
IDL Definition

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)

78

1.4 Fundamental Interfaces: Core Module

 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

Attributes
data of type DOMString [p.24]

The character data of the node that implements this interface. The DOM implementation
may not put arbitrary limits on the amount of data that may be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a
node’s data may not fit into a single DOMString [p.24] . In such cases, the user may call
substringData to retrieve the data in appropriately sized pieces.
Exceptions on setting

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

DOMException
[p.31]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.24] variable on the
implementation platform.

length of type unsigned long, readonly
The number of 16-bit units [p.205] that are available through data and the
substringData method below. This may have the value zero, i.e., CharacterData
nodes may be empty.

Methods
appendData

Append the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the DOMString [p.24] specified.
Parameters
arg of type DOMString [p.24]

The DOMString to append.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
deleteData

Remove a range of 16-bit units [p.205] from the node. Upon success, data and length
reflect the change.

79

1.4 Fundamental Interfaces: Core Module

Parameters
offset of type unsigned long

The offset from which to start removing.
count of type unsigned long

The number of 16-bit units to delete. If the sum of offset and count exceeds
length then all 16-bit units from offset to the end of the data are deleted.

Exceptions

DOMException
[p.31]

INDEX_SIZE_ERR: Raised if the specified offset is negative
or greater than the number of 16-bit units in data, or if the
specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
insertData

Insert a string at the specified 16-bit unit [p.205] offset.
Parameters
offset of type unsigned long

The character offset at which to insert.
arg of type DOMString [p.24]

The DOMString to insert.

Exceptions

DOMException
[p.31]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

No Return Value
replaceData

Replace the characters starting at the specified 16-bit unit [p.205] offset with the specified
string.
Parameters
offset of type unsigned long

The offset from which to start replacing.
count of type unsigned long

The number of 16-bit units to replace. If the sum of offset and count exceeds
length, then all 16-bit units to the end of the data are replaced; (i.e., the effect is the
same as a remove method call with the same range, followed by an append method
invocation).

80

1.4 Fundamental Interfaces: Core Module

arg of type DOMString [p.24]
The DOMString with which the range must be replaced.

Exceptions

DOMException
[p.31]

INDEX_SIZE_ERR: Raised if the specified offset is negative
or greater than the number of 16-bit units in data, or if the
specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
substringData

Extracts a range of data from the node.
Parameters
offset of type unsigned long

Start offset of substring to extract.
count of type unsigned long

The number of 16-bit units to extract.
Return Value

DOMString
[p.24]

The specified substring. If the sum of offset and count exceeds
the length, then all 16-bit units to the end of the data are
returned.

Exceptions

DOMException
[p.31]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data, or
if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range of text
does not fit into a DOMString [p.24] .

Interface Attr

The Attr interface represents an attribute in an Element [p.85] object. Typically the allowable
values for the attribute are defined in a schema associated with the document.

Attr objects inherit the Node [p.56] interface, but since they are not actually child nodes of the
element they describe, the DOM does not consider them part of the document tree. Thus, the Node
attributes parentNode, previousSibling, and nextSibling have a null value for Attr
objects. The DOM takes the view that attributes are properties of elements rather than having a
separate identity from the elements they are associated with; this should make it more efficient to
implement such features as default attributes associated with all elements of a given type.

81

1.4 Fundamental Interfaces: Core Module

Furthermore, Attr nodes may not be immediate children of a DocumentFragment [p.40] .
However, they can be associated with Element [p.85] nodes contained within a
DocumentFragment. In short, users and implementors of the DOM need to be aware that Attr
nodes have some things in common with other objects inheriting the Node interface, but they also
are quite distinct.

The attribute’s effective value is determined as follows: if this attribute has been explicitly assigned
any value, that value is the attribute’s effective value; otherwise, if there is a declaration for this
attribute, and that declaration includes a default value, then that default value is the attribute’s
effective value; otherwise, the attribute does not exist on this element in the structure model until it
has been explicitly added. Note that the Node.nodeValue [p.62] attribute on the Attr instance
can also be used to retrieve the string version of the attribute’s value(s).

If the attribute was not explicitly given a value in the instance document but has a default value
provided by the schema associated with the document, an attribute node will be created with
specified set to false. Removing attribute nodes for which a default value is defined in the
schema generates a new attribute node with the default value and specified set to false. If
validation occurred while invoking Document.normalizeDocument() [p.54] , attribute nodes
with specified equals to false are recomputed according to the default attribute values
provided by the schema. If no default value is associate with this attribute in the schema, the attribute
node is discarded.

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node may be either Text [p.95] or EntityReference [p.118] nodes (when these are in use; see
the description of EntityReference for discussion).

The DOM Core represents all attribute values as simple strings, even if the DTD or schema
associated with the document declares them of some specific type such as tokenized [p.208] .

The way attribute value normalization is performed by the DOM implementation depends on how
much the implementation knows about the schema in use. Typically, the value and nodeValue
attributes of an Attr node initially returns the normalized value given by the parser. It is also the
case after Document.normalizeDocument() [p.54] is called (assuming the right options have
been set). But this may not be the case after mutation, independently of whether the mutation is
performed by setting the string value directly or by changing the Attr child nodes. In particular, this
is true when character references are involved, given that they are not represented in the DOM and
they impact attribute value normalization. On the other hand, if the implementation knows about the
schema in use when the attribute value is changed, and it is of a different type than CDATA, it may
normalize it again at that time. This is especially true of specialized DOM implementations, such as
SVG DOM implementations, which store attribute values in an internal form different from a string.

The following table gives some examples of the relations between the attribute value in the original
document (parsed attribute), the value as exposed in the DOM, and the serialization of the value:

82

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml-20040204#dt-charref

Examples
Parsed attribute

value
Initial Attr.value

[p.84]
Serialized attribute value

Character
reference

"x²=5" "x²=5" "x²=5"

Built-in character
entity

"y<6" "y<6" "y<6"

Literal newline
between

"x=5
y=6" "x=5
y=6"

"x=5
y=6"

Normalized
newline between

"x=5
y=6"

"x=5 y=6" "x=5 y=6"

Entity e with
literal newline

<!ENTITY e
’...
...’>
[...]>
"x=5&e;y=6"

Dependent on
Implementation and Load
Options

Dependent on Implementation
and Load/Save Options

IDL Definition

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified ;
 attribute DOMString value ;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement ;
 // Introduced in DOM Level 3:
 readonly attribute TypeInfo schemaTypeInfo ;
 // Introduced in DOM Level 3:
 readonly attribute boolean isId ;
};

Attributes
isId of type boolean , readonly, introduced in DOM Level 3

Returns whether this attribute is known to be of type ID (i.e. to contain an identifier for its
owner element) or not. When it is and its value is unique, the ownerElement of this
attribute can be retrieved using the method Document.getElementById [p.51] . The
implementation could use several ways to determine if an attribute node is known to
contain an identifier:

If validation occurred using an XML Schema [XML Schema Part 1] while loading the
document or while invoking Document.normalizeDocument() [p.54] , the
post-schema-validation infoset contributions (PSVI contributions) values are used to
determine if this attribute is a schema-determined ID attribute using the
schema-determined ID definition in [XPointer].
If validation occurred using a DTD while loading the document or while invoking
Document.normalizeDocument() [p.54] , the infoset [type definition] value
is used to determine if this attribute is a DTD-determined ID attribute using the
DTD-determined ID definition in [XPointer].

83

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/#term-sdi
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/#term-ddi

from the use of the methods Element.setIdAttribute() [p.94] ,
Element.setIdAttributeNS() [p.94] , or
Element.setIdAttributeNode() [p.95] , i.e. it is an user-determined ID
attribute;

Note: XPointer framework (see section 3.2 in [XPointer]) consider the DOM
user-determined ID attribute as being part of the XPointer externally-determined ID
definition.

using mechanisms that are outside the scope of this specification, it is then an
externally-determined ID attribute. This includes using schema languages different
from XML schema and DTD.

If validation occurred while invoking Document.normalizeDocument() [p.54] , all
user-determined ID attributes are reset and all attribute nodes ID information are then
reevaluated in accordance to the schema used. As a consequence, if the
Attr.schemaTypeInfo [p.84] attribute contains an ID type, isId will always return
true.

name of type DOMString [p.24] , readonly
Returns the name of this attribute. If Node.localName [p.61] is different from null,
this attribute is a qualified name [p.207] .

ownerElement of type Element [p.85] , readonly, introduced in DOM Level 2
The Element [p.85] node this attribute is attached to or null if this attribute is not in
use.

schemaTypeInfo of type TypeInfo [p.99] , readonly, introduced in DOM Level 3
The type information associated with this attribute. While the type information contained in
this attribute is guarantee to be correct after loading the document or invoking
Document.normalizeDocument() [p.54] , schemaTypeInfo may not be reliable
if the node was moved.

specified of type boolean, readonly
True if this attribute was explicitly given a value in the instance document, false
otherwise. If the application changed the value of this attribute node (even if it ends up
having the same value as the default value) then it is set to true. The implementation may
handle attributes with default values from other schemas similarly but applications should
use Document.normalizeDocument() [p.54] to guarantee this information is
up-to-date.

value of type DOMString [p.24]
On retrieval, the value of the attribute is returned as a string. Character and general entity
references are replaced with their values. See also the method getAttribute on the
Element [p.85] interface.
On setting, this creates a Text [p.95] node with the unparsed contents of the string, i.e.
any characters that an XML processor would recognize as markup are instead treated as
literal text. See also the method Element.setAttribute() [p.91] .
Some specialized implementations, such as some [SVG 1.1] implementations, may do
normalization automatically, even after mutation; in such case, the value on retrieval may
differ from the value on setting.
Exceptions on setting

84

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Interface Element

The Element interface represents an element [p.206] in an HTML or XML document. Elements
may have attributes associated with them; since the Element interface inherits from Node [p.56] ,
the generic Node interface attribute attributes may be used to retrieve the set of all attributes
for an element. There are methods on the Element interface to retrieve either an Attr [p.81] object
by name or an attribute value by name. In XML, where an attribute value may contain entity
references, an Attr object should be retrieved to examine the possibly fairly complex sub-tree
representing the attribute value. On the other hand, in HTML, where all attributes have simple string
values, methods to directly access an attribute value can safely be used as a convenience [p.205] .

Note: In DOM Level 2, the method normalize is inherited from the Node [p.56] interface where
it was moved.

IDL Definition

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);

85

1.4 Fundamental Interfaces: Core Module

 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);
 // Introduced in DOM Level 2:
 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute TypeInfo schemaTypeInfo;
 // Introduced in DOM Level 3:
 void setIdAttribute(in DOMString name,
 in boolean isId)
 raises(DOMException);
 // Introduced in DOM Level 3:
 void setIdAttributeNS(in DOMString namespaceURI,
 in DOMString localName,
 in boolean isId)
 raises(DOMException);
 // Introduced in DOM Level 3:
 void setIdAttributeNode(in Attr idAttr,
 in boolean isId)
 raises(DOMException);
};

Attributes
schemaTypeInfo of type TypeInfo [p.99] , readonly, introduced in DOM Level 3

The type information associated with this element.
tagName of type DOMString [p.24] , readonly

The name of the element. If Node.localName [p.61] is different from null, this
attribute is a qualified name [p.207] . For example, in:

 <elementExample id="demo">
 ...
 </elementExample> ,

tagName has the value "elementExample". Note that this is case-preserving in XML,
as are all of the operations of the DOM. The HTML DOM returns the tagName of an
HTML element in the canonical uppercase form, regardless of the case in the source
HTML document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters
name of type DOMString [p.24]

The name of the attribute to retrieve.
Return Value

DOMString
[p.24]

The Attr [p.81] value as a string, or the empty string if that
attribute does not have a specified or default value.

86

1.4 Fundamental Interfaces: Core Module

No Exceptions
getAttributeNS introduced in DOM Level 2

Retrieves an attribute value by local name and namespace URI.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute to retrieve.
localName of type DOMString

The local name [p.207] of the attribute to retrieve.
Return Value

DOMString
[p.24]

The Attr [p.81] value as a string, or the empty string if that
attribute does not have a specified or default value.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

getAttributeNode
Retrieves an attribute node by name.
To retrieve an attribute node by qualified name and namespace URI, use the
getAttributeNodeNS method.
Parameters
name of type DOMString [p.24]

The name (nodeName) of the attribute to retrieve.
Return Value

Attr
[p.81]

The Attr node with the specified name (nodeName) or null if there
is no such attribute.

No Exceptions
getAttributeNodeNS introduced in DOM Level 2

Retrieves an Attr [p.81] node by local name and namespace URI.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute to retrieve.
localName of type DOMString

The local name [p.207] of the attribute to retrieve.
Return Value

87

1.4 Fundamental Interfaces: Core Module

Attr
[p.81]

The Attr node with the specified attribute local name and namespace
URI or null if there is no such attribute.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

getElementsByTagName
Returns a NodeList [p.73] of all descendant [p.205] Elements with a given tag name,
in document order [p.206] .
Parameters
name of type DOMString [p.24]

The name of the tag to match on. The special value "*" matches all tags.
Return Value

NodeList [p.73] A list of matching Element nodes.

No Exceptions
getElementsByTagNameNS introduced in DOM Level 2

Returns a NodeList [p.73] of all the descendant [p.205] Elements with a given local
name and namespace URI in document order [p.206] .
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the elements to match on. The special value "*"
matches all namespaces.

localName of type DOMString
The local name [p.207] of the elements to match on. The special value "*" matches all
local names.

Return Value

NodeList
[p.73]

A new NodeList object containing all the matched
Elements.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

88

1.4 Fundamental Interfaces: Core Module

hasAttribute introduced in DOM Level 2
Returns true when an attribute with a given name is specified on this element or has a
default value, false otherwise.
Parameters
name of type DOMString [p.24]

The name of the attribute to look for.
Return Value

boolean true if an attribute with the given name is specified on this element or
has a default value, false otherwise.

No Exceptions
hasAttributeNS introduced in DOM Level 2

Returns true when an attribute with a given local name and namespace URI is specified
on this element or has a default value, false otherwise.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute to look for.
localName of type DOMString

The local name [p.207] of the attribute to look for.
Return Value

boolean true if an attribute with the given local name and namespace URI is
specified or has a default value on this element, false otherwise.

Exceptions

DOMException
[p.31]

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

removeAttribute
Removes an attribute by name. If a default value for the removed attribute is defined in the
DTD, a new attribute immediately appears with the default value as well as the
corresponding namespace URI, local name, and prefix when applicable. The
implementation may handle default values from other schemas similarly but applications
should use Document.normalizeDocument() [p.54] to guarantee this information is
up-to-date.
If no attribute with this name is found, this method has no effect.
To remove an attribute by local name and namespace URI, use the
removeAttributeNS method.
Parameters

89

1.4 Fundamental Interfaces: Core Module

name of type DOMString [p.24]
The name of the attribute to remove.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
removeAttributeNS introduced in DOM Level 2

Removes an attribute by local name and namespace URI. If a default value for the removed
attribute is defined in the DTD, a new attribute immediately appears with the default value
as well as the corresponding namespace URI, local name, and prefix when applicable. The
implementation may handle default values from other schemas similarly but applications
should use Document.normalizeDocument() [p.54] to guarantee this information is
up-to-date.
If no attribute with this local name and namespace URI is found, this method has no effect.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute to remove.
localName of type DOMString

The local name [p.207] of the attribute to remove.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

No Return Value
removeAttributeNode

Removes the specified attribute node. If a default value for the removed Attr [p.81] node
is defined in the DTD, a new node immediately appears with the default value as well as
the corresponding namespace URI, local name, and prefix when applicable. The
implementation may handle default values from other schemas similarly but applications
should use Document.normalizeDocument() [p.54] to guarantee this information is
up-to-date.
Parameters

90

1.4 Fundamental Interfaces: Core Module

oldAttr of type Attr [p.81]
The Attr node to remove from the attribute list.

Return Value

Attr [p.81] The Attr node that was removed.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldAttr is not an attribute
of the element.

setAttribute
Adds a new attribute. If an attribute with that name is already present in the element, its
value is changed to be that of the value parameter. This value is a simple string; it is not
parsed as it is being set. So any markup (such as syntax to be recognized as an entity
reference) is treated as literal text, and needs to be appropriately escaped by the
implementation when it is written out. In order to assign an attribute value that contains
entity references, the user must create an Attr [p.81] node plus any Text [p.95] and
EntityReference [p.118] nodes, build the appropriate subtree, and use
setAttributeNode to assign it as the value of an attribute.
To set an attribute with a qualified name and namespace URI, use the setAttributeNS
method.
Parameters
name of type DOMString [p.24]

The name of the attribute to create or alter.
value of type DOMString

Value to set in string form.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified name is
not an XML name according to the XML version in use specified
in the Document.xmlVersion [p.43] attribute.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
setAttributeNS introduced in DOM Level 2

Adds a new attribute. If an attribute with the same local name and namespace URI is
already present on the element, its prefix is changed to be the prefix part of the
qualifiedName, and its value is changed to be the value parameter. This value is a

91

1.4 Fundamental Interfaces: Core Module

simple string; it is not parsed as it is being set. So any markup (such as syntax to be
recognized as an entity reference) is treated as literal text, and needs to be appropriately
escaped by the implementation when it is written out. In order to assign an attribute value
that contains entity references, the user must create an Attr [p.81] node plus any Text
[p.95] and EntityReference [p.118] nodes, build the appropriate subtree, and use
setAttributeNodeNS or setAttributeNode to assign it as the value of an
attribute.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute to create or alter.
qualifiedName of type DOMString

The qualified name [p.207] of the attribute to create or alter.
value of type DOMString

The value to set in string form.

Exceptions

DOMException
[p.31]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name is not an XML name according to the XML version in use
specified in the Document.xmlVersion [p.43] attribute.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed per the Namespaces in XML specification, if the
qualifiedName has a prefix and the namespaceURI is
null, if the qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", if the
qualifiedName or its prefix is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/", or if the namespaceURI is
"http://www.w3.org/2000/xmlns/" and neither the
qualifiedName nor its prefix is "xmlns".

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

No Return Value
setAttributeNode

Adds a new attribute node. If an attribute with that name (nodeName) is already present in
the element, it is replaced by the new one. Replacing an attribute node by itself has no

92

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/
http://www.w3.org/2000/xmlns/

effect.
To add a new attribute node with a qualified name and namespace URI, use the
setAttributeNodeNS method.
Parameters
newAttr of type Attr [p.81]

The Attr node to add to the attribute list.
Return Value

Attr
[p.81]

If the newAttr attribute replaces an existing attribute, the replaced
Attr node is returned, otherwise null is returned.

Exceptions

DOMException
[p.31]

WRONG_DOCUMENT_ERR: Raised if newAttr was created
from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an
attribute of another Element object. The DOM user must
explicitly clone Attr [p.81] nodes to re-use them in other
elements.

setAttributeNodeNS introduced in DOM Level 2
Adds a new attribute. If an attribute with that local name and that namespace URI is
already present in the element, it is replaced by the new one. Replacing an attribute node by
itself has no effect.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
newAttr of type Attr [p.81]

The Attr node to add to the attribute list.
Return Value

Attr
[p.81]

If the newAttr attribute replaces an existing attribute with the same local
name [p.207] and namespace URI [p.207] , the replaced Attr node is
returned, otherwise null is returned.

Exceptions

93

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

WRONG_DOCUMENT_ERR: Raised if newAttr was created
from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an
attribute of another Element object. The DOM user must
explicitly clone Attr [p.81] nodes to re-use them in other
elements.

NOT_SUPPORTED_ERR: May be raised if the implementation
does not support the feature "XML" and the language exposed
through the Document does not support XML Namespaces (such
as [HTML 4.01]).

setIdAttribute introduced in DOM Level 3
If the parameter isId is true, this method declares the specified attribute to be a
user-determined ID attribute. This affects the value of Attr.isId [p.83] and the
behavior of Document.getElementById [p.51] , but does not change any schema that
may be in use, in particular this does not affect the Attr.schemaTypeInfo [p.84] of
the specified Attr [p.81] node. Use the value false for the parameter isId to
undeclare an attribute for being a user-determined ID attribute.
To specify an attribute by local name and namespace URI, use the setIdAttributeNS
method.
Parameters
name of type DOMString [p.24]

The name of the attribute.
isId of type boolean

Whether the attribute is a of type ID.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

NOT_FOUND_ERR: Raised if the specified node is not an
attribute of this element.

No Return Value
setIdAttributeNS introduced in DOM Level 3

If the parameter isId is true, this method declares the specified attribute to be a
user-determined ID attribute. This affects the value of Attr.isId [p.83] and the
behavior of Document.getElementById [p.51] , but does not change any schema that
may be in use, in particular this does not affect the Attr.schemaTypeInfo [p.84] of
the specified Attr [p.81] node. Use the value false for the parameter isId to

94

1.4 Fundamental Interfaces: Core Module

undeclare an attribute for being a user-determined ID attribute.
Parameters
namespaceURI of type DOMString [p.24]

The namespace URI [p.207] of the attribute.
localName of type DOMString

The local name [p.207] of the attribute.
isId of type boolean

Whether the attribute is a of type ID.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

NOT_FOUND_ERR: Raised if the specified node is not an
attribute of this element.

No Return Value
setIdAttributeNode introduced in DOM Level 3

If the parameter isId is true, this method declares the specified attribute to be a
user-determined ID attribute. This affects the value of Attr.isId [p.83] and the
behavior of Document.getElementById [p.51] , but does not change any schema that
may be in use, in particular this does not affect the Attr.schemaTypeInfo [p.84] of
the specified Attr [p.81] node. Use the value false for the parameter isId to
undeclare an attribute for being a user-determined ID attribute.
Parameters
idAttr of type Attr [p.81]

The attribute node.
isId of type boolean

Whether the attribute is a of type ID.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

NOT_FOUND_ERR: Raised if the specified node is not an
attribute of this element.

No Return Value
Interface Text

The Text interface inherits from CharacterData [p.78] and represents the textual content
(termed character data in XML) of an Element [p.85] or Attr [p.81] . If there is no markup inside
an element’s content, the text is contained in a single object implementing the Text interface that is
the only child of the element. If there is markup, it is parsed into the information items [p.206]

95

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml-20040204#syntax

(elements, comments, etc.) and Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block
of text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing
sessions. The Node.normalize() [p.71] method merges any such adjacent Text objects into a
single node for each block of text.

No lexical check is done on the content of a Text node and, depending on its position in the
document, some characters must be escaped during serialization using character references; e.g. the
characters "<&" if the textual content is part of an element or of an attribute, the character sequence
"]]>" when part of an element, the quotation mark character " or the apostrophe character ’ when part
of an attribute.
IDL Definition

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute boolean isElementContentWhitespace;
 // Introduced in DOM Level 3:
 readonly attribute DOMString wholeText;
 // Introduced in DOM Level 3:
 Text replaceWholeText(in DOMString content)
 raises(DOMException);
};

Attributes
isElementContentWhitespace of type boolean, readonly, introduced in DOM Level
3

Returns whether this text node contains element content whitespace, often abusively called
"ignorable whitespace". The text node is determined to contain whitespace in element
content during the load of the document or if validation occurs while using
Document.normalizeDocument() [p.54] .

wholeText of type DOMString [p.24] , readonly, introduced in DOM Level 3
Returns all text of Text nodes logically-adjacent text nodes [p.206] to this node,
concatenated in document order.
For instance, in the example below wholeText on the Text node that contains "bar"
returns "barfoo", while on the Text node that contains "foo" it returns "barfoo".

96

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml-infoset-20040204#infoitem.character

Figure: barTextNode.wholeText value is "barfoo" [SVG 1.0 version]

Methods
replaceWholeText introduced in DOM Level 3

Replaces the text of the current node and all logically-adjacent text nodes [p.206] with the
specified text. All logically-adjacent text nodes [p.206] are removed including the current
node unless it was the recipient of the replacement text.
This method returns the node which received the replacement text. The returned node is:

null, when the replacement text is the empty string;
the current node, except when the current node is read-only [p.207] ;
a new Text node of the same type (Text or CDATASection [p.114]) as the
current node inserted at the location of the replacement.

For instance, in the above example calling replaceWholeText on the Text node that
contains "bar" with "yo" in argument results in the following:

Figure: barTextNode.replaceWholeText("yo") modifies the textual content of barTextNode
with "yo" [SVG 1.0 version]

Where the nodes to be removed are read-only descendants of an EntityReference
[p.118] , the EntityReference must be removed instead of the read-only nodes. If any
EntityReference to be removed has descendants that are not EntityReference,
Text, or CDATASection [p.114] nodes, the replaceWholeText method must fail
before performing any modification of the document, raising a DOMException [p.31]
with the code NO_MODIFICATION_ALLOWED_ERR [p.32] .
For instance, in the example below calling replaceWholeText on the Text node that
contains "bar" fails, because the EntityReference [p.118] node "ent" contains an
Element [p.85] node which cannot be removed.

97

1.4 Fundamental Interfaces: Core Module

Figure: barTextNode.replaceWholeText("yo") raises a
NO_MODIFICATION_ALLOWED_ERR DOMException [SVG 1.0 version]

Parameters
content of type DOMString [p.24]

The content of the replacing Text node.
Return Value

Text [p.95] The Text node created with the specified content.

Exceptions

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised if one of the
Text nodes being replaced is readonly.

splitText
Breaks this node into two nodes at the specified offset, keeping both in the tree as
siblings [p.208] . After being split, this node will contain all the content up to the offset
point. A new node of the same type, which contains all the content at and after the
offset point, is returned. If the original node had a parent node, the new node is inserted
as the next sibling [p.208] of the original node. When the offset is equal to the length of
this node, the new node has no data.
Parameters
offset of type unsigned long

The 16-bit unit [p.205] offset at which to split, starting from 0.
Return Value

Text [p.95] The new node, of the same type as this node.

Exceptions

98

1.4 Fundamental Interfaces: Core Module

DOMException
[p.31]

INDEX_SIZE_ERR: Raised if the specified offset is negative or
greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

Interface Comment

This interface inherits from CharacterData [p.78] and represents the content of a comment, i.e.,
all the characters between the starting ’<!--’ and ending ’-->’. Note that this is the definition of a
comment in XML, and, in practice, HTML, although some HTML tools may implement the full
SGML comment structure.

No lexical check is done on the content of a comment and it is therefore possible to have the
character sequence "--" (double-hyphen) in the content, which is illegal in a comment per section
2.5 of [XML 1.0]. The presence of this character sequence must generate a fatal error during
serialization.
IDL Definition

interface Comment : CharacterData {
};

Interface TypeInfo (introduced in DOM Level 3)

The TypeInfo interface represents a type referenced from Element [p.85] or Attr [p.81] nodes,
specified in the schemas [p.208] associated with the document. The type is a pair of a namespace
URI [p.207] and name properties, and depends on the document’s schema.

If the document’s schema is an XML DTD [XML 1.0], the values are computed as follows:
If this type is referenced from an Attr [p.81] node, typeNamespace is
"http://www.w3.org/TR/REC-xml" and typeName represents the [attribute type]
property in the [XML Information Set]. If there is no declaration for the attribute,
typeNamespace and typeName are null.
If this type is referenced from an Element [p.85] node, typeNamespace and typeName
are null.

If the document’s schema is an XML Schema [XML Schema Part 1], the values are computed as
follows using the post-schema-validation infoset contributions (also called PSVI contributions):

If the [validity] property exists AND is "invalid" or "notKnown": the {target namespace} and
{name} properties of the declared type if available, otherwise null.

Note: At the time of writing, the XML Schema specification does not require exposing the
declared type. Thus, DOM implementations might choose not to provide type information if
validity is not valid.

If the [validity] property exists and is "valid":
1. If [member type definition] exists:

1. If {name} is not absent, then expose {name} and {target namespace} properties of the

99

1.4 Fundamental Interfaces: Core Module

[member type definition] property;
2. Otherwise, expose the namespace and local name of the corresponding anonymous

type name [p.205] .
2. If the [type definition] property exists:

1. If {name} is not absent, then expose {name} and {target namespace} properties of the
[type definition] property;

2. Otherwise, expose the namespace and local name of the corresponding anonymous
type name [p.205] .

3. If the [member type definition anonymous] exists:
1. If it is false, then expose [member type definition name] and [member type

definition namespace] properties;
2. Otherwise, expose the namespace and local name of the corresponding anonymous

type name [p.205] .
4. If the [type definition anonymous] exists:

1. If it is false, then expose [type definition name] and [type definition namespace]
properties;

2. Otherwise, expose the namespace and local name of the corresponding anonymous
type name [p.205] .

Note: Other schema languages are outside the scope of the W3C and therefore should define how to
represent their type systems using TypeInfo.

IDL Definition

// Introduced in DOM Level 3:
interface TypeInfo {
 readonly attribute DOMString typeName;
 readonly attribute DOMString typeNamespace;

 // DerivationMethods
 const unsigned long DERIVATION_RESTRICTION = 0x00000001;
 const unsigned long DERIVATION_EXTENSION = 0x00000002;
 const unsigned long DERIVATION_UNION = 0x00000004;
 const unsigned long DERIVATION_LIST = 0x00000008;

 boolean isDerivedFrom(in DOMString typeNamespaceArg,
 in DOMString typeNameArg,
 in unsigned long derivationMethod);
};

Definition group DerivationMethods

These are the available values for the derivationMethod parameter used by the method
TypeInfo.isDerivedFrom() [p.102] . It is a set of possible types of derivation, and the
values represent bit positions. If a bit in the derivationMethod parameter is set to 1, the
corresponding type of derivation will be taken into account when evaluating the derivation
between the reference type definition and the other type definition. When using the
isDerivedFrom method, combining all of them in the derivationMethod parameter is
equivalent to invoking the method for each of them separately and combining the results with

100

1.4 Fundamental Interfaces: Core Module

the OR boolean function. This specification only defines the type of derivation for XML
Schema.

In addition to the types of derivation listed below, please note that:
any type derives from xsd:anyType.
any simple type derives from xsd:anySimpleType by restriction.
any complex type does not derive from xsd:anySimpleType by restriction.

Defined Constants
DERIVATION_EXTENSION

If the document’s schema is an XML Schema [XML Schema Part 1], this constant
represents the derivation by extension.
The reference type definition is derived by extension from the other type definition if
the other type definition can be reached recursively following the {base type
definition} property from the reference type definition, and at least one of the
derivation methods involved is an extension.

DERIVATION_LIST
If the document’s schema is an XML Schema [XML Schema Part 1], this constant
represents the list.
The reference type definition is derived by list from the other type definition if there
exists two type definitions T1 and T2 such as the reference type definition is derived
from T1 by DERIVATION_RESTRICTION or DERIVATION_EXTENSION, T2 is
derived from the other type definition by DERIVATION_RESTRICTION, T1 has
{variety} list, and T2 is the {item type definition}. Note that T1 could be the same as
the reference type definition, and T2 could be the same as the other type definition.

DERIVATION_RESTRICTION
If the document’s schema is an XML Schema [XML Schema Part 1], this constant
represents the derivation by restriction if complex types are involved, or a restriction
if simple types are involved.
The reference type definition is derived by restriction from the other type definition if
the other type definition is the same as the reference type definition, or if the other
type definition can be reached recursively following the {base type definition}
property from the reference type definition, and all the derivation methods involved
are restriction.

DERIVATION_UNION
If the document’s schema is an XML Schema [XML Schema Part 1], this constant
represents the union if simple types are involved.
The reference type definition is derived by union from the other type definition if
there exists two type definitions T1 and T2 such as the reference type definition is
derived from T1 by DERIVATION_RESTRICTION or
DERIVATION_EXTENSION, T2 is derived from the other type definition by
DERIVATION_RESTRICTION, T1 has {variety} union, and one of the {member
type definitions} is T2. Note that T1 could be the same as the reference type
definition, and T2 could be the same as the other type definition.

Attributes

101

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#key-typeExtension
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-list
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#key-typeRestriction
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-restriction
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-union

typeName of type DOMString [p.24] , readonly
The name of a type declared for the associated element or attribute, or null if unknown.

typeNamespace of type DOMString [p.24] , readonly
The namespace of the type declared for the associated element or attribute or null if the
element does not have declaration or if no namespace information is available.

Methods
isDerivedFrom

This method returns if there is a derivation between the reference type definition, i.e. the
TypeInfo on which the method is being called, and the other type definition, i.e. the one
passed as parameters.
Parameters
typeNamespaceArg of type DOMString [p.24]

the namespace of the other type definition.
typeNameArg of type DOMString

the name of the other type definition.
derivationMethod of type unsigned long

the type of derivation and conditions applied between two types, as described in the
list of constants provided in this interface.

Return Value

boolean If the document’s schema is a DTD or no schema is associated with the
document, this method will always return false.
If the document’s schema is an XML Schema, the method will true if
the reference type definition is derived from the other type definition
according to the derivation parameter. If the value of the parameter is 0
(no bit is set to 1 for the derivationMethod parameter), the method
will return true if the other type definition can be reached by recursing
any combination of {base type definition}, {item type definition}, or
{member type definitions} from the reference type definition.

No Exceptions
Interface UserDataHandler (introduced in DOM Level 3)

When associating an object to a key on a node using Node.setUserData() [p.72] the
application can provide a handler that gets called when the node the object is associated to is being
cloned, imported, or renamed. This can be used by the application to implement various behaviors
regarding the data it associates to the DOM nodes. This interface defines that handler.
IDL Definition

// Introduced in DOM Level 3:
interface UserDataHandler {

 // OperationType
 const unsigned short NODE_CLONED = 1;
 const unsigned short NODE_IMPORTED = 2;
 const unsigned short NODE_DELETED = 3;
 const unsigned short NODE_RENAMED = 4;
 const unsigned short NODE_ADOPTED = 5;

102

1.4 Fundamental Interfaces: Core Module

 void handle(in unsigned short operation,
 in DOMString key,
 in DOMUserData data,
 in Node src,
 in Node dst);
};

Definition group OperationType

An integer indicating the type of operation being performed on a node.
Defined Constants

NODE_ADOPTED
The node is adopted, using Document.adoptNode() [p.44] .

NODE_CLONED
The node is cloned, using Node.cloneNode() [p.65] .

NODE_DELETED
The node is deleted.

Note: This may not be supported or may not be reliable in certain environments, such
as Java, where the implementation has no real control over when objects are actually
deleted.

NODE_IMPORTED
The node is imported, using Document.importNode() [p.52] .

NODE_RENAMED
The node is renamed, using Document.renameNode() [p.55] .

Methods
handle

This method is called whenever the node for which this handler is registered is imported or
cloned.
DOM applications must not raise exceptions in a UserDataHandler. The effect of
throwing exceptions from the handler is DOM implementation dependent.
Parameters
operation of type unsigned short

Specifies the type of operation that is being performed on the node.
key of type DOMString [p.24]

Specifies the key for which this handler is being called.
data of type DOMUserData [p.25]

Specifies the data for which this handler is being called.
src of type Node [p.56]

Specifies the node being cloned, adopted, imported, or renamed. This is null when
the node is being deleted.

dst of type Node
Specifies the node newly created if any, or null.

103

1.4 Fundamental Interfaces: Core Module

No Return Value
No Exceptions

Interface DOMError (introduced in DOM Level 3)

DOMError is an interface that describes an error.
IDL Definition

// Introduced in DOM Level 3:
interface DOMError {

 // ErrorSeverity
 const unsigned short SEVERITY_WARNING = 1;
 const unsigned short SEVERITY_ERROR = 2;
 const unsigned short SEVERITY_FATAL_ERROR = 3;

 readonly attribute unsigned short severity;
 readonly attribute DOMString message;
 readonly attribute DOMString type;
 readonly attribute DOMObject relatedException;
 readonly attribute DOMObject relatedData;
 readonly attribute DOMLocator location;
};

Definition group ErrorSeverity

An integer indicating the severity of the error.
Defined Constants

SEVERITY_ERROR
The severity of the error described by the DOMError is error. A SEVERITY_ERROR
may not cause the processing to stop if the error can be recovered, unless
DOMErrorHandler.handleError() [p.105] returns false.

SEVERITY_FATAL_ERROR
The severity of the error described by the DOMError is fatal error. A
SEVERITY_FATAL_ERROR will cause the normal processing to stop. The return
value of DOMErrorHandler.handleError() [p.105] is ignored unless the
implementation chooses to continue, in which case the behavior becomes undefined.

SEVERITY_WARNING
The severity of the error described by the DOMError is warning. A
SEVERITY_WARNING will not cause the processing to stop, unless
DOMErrorHandler.handleError() [p.105] returns false.

Attributes
location of type DOMLocator [p.106] , readonly

The location of the error.
message of type DOMString [p.24] , readonly

An implementation specific string describing the error that occurred.
relatedData of type DOMObject [p.25] , readonly

The related DOMError.type [p.105] dependent data if any.
relatedException of type DOMObject [p.25] , readonly

The related platform dependent exception if any.

104

1.4 Fundamental Interfaces: Core Module

severity of type unsigned short, readonly
The severity of the error, either SEVERITY_WARNING, SEVERITY_ERROR, or
SEVERITY_FATAL_ERROR.

type of type DOMString [p.24] , readonly
A DOMString [p.24] indicating which related data is expected in relatedData. Users
should refer to the specification of the error in order to find its DOMString type and
relatedData definitions if any.

Note: As an example, Document.normalizeDocument() [p.54] does generate
warnings when the "split-cdata-sections [p.110] " parameter is in use. Therefore, the
method generates a SEVERITY_WARNING with type
"cdata-sections-splitted" and the first CDATASection [p.114] node in
document order resulting from the split is returned by the relatedData attribute.

Interface DOMErrorHandler (introduced in DOM Level 3)

DOMErrorHandler is a callback interface that the DOM implementation can call when reporting
errors that happens while processing XML data, or when doing some other processing (e.g.
validating a document). A DOMErrorHandler object can be attached to a Document [p.41] using
the "error-handler [p.108] " on the DOMConfiguration [p.106] interface. If more than one error
needs to be reported during an operation, the sequence and numbers of the errors passed to the error
handler are implementation dependent.

The application that is using the DOM implementation is expected to implement this interface.
IDL Definition

// Introduced in DOM Level 3:
interface DOMErrorHandler {
 boolean handleError(in DOMError error);
};

Methods
handleError

This method is called on the error handler when an error occurs.
If an exception is thrown from this method, it is considered to be equivalent of returning
true.
Parameters
error of type DOMError [p.104]

The error object that describes the error. This object may be reused by the DOM
implementation across multiple calls to the handleError method.

Return Value

boolean If the handleError method returns false, the DOM implementation
should stop the current processing when possible. If the method returns
true, the processing may continue depending on
DOMError.severity [p.105] .

105

1.4 Fundamental Interfaces: Core Module

No Exceptions
Interface DOMLocator (introduced in DOM Level 3)

DOMLocator is an interface that describes a location (e.g. where an error occurred).
IDL Definition

// Introduced in DOM Level 3:
interface DOMLocator {
 readonly attribute long lineNumber;
 readonly attribute long columnNumber;
 readonly attribute long byteOffset;
 readonly attribute long utf16Offset;
 readonly attribute Node relatedNode;
 readonly attribute DOMString uri;
};

Attributes
byteOffset of type long, readonly

The byte offset into the input source this locator is pointing to or -1 if there is no byte
offset available.

columnNumber of type long, readonly
The column number this locator is pointing to, or -1 if there is no column number
available.

lineNumber of type long, readonly
The line number this locator is pointing to, or -1 if there is no column number available.

relatedNode of type Node [p.56] , readonly
The node this locator is pointing to, or null if no node is available.

uri of type DOMString [p.24] , readonly
The URI this locator is pointing to, or null if no URI is available.

utf16Offset of type long, readonly
The UTF-16, as defined in [Unicode] and Amendment 1 of [ISO/IEC 10646], offset into
the input source this locator is pointing to or -1 if there is no UTF-16 offset available.

Interface DOMConfiguration (introduced in DOM Level 3)

The DOMConfiguration interface represents the configuration of a document and maintains a
table of recognized parameters. Using the configuration, it is possible to change
Document.normalizeDocument() [p.54] behavior, such as replacing the CDATASection
[p.114] nodes with Text [p.95] nodes or specifying the type of the schema [p.208] that must be used
when the validation of the Document [p.41] is requested. DOMConfiguration objects are also
used in [DOM Level 3 Load and Save] in the DOMParser and DOMSerializer interfaces.

The parameter names used by the DOMConfiguration object are defined throughout the DOM
Level 3 specifications. Names are case-insensitive. To avoid possible conflicts, as a convention,
names referring to parameters defined outside the DOM specification should be made unique.
Because parameters are exposed as properties in the ECMAScript Language Binding [p.185] , names
are recommended to follow the section "5.16 Identifiers" of [Unicode] with the addition of the
character ’-’ (HYPHEN-MINUS) but it is not enforced by the DOM implementation. DOM Level 3
Core Implementations are required to recognize all parameters defined in this specification. Some
parameter values may also be required to be supported by the implementation. Refer to the definition

106

1.4 Fundamental Interfaces: Core Module

of the parameter to know if a value must be supported or not.

Note: Parameters are similar to features and properties used in SAX2 [SAX].

The following list of parameters defined in the DOM:
"canonical-form"

true
[optional]
Canonicalize the document according to the rules specified in [Canonical XML], such as
removing the DocumentType [p.115] node (if any) from the tree, or removing
superfluous namespace declarations from each element. Note that this is limited to what
can be represented in the DOM; in particular, there is no way to specify the order of the
attributes in the DOM. In addition,
Setting this parameter to true will also set the state of the parameters listed below. Later
changes to the state of one of those parameters will revert "canonical-form [p.107] " back
to false.
Parameters set to false: "entities [p.108] ", "normalize-characters [p.109] ",
"cdata-sections [p.107] ".
Parameters set to true: "namespaces [p.109] ", "namespace-declarations [p.109] ",
"well-formed [p.111] ", "element-content-whitespace [p.108] ".
Other parameters are not changed unless explicitly specified in the description of the
parameters.

false
[required] (default)
Do not canonicalize the document.

"cdata-sections"
true

[required] (default)
Keep CDATASection [p.114] nodes in the document.

false
[required]
Transform CDATASection [p.114] nodes in the document into Text [p.95] nodes. The
new Text node is then combined with any adjacent Text node.

"check-character-normalization"
true

[optional]
Check if the characters in the document are fully normalized, as defined in appendix B of
[XML 1.1]. When a sequence of characters is encountered that fails normalization
checking, an error with the DOMError.type [p.105] equals to
"check-character-normalization-failure" is issued.

false
[required] (default)
Do not check if characters are normalized.

"comments"
true

[required] (default)
Keep Comment [p.99] nodes in the document.

107

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm

false
[required]
Discard Comment [p.99] nodes in the document.

"datatype-normalization"
true

[optional]
Expose schema normalized values in the tree, such as XML Schema normalized values in
the case of XML Schema. Since this parameter requires to have schema [p.208]
information, the "validate [p.110] " parameter will also be set to true. Having this
parameter activated when "validate" is false has no effect and no schema-normalization
will happen.

Note: Since the document contains the result of the XML 1.0 processing, this parameter
does not apply to attribute value normalization as defined in section 3.3.3 of [XML 1.0] and
is only meant for schema [p.208] languages other than Document Type Definition (DTD).

false
[required] (default)
Do not perform schema normalization on the tree.

"element-content-whitespace"
true

[required] (default)
Keep all whitespaces in the document.

false
[optional]
Discard all Text [p.95] nodes that contain whitespaces in element content, as described in
[element content whitespace]. The implementation is expected to use the attribute
Text.isElementContentWhitespace [p.96] to determine if a Text node should
be discarded or not.

"entities"
true

[required] (default)
Keep EntityReference [p.118] nodes in the document.

false
[required]
Remove all EntityReference [p.118] nodes from the document, putting the entity
expansions directly in their place. Text [p.95] nodes are normalized, as defined in
Node.normalize [p.71] . Only unexpanded entity references are kept in the document.

Note: This parameter does not affect Entity [p.116] nodes.

"error-handler"
[required]
Contains a DOMErrorHandler [p.105] object. If an error is encountered in the document, the
implementation will call back the DOMErrorHandler registered using this parameter. The
implementation may provide a default DOMErrorHandler object.
When called, DOMError.relatedData [p.104] will contain the closest node to where the

108

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#key-nv
http://www.w3.org/TR/2004/REC-xml-infoset-20040204#infoitem.character
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/#infoitem.rse

error occurred. If the implementation is unable to determine the node where the error occurs,
DOMError.relatedData will contain the Document [p.41] node. Mutations to the
document from within an error handler will result in implementation dependent behavior.

"infoset"
true

[required]
Keep in the document the information defined in the XML Information Set [XML
Information Set].
This forces the following parameters to false: "validate-if-schema [p.111] ", "entities
[p.108] ", "datatype-normalization [p.108] ", "cdata-sections [p.107] ".
This forces the following parameters to true: "namespace-declarations [p.109] ",
"well-formed [p.111] ", "element-content-whitespace [p.108] ", "comments [p.107] ",
"namespaces [p.109] ".
Other parameters are not changed unless explicitly specified in the description of the
parameters.
Note that querying this parameter with getParameter returns true only if the
individual parameters specified above are appropriately set.

false
Setting infoset to false has no effect.

"namespaces"
true

[required] (default)
Perform the namespace processing as defined in Namespace Normalization [p.125] .

false
[optional]
Do not perform the namespace processing.

"namespace-declarations"
This parameter has no effect if the parameter "namespaces [p.109] " is set to false.
true

[required] (default)
Include namespace declaration attributes, specified or defaulted from the schema [p.208] ,
in the document. See also the sections "Declaring Namespaces" in [XML Namespaces] and
[XML Namespaces 1.1].

false
[required]
Discard all namespace declaration attributes. The namespace prefixes (Node.prefix
[p.62]) are retained even if this parameter is set to false.

"normalize-characters"
true

[optional]
Fully normalized the characters in the document as defined in appendix B of [XML 1.1].

false
[required] (default)
Do not perform character normalization.

"schema-location"
[optional]

109

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm

Represent a DOMString [p.24] object containing a list of URIs, separated by whitespaces
(characters matching the nonterminal production S defined in section 2.3 [XML 1.0]), that
represents the schemas [p.208] against which validation should occur, i.e. the current schema.
The types of schemas referenced in this list must match the type specified with schema-type,
otherwise the behavior of an implementation is undefined.
The schemas specified using this property take precedence to the schema information specified
in the document itself. For namespace aware schema, if a schema specified using this property
and a schema specified in the document instance (i.e. using the schemaLocation attribute)
in a schema document (i.e. using schema import mechanisms) share the same
targetNamespace, the schema specified by the user using this property will be used. If two
schemas specified using this property share the same targetNamespace or have no
namespace, the behavior is implementation dependent.
If no location has been provided, this parameter is null.

Note: The "schema-location" parameter is ignored unless the "schema-type [p.110] "
parameter value is set. It is strongly recommended that Document.documentURI [p.42] will
be set so that an implementation can successfully resolve any external entities referenced.

"schema-type"
[optional]
Represent a DOMString [p.24] object containing an absolute URI and representing the type of
the schema [p.208] language used to validate a document against. Note that no lexical checking
is done on the absolute URI.
If this parameter is not set, a default value may be provided by the implementation, based on the
schema languages supported and on the schema language used at load time. If no value is
provided, this parameter is null.

Note: For XML Schema [XML Schema Part 1], applications must use the value
"http://www.w3.org/2001/XMLSchema". For XML DTD [XML 1.0], applications
must use the value "http://www.w3.org/TR/REC-xml". Other schema languages are
outside the scope of the W3C and therefore should recommend an absolute URI in order to use
this method.

"split-cdata-sections"
true

[required] (default)
Split CDATA sections containing the CDATA section termination marker ’]]>’. When a
CDATA section is split a warning is issued with a DOMError.type [p.105] equals to
"cdata-sections-splitted" and DOMError.relatedData [p.104] equals to
the first CDATASection [p.114] node in document order resulting from the split.

false
[required]
Signal an error if a CDATASection [p.114] contains an unrepresentable character.

"validate"
true

[optional]
Require the validation against a schema [p.208] (i.e. XML schema, DTD, any other type or

110

1.4 Fundamental Interfaces: Core Module

http://www.w3.org/TR/2004/REC-xml-20040204#NT-S

representation of schema) of the document as it is being normalized as defined by [XML
1.0]. If validation errors are found, or no schema was found, the error handler is notified.
Schema-normalized values will not be exposed according to the schema in used unless the
parameter "datatype-normalization [p.108] " is true.
This parameter will reevaluate:

Attribute nodes with Attr.specified [p.84] equals to false, as specified in the
description of the Attr [p.81] interface;
The value of the attribute Text.isElementContentWhitespace [p.96] for all
Text [p.95] nodes;
The value of the attribute Attr.isId [p.83] for all Attr [p.81] nodes;
The attributes Element.schemaTypeInfo [p.86] and
Attr.schemaTypeInfo [p.84] .

Note: "validate-if-schema [p.111] " and "validate" are mutually exclusive, setting one of
them to true will set the other one to false. Applications should also consider setting
the parameter "well-formed [p.111] " to true, which is the default for that option, when
validating the document.

false
[required] (default)
Do not accomplish schema processing, including the internal subset processing. Default
attribute values information are kept. Note that validation might still happen if
"validate-if-schema [p.111] " is true.

"validate-if-schema"
true

[optional]
Enable validation only if a declaration for the document element can be found in a schema
[p.208] (independently of where it is found, i.e. XML schema, DTD, or any other type or
representation of schema). If validation is enabled, this parameter has the same behavior as
the parameter "validate [p.110] " set to true.

Note: "validate-if-schema" and "validate [p.110] " are mutually exclusive, setting one of
them to true will set the other one to false.

false
[required] (default)
No schema processing should be performed if the document has a schema, including
internal subset processing. Default attribute values information are kept. Note that
validation must still happen if "validate [p.110] " is true.

"well-formed"
true

[required] (default)
Check if all nodes are XML well formed [p.208] according to the XML version in use in
Document.xmlVersion [p.43] :

check if the attribute Node.nodeName [p.62] contains invalid characters according
to its node type and generate a DOMError [p.104] of type
"wf-invalid-character-in-node-name", with a

111

1.4 Fundamental Interfaces: Core Module

DOMError.SEVERITY_ERROR [p.104] severity, if necessary;
check if the text content inside Attr [p.81] , Element [p.85] , Comment [p.99] ,
Text [p.95] , CDATASection [p.114] nodes for invalid characters and generate a
DOMError [p.104] of type "wf-invalid-character", with a
DOMError.SEVERITY_ERROR [p.104] severity, if necessary;
check if the data inside ProcessingInstruction [p.118] nodes for invalid
characters and generate a DOMError [p.104] of type
"wf-invalid-character", with a DOMError.SEVERITY_ERROR [p.104]
severity, if necessary;

false
[optional]
Do not check for XML well-formedness.

The resolution of the system identifiers associated with entities is done using
Document.documentURI [p.42] . However, when the feature "LS" defined in [DOM Level 3
Load and Save] is supported by the DOM implementation, the parameter "resource-resolver" can also
be used on DOMConfiguration objects attached to Document [p.41] nodes. If this parameter is
set, Document.normalizeDocument() [p.54] will invoke the resource resolver instead of
using Document.documentURI.
IDL Definition

// Introduced in DOM Level 3:
interface DOMConfiguration {
 void setParameter(in DOMString name,
 in DOMUserData value)
 raises(DOMException);
 DOMUserData getParameter(in DOMString name)
 raises(DOMException);
 boolean canSetParameter(in DOMString name,
 in DOMUserData value);
 readonly attribute DOMStringList parameterNames;
};

Attributes
parameterNames of type DOMStringList [p.33] , readonly

The list of the parameters supported by this DOMConfiguration object and for which at
least one value can be set by the application. Note that this list can also contain parameter
names defined outside this specification.

Methods
canSetParameter

Check if setting a parameter to a specific value is supported.
Parameters
name of type DOMString [p.24]

The name of the parameter to check.
value of type DOMUserData [p.25]

An object. if null, the returned value is true.
Return Value

112

1.4 Fundamental Interfaces: Core Module

boolean true if the parameter could be successfully set to the specified value, or
false if the parameter is not recognized or the requested value is not
supported. This does not change the current value of the parameter itself.

No Exceptions
getParameter

Return the value of a parameter if known.
Parameters
name of type DOMString [p.24]

The name of the parameter.
Return Value

DOMUserData
[p.25]

The current object associated with the specified parameter or
null if no object has been associated or if the parameter is not
supported.

Exceptions

DOMException
[p.31]

NOT_FOUND_ERR: Raised when the parameter name is
not recognized.

setParameter
Set the value of a parameter.
Parameters
name of type DOMString [p.24]

The name of the parameter to set.
value of type DOMUserData [p.25]

The new value or null if the user wishes to unset the parameter. While the type of
the value parameter is defined as DOMUserData, the object type must match the type
defined by the definition of the parameter. For example, if the parameter is
"error-handler" [p.108] , the value must be of type DOMErrorHandler [p.105] .

Exceptions

DOMException
[p.31]

NOT_FOUND_ERR: Raised when the parameter name is not
recognized.

NOT_SUPPORTED_ERR: Raised when the parameter name is
recognized but the requested value cannot be set.

TYPE_MISMATCH_ERR: Raised if the value type for this
parameter name is incompatible with the expected value type.

No Return Value

113

1.4 Fundamental Interfaces: Core Module

1.5 Extended Interfaces: XML Module
The interfaces defined here form part of the DOM Core specification, but objects that expose these
interfaces will never be encountered in a DOM implementation that deals only with HTML.

The interfaces found within this section are not mandatory. A DOM application may use the
DOMImplementation.hasFeature(feature, version) [p.40] method with parameter values
"XML" and "3.0" (respectively) to determine whether or not this module is supported by the
implementation. In order to fully support this module, an implementation must also support the "Core"
feature defined in Fundamental Interfaces: Core Module [p.30] and the feature "XMLVersion" with
version "1.0" defined in Document.xmlVersion [p.43] . Please refer to additional information about
Conformance [p.17] in this specification. The DOM Level 3 XML module is backward compatible with
the DOM Level 2 XML [DOM Level 2 Core] and DOM Level 1 XML [DOM Level 1] modules, i.e. a
DOM Level 3 XML implementation who returns true for "XML" with the version number "3.0"
must also return true for this feature when the version number is "2.0", "1.0", "" or, null.

Interface CDATASection

CDATA sections are used to escape blocks of text containing characters that would otherwise be
regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that
ends the CDATA section. CDATA sections cannot be nested. Their primary purpose is for including
material such as XML fragments, without needing to escape all the delimiters.

The CharacterData.data [p.79] attribute holds the text that is contained by the CDATA
section. Note that this may contain characters that need to be escaped outside of CDATA sections
and that, depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits from the CharacterData [p.78] interface through the
Text [p.95] interface. Adjacent CDATASection nodes are not merged by use of the normalize
method of the Node [p.56] interface.

No lexical check is done on the content of a CDATA section and it is therefore possible to have the
character sequence "]]>" in the content, which is illegal in a CDATA section per section 2.7 of
[XML 1.0]. The presence of this character sequence must generate a fatal error during serialization or
the cdata section must be splitted before the serialization (see also the parameter
"split-cdata-sections" in the DOMConfiguration [p.106] interface).

Note: Because no markup is recognized within a CDATASection, character numeric references
cannot be used as an escape mechanism when serializing. Therefore, action needs to be taken when
serializing a CDATASection with a character encoding where some of the contained characters
cannot be represented. Failure to do so would not produce well-formed XML.
One potential solution in the serialization process is to end the CDATA section before the character,
output the character using a character reference or entity reference, and open a new CDATA section
for any further characters in the text node. Note, however, that some code conversion libraries at the
time of writing do not return an error or exception when a character is missing from the encoding,
making the task of ensuring that data is not corrupted on serialization more difficult.

114

1.5 Extended Interfaces: XML Module

IDL Definition

interface CDATASection : Text {
};

Interface DocumentType

Each Document [p.41] has a doctype attribute whose value is either null or a DocumentType
object. The DocumentType interface in the DOM Core provides an interface to the list of entities
that are defined for the document, and little else because the effect of namespaces and the various
XML schema efforts on DTD representation are not clearly understood as of this writing.

DOM Level 3 doesn’t support editing DocumentType nodes. DocumentType nodes are
read-only [p.207] .
IDL Definition

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
};

Attributes
entities of type NamedNodeMap [p.73] , readonly

A NamedNodeMap [p.73] containing the general entities, both external and internal,
declared in the DTD. Parameter entities are not contained. Duplicates are discarded. For
example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY bar "bar2">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and the first declaration of bar but not the second
declaration of bar or baz. Every node in this map also implements the Entity [p.116]
interface.
The DOM Level 2 does not support editing entities, therefore entities cannot be altered
in any way.

internalSubset of type DOMString [p.24] , readonly, introduced in DOM Level 2
The internal subset as a string, or null if there is none. This is does not contain the
delimiting square brackets.

115

1.5 Extended Interfaces: XML Module

Note: The actual content returned depends on how much information is available to the
implementation. This may vary depending on various parameters, including the XML
processor used to build the document.

name of type DOMString [p.24] , readonly
The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

notations of type NamedNodeMap [p.73] , readonly
A NamedNodeMap [p.73] containing the notations declared in the DTD. Duplicates are
discarded. Every node in this map also implements the Notation [p.116] interface.
The DOM Level 2 does not support editing notations, therefore notations cannot be
altered in any way.

publicId of type DOMString [p.24] , readonly, introduced in DOM Level 2
The public identifier of the external subset.

systemId of type DOMString [p.24] , readonly, introduced in DOM Level 2
The system identifier of the external subset. This may be an absolute URI or not.

Interface Notation

This interface represents a notation declared in the DTD. A notation either declares, by name, the
format of an unparsed entity (see section 4.7 of the XML 1.0 specification [XML 1.0]), or is used for
formal declaration of processing instruction targets (see section 2.6 of the XML 1.0 specification
[XML 1.0]). The nodeName attribute inherited from Node [p.56] is set to the declared name of the
notation.

The DOM Core does not support editing Notation nodes; they are therefore readonly [p.207] .

A Notation node does not have any parent.
IDL Definition

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

Attributes
publicId of type DOMString [p.24] , readonly

The public identifier of this notation. If the public identifier was not specified, this is
null.

systemId of type DOMString [p.24] , readonly
The system identifier of this notation. If the system identifier was not specified, this is
null. This may be an absolute URI or not.

Interface Entity

This interface represents a known entity, either parsed or unparsed, in an XML document. Note that
this models the entity itself not the entity declaration.

The nodeName attribute that is inherited from Node [p.56] contains the name of the entity.

116

1.5 Extended Interfaces: XML Module

http://www.w3.org/TR/2004/REC-xml-20040204#Notations
http://www.w3.org/TR/2004/REC-xml-20040204#sec-pi

An XML processor may choose to completely expand entities before the structure model is passed to
the DOM; in this case there will be no EntityReference [p.118] nodes in the document tree.

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in parameter entities. This means that parsed entities declared
in the external subset need not be expanded by some classes of applications, and that the replacement
text of the entity may not be available. When the replacement text is available, the corresponding
Entity node’s child list represents the structure of that replacement value. Otherwise, the child list
is empty.

DOM Level 3 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity, every related EntityReference [p.118] node has to be replaced in the
structure model by a clone of the Entity’s contents, and then the desired changes must be made to
each of those clones instead. Entity nodes and all their descendants [p.205] are readonly [p.207] .

An Entity node does not have any parent.

Note: If the entity contains an unbound namespace prefix [p.207] , the namespaceURI of the
corresponding node in the Entity node subtree is null. The same is true for
EntityReference [p.118] nodes that refer to this entity, when they are created using the
createEntityReference method of the Document [p.41] interface.

IDL Definition

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 // Introduced in DOM Level 3:
 readonly attribute DOMString inputEncoding;
 // Introduced in DOM Level 3:
 readonly attribute DOMString xmlEncoding;
 // Introduced in DOM Level 3:
 readonly attribute DOMString xmlVersion;
};

Attributes
inputEncoding of type DOMString [p.24] , readonly, introduced in DOM Level 3

An attribute specifying the encoding used for this entity at the time of parsing, when it is an
external parsed entity. This is null if it an entity from the internal subset or if it is not
known.

notationName of type DOMString [p.24] , readonly
For unparsed entities, the name of the notation for the entity. For parsed entities, this is
null.

publicId of type DOMString [p.24] , readonly
The public identifier associated with the entity if specified, and null otherwise.

systemId of type DOMString [p.24] , readonly
The system identifier associated with the entity if specified, and null otherwise. This may
be an absolute URI or not.

117

1.5 Extended Interfaces: XML Module

http://www.w3.org/TR/2004/REC-xml-20040204#intern-replacement

xmlEncoding of type DOMString [p.24] , readonly, introduced in DOM Level 3
An attribute specifying, as part of the text declaration, the encoding of this entity, when it is
an external parsed entity. This is null otherwise.

xmlVersion of type DOMString [p.24] , readonly, introduced in DOM Level 3
An attribute specifying, as part of the text declaration, the version number of this entity,
when it is an external parsed entity. This is null otherwise.

Interface EntityReference

EntityReference nodes may be used to represent an entity reference in the tree. Note that
character references and references to predefined entities are considered to be expanded by the
HTML or XML processor so that characters are represented by their Unicode equivalent rather than
by an entity reference. Moreover, the XML processor may completely expand references to entities
while building the Document [p.41] , instead of providing EntityReference nodes. If it does
provide such nodes, then for an EntityReference node that represents a reference to a known
entity an Entity [p.116] exists, and the subtree of the EntityReference node is a copy of the
Entity node subtree. However, the latter may not be true when an entity contains an unbound
namespace prefix [p.207] . In such a case, because the namespace prefix resolution depends on where
the entity reference is, the descendants [p.205] of the EntityReference node may be bound to
different namespace URIs [p.207] . When an EntityReference node represents a reference to an
unknown entity, the node has no children and its replacement value, when used by Attr.value
[p.84] for example, is empty.

As for Entity [p.116] nodes, EntityReference nodes and all their descendants [p.205] are
readonly [p.207] .

Note: EntityReference nodes may cause element content and attribute value normalization
problems when, such as in XML 1.0 and XML Schema, the normalization is performed after entity
reference are expanded.

IDL Definition

interface EntityReference : Node {
};

Interface ProcessingInstruction

The ProcessingInstruction interface represents a "processing instruction", used in XML as a
way to keep processor-specific information in the text of the document.

No lexical check is done on the content of a processing instruction and it is therefore possible to have
the character sequence "?>" in the content, which is illegal a processing instruction per section 2.6
of [XML 1.0]. The presence of this character sequence must generate a fatal error during serialization.
IDL Definition

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

};

118

1.5 Extended Interfaces: XML Module

Attributes
data of type DOMString [p.24]

The content of this processing instruction. This is from the first non white space character
after the target to the character immediately preceding the ?>.
Exceptions on setting

DOMException
[p.31]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

target of type DOMString [p.24] , readonly
The target of this processing instruction. XML defines this as being the first token [p.208]
following the markup that begins the processing instruction.

119

1.5 Extended Interfaces: XML Module

120

1.5 Extended Interfaces: XML Module

Appendix A: Changes
Editor:

Philippe Le Hégaret, W3C

This section summarizes the changes between [DOM Level 2 Core] and this new version of the Core
specification.

A.1 New sections
The following new sections have been added:

DOM Architecture [p.16] : a global overview of the DOM Level 3 modules;
DOM URIs [p.26] : general considerations on the URI handling in DOM Level 3;
Base URIs [p.28] : How the [base URI] property defined in [XML Information Set] has been exposed
in DOM Level 3;
Mixed DOM Implementations [p.28] : general considerations on DOM implementation extensions;
DOM Features [p.29] : overview of the DOM features and how they relate to the DOM modules;
Bootstrapping [p.30] : general introduction to the DOM Level 3 bootstrapping mechanisms;
Namespaces Algorithms [p.125] : how namespace URIs and prefixes are resolved in DOM Level 3;
Infoset Mapping [p.147] : relation between DOM Level 3 and [XML Information Set];
Configuration Settings [p.145] : relations between parameters as used in DOMConfiguration
[p.106] ;

A.2 Changes to DOM Level 2 Core interfaces and exceptions
Interface Attr [p.81]

The Attr [p.81] interface has two new attributes, Attr.schemaTypeInfo [p.84] , and
Attr.isId [p.83] .

Interface Document [p.41]
The Document [p.41] interface has seven new attributes: Document.inputEncoding [p.43] ,
Document.xmlEncoding [p.43] , Document.xmlStandalone [p.43] ,
Document.xmlVersion [p.43] , Document.strictErrorChecking [p.43] ,
Document.documentURI [p.42] , and Document.domConfig [p.43] . It has three new
methods: Document.adoptNode(source) [p.44] , Document.normalizeDocument()
[p.54] , and Document.renameNode(n, namespaceURI, qualifiedName) [p.55] . The
attribute Document.doctype [p.42] has been modified.

Exception DOMException [p.31]
The DOMException [p.31] has two new exception codes: VALIDATION_ERR [p.33] and
TYPE_MISMATCH_ERR [p.32] .

Interface DOMImplementation [p.37]
The DOMImplementation [p.37] interface has one new method,
DOMImplementation.getFeature(feature, version) [p.39] .

121

Appendix A: Changes

Interface Entity [p.116]
The Entity [p.116] interface has three new attributes: Entity.inputEncoding [p.117] ,
Entity.xmlEncoding [p.118] , and Entity.xmlVersion [p.118] .

Interface Element [p.85]
The Element [p.85] interface has one new attribute, Element.schemaTypeInfo [p.86] , and
three new methods: Element.setIdAttribute(name, isId) [p.94] ,
Element.setIdAttributeNS(namespaceURI, localName, isId) [p.94] , and
Element.setIdAttributeNode(idAttr, isId) [p.95] .

Interface Node [p.56]
The Node [p.56] interface has two new attributes, Node.baseURI [p.61] and
Node.textContent [p.63] . It has nine new methods:
Node.compareDocumentPosition(other) [p.66] , Node.isSameNode(other) [p.69]
, Node.lookupPrefix(namespaceURI) [p.70] ,
Node.isDefaultNamespace(namespaceURI) [p.68] ,
Node.lookupNamespaceURI(prefix) [p.70] , Node.isEqualNode(arg) [p.68] ,
Node.getFeature(feature, version) [p.66] , Node.setUserData(key, data,
handler) [p.72] , Node.getUserData(key) [p.67] . It introduced 6 new constants:
Node.DOCUMENT_POSITION_DISCONNECTED [p.61] ,
Node.DOCUMENT_POSITION_PRECEDING [p.61] ,
Node.DOCUMENT_POSITION_FOLLOWING [p.61] ,
Node.DOCUMENT_POSITION_CONTAINS [p.60] ,
Node.DOCUMENT_POSITION_CONTAINED_BY [p.60] , and
Node.DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC [p.61] . The methods
Node.insertBefore(newChild, refChild) [p.67] ,
Node.replaceChild(newChild, oldChild) [p.71] and
Node.removeChild(oldChild) [p.71] have been modified.

Interface Text [p.95]
The Text [p.95] interface has two new attributes, Text.wholeText [p.96] and
Text.isElementContentWhitespace [p.96] , and one new method,
Text.replaceWholeText(content) [p.97] .

A.3 New DOM features
"XMLVersion"

The "XMLVersion" DOM feature was introduced to represent if an implementation is able to support
[XML 1.0] or [XML 1.1]. See Document.xmlVersion [p.43] .

A.4 New types
DOMUserData [p.25]

The DOMUserData [p.25] type was added to the Core module.
DOMObject [p.25]

The DOMObject [p.25] type was added to the Core module.

122

A.3 New DOM features

A.5 New interfaces
DOMStringList [p.33]

The DOMStringList [p.33] interface has one attribute, DOMStringList.length [p.33] , and
one method, DOMStringList.item(index) [p.33] .

NameList [p.34]
The NameList [p.34] interface has one attribute, NameList.length [p.34] , and two methods,
NameList.getName(index) [p.35] and NameList.getNamespaceURI(index) [p.35] .

DOMImplementationList [p.35]
The DOMImplementationList [p.35] interface has one attribute,
DOMImplementationList.length [p.35] , and one method,
DOMImplementationList.item(index) [p.35] .

DOMImplementationSource [p.36]
The DOMImplementationSource [p.36] interface has two methods,
DOMImplementationSource.getDOMImplementation(features) [p.36] , and
DOMImplementationSource.getDOMImplementationList(features) [p.37] .

TypeInfo [p.99]
The TypeInfo [p.99] interface has two attributes, TypeInfo.typeName [p.102] , and
TypeInfo.typeNamespace [p.102] .

UserDataHandler [p.102]
The UserDataHandler [p.102] interface has one method,
UserDataHandler.handle(operation, key, data, src, dst) [p.103] , and four
constants: UserDataHandler.NODE_CLONED [p.103] ,
UserDataHandler.NODE_IMPORTED [p.103] , UserDataHandler.NODE_DELETED
[p.103] , and UserDataHandler.NODE_RENAMED [p.103] .

DOMError [p.104]
The DOMError [p.104] interface has six attributes: DOMError.severity [p.105] ,
DOMError.message [p.104] , DOMError.type [p.105] , DOMError.relatedException
[p.104] , DOMError.relatedData [p.104] , and DOMError.location [p.104] . It has four
constants: DOMError.SEVERITY_WARNING [p.104] , DOMError.SEVERITY_ERROR [p.104] ,
and DOMError.SEVERITY_FATAL_ERROR [p.104] .

DOMErrorHandler [p.105]
The DOMErrorHandler [p.105] interface has one method:
DOMErrorHandler.handleError(error) [p.105] .

DOMLocator [p.106]
The DOMLocator [p.106] interface has seven attributes: DOMLocator.lineNumber [p.106] ,
DOMLocator.columnNumber [p.106] , DOMLocator.byteOffset [p.106] ,
DOMLocator.utf16Offset [p.106] , DOMLocator.relatedNode [p.106] ,
DOMLocator.uri [p.106] , and DOMLocator.lineNumber.

DOMConfiguration [p.106]
The DOMConfiguration [p.106] interface has one attribute:
DOMConfiguration.parameterNames [p.112] . It also has three methods:
DOMConfiguration.setParameter(name, value) [p.113] ,
DOMConfiguration.getParameter(name) [p.113] , and
DOMConfiguration.canSetParameter(name, value) [p.112] .

123

A.5 New interfaces

A.6 Objects
This specification defines one object, only provided in the bindings:

DOMImplementationRegistry
The DOMImplementationRegistry object has two methods,
DOMImplementationRegistry.getDOMImplementation(features), and
DOMImplementationRegistry.getDOMImplementationList(features).

124

A.6 Objects

Appendix B: Namespaces Algorithms
Editors:

Arnaud Le Hors, IBM
Elena Litani, IBM

This appendix contains several namespace algorithms, such as namespace normalization algorithm that
fixes namespace information in the Document Object Model to produce a namespace well-formed [p.207]
document. If [XML 1.0] is in use (see Document.xmlVersion [p.43]) the algorithms conform to
[XML Namespaces], otherwise if [XML 1.1] is in use, algorithms conform to [XML Namespaces 1.1].

B.1 Namespace Normalization
Namespace declaration attributes and prefixes are normalized as part of the normalizeDocument
method of the Document [p.41] interface as if the following method described in pseudo code was called
on the document element.

void Element.normalizeNamespaces()
{

 // Pick up local namespace declarations
 //
 for (all DOM Level 2 valid local namespace declaration attributes of Element)
 {
 if (the namespace declaration is invalid)
 {
 // Note: The prefix xmlns is used only to declare namespace bindings and
 // is by definition bound to the namespace name http://www.w3.org/2000/xmlns/.
 // It must not be declared. No other prefix may be bound to this namespace name.

 ==> Report an error.

 }
 else
 {
 ==> Record the namespace declaration
 }
 }

 // Fixup element’s namespace
 //
 if (Element’s namespaceURI != null)
 {
 if (Element’s prefix/namespace pair (or default namespace,
 if no prefix) are within the scope of a binding)
 {
 ==> do nothing, declaration in scope is inherited

 See section "B.1.1: Scope of a binding" for an example

 }
 else
 {
 ==> Create a local namespace declaration attr for this namespace,

125

Appendix B: Namespaces Algorithms

 with Element’s current prefix (or a default namespace, if
 no prefix). If there’s a conflicting local declaration
 already present, change its value to use this namespace.

 See section "B.1.2: Conflicting namespace declaration" for an example

 // NOTE that this may break other nodes within this Element’s
 // subtree, if they’re already using this prefix.
 // They will be repaired when we reach them.
 }
 }
 else
 {
 // Element has no namespace URI:
 if (Element’s localName is null)
 {
 // DOM Level 1 node
 ==> if in process of validation against a namespace aware schema
 (i.e XML Schema) report a fatal error: the processor can not recover
 in this situation.
 Otherwise, report an error: no namespace fixup will be performed on this node.
 }
 else
 {
 // Element has no pseudo-prefix
 if (there’s a conflicting local default namespace declaration
 already present)
 {
 ==> change its value to use this empty namespace.

 }
 // NOTE that this may break other nodes within this Element’s
 // subtree, if they’re already using the default namespaces.
 // They will be repaired when we reach them.
 }
 }

 // Examine and polish the attributes
 //
 for (all non-namespace Attrs of Element)
 {
 if (Attr[i] has a namespace URI)
 {
 if (attribute has no prefix (default namespace decl does not apply to attributes)
 OR
 attribute prefix is not declared
 OR
 conflict: attribute has a prefix that conflicts with a binding
 already active in scope)
 {
 if (namespaceURI matches an in scope declaration of one or more prefixes)
 {
 // pick the most local binding available;
 // if there is more than one pick one arbitrarily

 ==> change attribute’s prefix.
 }
 else
 {
 if (the current prefix is not null and it has no in scope declaration)

126

B.1 Namespace Normalization

 {
 ==> declare this prefix
 }
 else
 {
 // find a prefix following the pattern "NS" +index (starting at 1)
 // make sure this prefix is not declared in the current scope.
 // create a local namespace declaration attribute

 ==> change attribute’s prefix.
 }
 }
 }
 }
 else
 {
 // Attr[i] has no namespace URI

 if (Attr[i] has no localName)
 {
 // DOM Level 1 node
 ==> if in process of validation against a namespace aware schema
 (i.e XML Schema) report a fatal error: the processor can not recover
 in this situation.
 Otherwise, report an error: no namespace fixup will be performed on this node.
 }
 else
 {
 // attr has no namespace URI and no prefix
 // no action is required, since attrs don’t use default
 ==> do nothing
 }
 }
 } // end for-all-Attrs

 // do this recursively
 for (all child elements of Element)
 {
 childElement.normalizeNamespaces()
 }
} // end Element.normalizeNamespaces

B.1.1 Scope of a Binding

Note: This section is informative.

An element’s prefix/namespace URI pair is said to be within the scope of a binding if its namespace prefix
is bound to the same namespace URI in the [in-scope namespaces] defined in [XML Information Set].

As an example, the following document is loaded in a DOM tree:

<root>
 <parent xmlns:ns="http://www.example.org/ns1"
 xmlns:bar="http://www.example.org/ns2">
 <ns:child1 xmlns:ns="http://www.example.org/ns2"/>
 </parent>
</root>

127

B.1.1 Scope of a Binding

In the case of the child1 element, the namespace prefix and namespace URI are within the scope of the
appropriate namespace declaration given that the namespace prefix ns of child1 is bound to
http://www.example.org/ns2.

Using the method Node.appendChild [p.64] , a child2 element is added as a sibling of child1
with the same namespace prefix and namespace URI, i.e. "ns" and
"http://www.example.org/ns2" respectively. Unlike child1 which contains the appropriate
namespace declaration in its attributes, child2’s prefix/namespace URI pair is within the scope of the
namespace declaration of its parent, and the namespace prefix "ns" is bound to
"http://www.example.org/ns1". child2’s prefix/namespace URI pair is therefore not within
the scope of a binding. In order to put them within a scope of a binding, the namespace normalization
algorithm will create a namespace declaration attribute value to bind the namespace prefix "ns" to the
namespace URI "http://www.example.org/ns2" and will attach to child2. The XML
representation of the document after the completion of the namespace normalization algorithm will be:

<root>
 <parent xmlns:ns="http://www.example.org/ns1"
 xmlns:bar="http://www.example.org/ns2">
 <ns:child1 xmlns:ns="http://www.example.org/ns2"/>
 <ns:child2 xmlns:ns="http://www.example.org/ns2"/>
 </parent>
</root>

To determine if an element is within the scope of a binding, one can invoke
Node.lookupNamespaceURI [p.70] , using its namespace prefix as the parameter, and compare the
resulting namespace URI against the desired URI, or one can invoke
Node.isDefaultNamespaceURI using its namespace URI if the element has no namespace prefix.

B.1.2 Conflicting Namespace Declaration

Note: This section is informative.

A conflicting namespace declaration could occur on an element if an Element [p.85] node and a
namespace declaration attribute use the same prefix but map them to two different namespace URIs.

As an example, the following document is loaded in a DOM tree:

<root>
 <ns:child1 xmlns:ns="http://www.example.org/ns1">
 <ns:child2/>
 </ns:child1>
</root>

Using the method Node.renameNode, the namespace URI of the element child1 is renamed from
"http://www.example.org/ns1" to "http://www.example.org/ns2". The namespace
prefix "ns" is now mapped to two different namespace URIs at the element child1 level and thus the
namespace declaration is declared conflicting. The namespace normalization algorithm will resolved the
namespace prefix conflict by modifying the namespace declaration attribute value from
"http://www.example.org/ns1" to "http://www.example.org/ns2". The algorithm
will then continue and consider the element child2, will no longer find a namespace declaration

128

B.1.2 Conflicting Namespace Declaration

mapping the namespace prefix "ns" to "http://www.example.org/ns1" in the element’s scope,
and will create a new one. The XML representation of the document after the completion of the
namespace normalization algorithm will be:

<root>
 <ns:child1 xmlns:ns="http://www.example.org/ns2">
 <ns:child2 xmlns:ns="http://www.example.org/ns1"/>
 </ns:child1>
</root>

B.2 Namespace Prefix Lookup
The following describes in pseudo code the algorithm used in the lookupPrefix method of the Node
[p.56] interface. Before returning found prefix the algorithm needs to make sure that the prefix is not
redefined on an element from which the lookup started. This methods ignores DOM Level 1 nodes.

Note: This method ignores all default namespace declarations. To look up default namespace use
isDefaultNamespace method.

DOMString lookupPrefix(in DOMString namespaceURI)
{
 if (namespaceURI has no value, i.e. namespaceURI is null or empty string) {
 return null;
 }
 short type = this.getNodeType();
 switch (type) {
 case Node.ELEMENT_NODE:
 {
 return lookupNamespacePrefix(namespaceURI, this);
 }
 case Node.DOCUMENT_NODE:
 {
 return getDocumentElement().lookupNamespacePrefix(namespaceURI);
 }
 case Node.ENTITY_NODE :
 case Node.NOTATION_NODE:
 case Node.DOCUMENT_FRAGMENT_NODE:
 case Node.DOCUMENT_TYPE_NODE:
 return null; // type is unknown
 case Node.ATTRIBUTE_NODE:
 {
 if (Attr has an owner Element)
 {
 return ownerElement.lookupNamespacePrefix(namespaceURI);
 }
 return null;
 }
 default:
 {
 if (Node has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestor.lookupNamespacePrefix(namespaceURI);
 }
 return null;
 }

129

B.2 Namespace Prefix Lookup

http://www.w3.org/TR/REC-xml-names/#NT-DefaultAttName

 }
 }

DOMString lookupNamespacePrefix(DOMString namespaceURI, Element originalElement){
 if (Element has a namespace and Element’s namespace == namespaceURI and
 Element has a prefix and
 originalElement.lookupNamespaceURI(Element’s prefix) == namespaceURI)
 {
 return (Element’s prefix);
 }
 if (Element has attributes)
 {
 for (all DOM Level 2 valid local namespace declaration attributes of Element)
 {
 if (Attr’s prefix == "xmlns" and
 Attr’s value == namespaceURI and
 originalElement.lookupNamespaceURI(Attr’s localname) == namespaceURI)
 {
 return (Attr’s localname);
 }
 }
 }

 if (Node has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestor.lookupNamespacePrefix(namespaceURI, originalElement);
 }
 return null;
 }

B.3 Default Namespace Lookup
The following describes in pseudo code the algorithm used in the isDefaultNamespace method of
the Node [p.56] interface. This methods ignores DOM Level 1 nodes.

boolean isDefaultNamespace(in DOMString namespaceURI)
{
 switch (nodeType) {
 case ELEMENT_NODE:
 if (Element has no prefix)
 {
 return (Element’s namespace == namespaceURI);
 }
 if (Element has attributes and there is a valid DOM Level 2
 default namespace declaration, i.e. Attr’s localName == "xmlns")
 {
 return (Attr’s value == namespaceURI);
 }

 if (Element has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.isDefaultNamespace(namespaceURI);
 }
 else {

130

B.3 Default Namespace Lookup

 return unknown (false);
 }
 case DOCUMENT_NODE:
 return documentElement.isDefaultNamespace(namespaceURI);
 case ENTITY_NODE:
 case NOTATION_NODE:
 case DOCUMENT_TYPE_NODE:
 case DOCUMENT_FRAGMENT_NODE:
 return unknown (false);
 case ATTRIBUTE_NODE:
 if (Attr has an owner Element)
 {
 return ownerElement.isDefaultNamespace(namespaceURI);
 }
 else {
 return unknown (false);
 }
 default:
 if (Node has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.isDefaultNamespace(namespaceURI);
 }
 else {
 return unknown (false);
 }
 }
}

B.4 Namespace URI Lookup
The following describes in pseudo code the algorithm used in the lookupNamespaceURI method of
the Node [p.56] interface. This methods ignores DOM Level 1 nodes.

DOMString lookupNamespaceURI(in DOMString prefix)
{
 switch (nodeType) {
 case ELEMENT_NODE:
 {
 if (Element’s namespace != null and Element’s prefix == prefix)
 {
 // Note: prefix could be "null" in this case we are looking for default namespace
 return (Element’s namespace);
 }
 if (Element has attributes)
 {
 for (all DOM Level 2 valid local namespace declaration attributes of Element)
 {
 if (Attr’s prefix == "xmlns" and Attr’s localName == prefix)
 // non default namespace
 {
 if (Attr’s value is not empty)
 {
 return (Attr’s value);
 }
 return unknown (null);
 }
 else if (Attr’s localname == "xmlns" and prefix == null)

131

B.4 Namespace URI Lookup

 // default namespace
 {
 if (Attr’s value is not empty)
 {
 return (Attr’s value);
 }
 return unknown (null);
 }
 }
 }
 if (Element has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.lookupNamespaceURI(prefix);
 }
 return null;
 }
 case DOCUMENT_NODE:
 return documentElement.lookupNamespaceURI(prefix)

 case ENTITY_NODE:
 case NOTATION_NODE:
 case DOCUMENT_TYPE_NODE:
 case DOCUMENT_FRAGMENT_NODE:
 return unknown (null);

 case ATTRIBUTE_NODE:
 if (Attr has an owner Element)
 {
 return ownerElement.lookupNamespaceURI(prefix);
 }
 else
 {
 return unknown (null);
 }
 default:
 if (Node has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.lookupNamespaceURI(prefix);
 }
 else {
 return unknown (null);
 }
 }
}

132

B.4 Namespace URI Lookup

Appendix E: Accessing code point boundaries
Mark Davis, IBM
Lauren Wood, SoftQuad Software Inc.

E.1 Introduction
This appendix is an informative, not a normative, part of the Level 3 DOM specification.

Characters are represented in Unicode by numbers called code points (also called scalar values). These
numbers can range from 0 up to 1,114,111 = 10FFFF16 (although some of these values are illegal). Each

code point can be directly encoded with a 32-bit code unit. This encoding is termed UCS-4 (or UTF-32).
The DOM specification, however, uses UTF-16, in which the most frequent characters (which have values
less than FFFF16) are represented by a single 16-bit code unit, while characters above FFFF16 use a

special pair of code units called a surrogate pair. For more information, see [Unicode] or the Unicode
Web site.

While indexing by code points as opposed to code units is not common in programs, some specifications
such as [XPath 1.0] (and therefore XSLT and [XPointer]) use code point indices. For interfacing with such
formats it is recommended that the programming language provide string processing methods for
converting code point indices to code unit indices and back. Some languages do not provide these
functions natively; for these it is recommended that the native String type that is bound to DOMString
[p.24] be extended to enable this conversion. An example of how such an API might look is supplied
below.

Note: Since these methods are supplied as an illustrative example of the type of functionality that is
required, the names of the methods, exceptions, and interface may differ from those given here.

E.2 Methods
Interface StringExtend

Extensions to a language’s native String class or interface
IDL Definition

interface StringExtend {
 int findOffset16(in int offset32)
 raises(StringIndexOutOfBoundsException);
 int findOffset32(in int offset16)
 raises(StringIndexOutOfBoundsException);
};

Methods
findOffset16

Returns the UTF-16 offset that corresponds to a UTF-32 offset. Used for random access.

133

Appendix E: Accessing code point boundaries

Note: You can always round-trip from a UTF-32 offset to a UTF-16 offset and back. You
can round-trip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16
is not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters
offset32 of type int

UTF-32 offset.
Return Value

int UTF-16 offset

Exceptions

StringIndexOutOfBoundsException if offset32 is out of bounds.

findOffset32
Returns the UTF-32 offset corresponding to a UTF-16 offset. Used for random access. To
find the UTF-32 length of a string, use:

len32 = findOffset32(source, source.length());

Note: If the UTF-16 offset is into the middle of a surrogate pair, then the UTF-32 offset of
the end of the pair is returned; that is, the index of the char after the end of the pair. You
can always round-trip from a UTF-32 offset to a UTF-16 offset and back. You can
round-trip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16 is
not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters
offset16 of type int

UTF-16 offset
Return Value

int UTF-32 offset

Exceptions

StringIndexOutOfBoundsException if offset16 is out of bounds.

134

E.2 Methods

Appendix F: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Core definitions.

The IDL files are also available as:
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/idl.zip

dom.idl:
// File: dom.idl

#ifndef _DOM_IDL_
#define _DOM_IDL_

#pragma prefix "w3c.org"
module dom
{

 valuetype DOMString sequence<unsigned short>;

 typedef unsigned long long DOMTimeStamp;

 typedef any DOMUserData;

 typedef Object DOMObject;

 interface DOMImplementation;
 interface DocumentType;
 interface Document;
 interface NodeList;
 interface NamedNodeMap;
 interface UserDataHandler;
 interface Element;
 interface TypeInfo;
 interface DOMLocator;

 exception DOMException {
 unsigned short code;
 };
 // ExceptionCode
 const unsigned short INDEX_SIZE_ERR = 1;
 const unsigned short DOMSTRING_SIZE_ERR = 2;
 const unsigned short HIERARCHY_REQUEST_ERR = 3;
 const unsigned short WRONG_DOCUMENT_ERR = 4;
 const unsigned short INVALID_CHARACTER_ERR = 5;
 const unsigned short NO_DATA_ALLOWED_ERR = 6;
 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
 const unsigned short NOT_FOUND_ERR = 8;
 const unsigned short NOT_SUPPORTED_ERR = 9;
 const unsigned short INUSE_ATTRIBUTE_ERR = 10;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_STATE_ERR = 11;
 // Introduced in DOM Level 2:

135

Appendix F: IDL Definitions

 const unsigned short SYNTAX_ERR = 12;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_MODIFICATION_ERR = 13;
 // Introduced in DOM Level 2:
 const unsigned short NAMESPACE_ERR = 14;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_ACCESS_ERR = 15;
 // Introduced in DOM Level 3:
 const unsigned short VALIDATION_ERR = 16;
 // Introduced in DOM Level 3:
 const unsigned short TYPE_MISMATCH_ERR = 17;

 // Introduced in DOM Level 3:
 interface DOMStringList {
 DOMString item(in unsigned long index);
 readonly attribute unsigned long length;
 boolean contains(in DOMString str);
 };

 // Introduced in DOM Level 3:
 interface NameList {
 DOMString getName(in unsigned long index);
 DOMString getNamespaceURI(in unsigned long index);
 readonly attribute unsigned long length;
 boolean contains(in DOMString str);
 boolean containsNS(in DOMString namespaceURI,
 in DOMString name);
 };

 // Introduced in DOM Level 3:
 interface DOMImplementationList {
 DOMImplementation item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 // Introduced in DOM Level 3:
 interface DOMImplementationSource {
 DOMImplementation getDOMImplementation(in DOMString features);
 DOMImplementationList getDOMImplementationList(in DOMString features);
 };

 interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
 // Introduced in DOM Level 3:
 DOMObject getFeature(in DOMString feature,

136

dom.idl:

 in DOMString version);
 };

 interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 // Modified in DOM Level 3:
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node removeChild(in Node oldChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Modified in DOM Level 3:
 void normalize();
 // Introduced in DOM Level 2:
 boolean isSupported(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;

137

dom.idl:

 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 // Introduced in DOM Level 2:
 boolean hasAttributes();
 // Introduced in DOM Level 3:
 readonly attribute DOMString baseURI;

 // DocumentPosition
 const unsigned short DOCUMENT_POSITION_DISCONNECTED = 0x01;
 const unsigned short DOCUMENT_POSITION_PRECEDING = 0x02;
 const unsigned short DOCUMENT_POSITION_FOLLOWING = 0x04;
 const unsigned short DOCUMENT_POSITION_CONTAINS = 0x08;
 const unsigned short DOCUMENT_POSITION_CONTAINED_BY = 0x10;
 const unsigned short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 0x20;

 // Introduced in DOM Level 3:
 unsigned short compareDocumentPosition(in Node other)
 raises(DOMException);
 // Introduced in DOM Level 3:
 attribute DOMString textContent;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 // Introduced in DOM Level 3:
 boolean isSameNode(in Node other);
 // Introduced in DOM Level 3:
 DOMString lookupPrefix(in DOMString namespaceURI);
 // Introduced in DOM Level 3:
 boolean isDefaultNamespace(in DOMString namespaceURI);
 // Introduced in DOM Level 3:
 DOMString lookupNamespaceURI(in DOMString prefix);
 // Introduced in DOM Level 3:
 boolean isEqualNode(in Node arg);
 // Introduced in DOM Level 3:
 DOMObject getFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 3:
 DOMUserData setUserData(in DOMString key,
 in DOMUserData data,
 in UserDataHandler handler);
 // Introduced in DOM Level 3:
 DOMUserData getUserData(in DOMString key);
 };

 interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);

138

dom.idl:

 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 };

 interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
 };

 interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
 // Introduced in DOM Level 3:
 readonly attribute TypeInfo schemaTypeInfo;
 // Introduced in DOM Level 3:
 readonly attribute boolean isId;
 };

 interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);

139

dom.idl:

 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);
 // Introduced in DOM Level 2:
 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute TypeInfo schemaTypeInfo;
 // Introduced in DOM Level 3:
 void setIdAttribute(in DOMString name,
 in boolean isId)
 raises(DOMException);
 // Introduced in DOM Level 3:
 void setIdAttributeNS(in DOMString namespaceURI,
 in DOMString localName,
 in boolean isId)
 raises(DOMException);
 // Introduced in DOM Level 3:
 void setIdAttributeNode(in Attr idAttr,
 in boolean isId)
 raises(DOMException);
 };

140

dom.idl:

 interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute boolean isElementContentWhitespace;
 // Introduced in DOM Level 3:
 readonly attribute DOMString wholeText;
 // Introduced in DOM Level 3:
 Text replaceWholeText(in DOMString content)
 raises(DOMException);
 };

 interface Comment : CharacterData {
 };

 // Introduced in DOM Level 3:
 interface TypeInfo {
 readonly attribute DOMString typeName;
 readonly attribute DOMString typeNamespace;

 // DerivationMethods
 const unsigned long DERIVATION_RESTRICTION = 0x00000001;
 const unsigned long DERIVATION_EXTENSION = 0x00000002;
 const unsigned long DERIVATION_UNION = 0x00000004;
 const unsigned long DERIVATION_LIST = 0x00000008;

 boolean isDerivedFrom(in DOMString typeNamespaceArg,
 in DOMString typeNameArg,
 in unsigned long derivationMethod);
 };

 // Introduced in DOM Level 3:
 interface UserDataHandler {

 // OperationType
 const unsigned short NODE_CLONED = 1;
 const unsigned short NODE_IMPORTED = 2;
 const unsigned short NODE_DELETED = 3;
 const unsigned short NODE_RENAMED = 4;
 const unsigned short NODE_ADOPTED = 5;

 void handle(in unsigned short operation,
 in DOMString key,
 in DOMUserData data,
 in Node src,
 in Node dst);
 };

 // Introduced in DOM Level 3:
 interface DOMError {

 // ErrorSeverity
 const unsigned short SEVERITY_WARNING = 1;
 const unsigned short SEVERITY_ERROR = 2;
 const unsigned short SEVERITY_FATAL_ERROR = 3;

141

dom.idl:

 readonly attribute unsigned short severity;
 readonly attribute DOMString message;
 readonly attribute DOMString type;
 readonly attribute DOMObject relatedException;
 readonly attribute DOMObject relatedData;
 readonly attribute DOMLocator location;
 };

 // Introduced in DOM Level 3:
 interface DOMErrorHandler {
 boolean handleError(in DOMError error);
 };

 // Introduced in DOM Level 3:
 interface DOMLocator {
 readonly attribute long lineNumber;
 readonly attribute long columnNumber;
 readonly attribute long byteOffset;
 readonly attribute long utf16Offset;
 readonly attribute Node relatedNode;
 readonly attribute DOMString uri;
 };

 // Introduced in DOM Level 3:
 interface DOMConfiguration {
 void setParameter(in DOMString name,
 in DOMUserData value)
 raises(DOMException);
 DOMUserData getParameter(in DOMString name)
 raises(DOMException);
 boolean canSetParameter(in DOMString name,
 in DOMUserData value);
 readonly attribute DOMStringList parameterNames;
 };

 interface CDATASection : Text {
 };

 interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
 };

 interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 };

 interface Entity : Node {
 readonly attribute DOMString publicId;

142

dom.idl:

 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 // Introduced in DOM Level 3:
 readonly attribute DOMString inputEncoding;
 // Introduced in DOM Level 3:
 readonly attribute DOMString xmlEncoding;
 // Introduced in DOM Level 3:
 readonly attribute DOMString xmlVersion;
 };

 interface EntityReference : Node {
 };

 interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

 };

 interface DocumentFragment : Node {
 };

 interface Document : Node {
 // Modified in DOM Level 3:
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,

143

dom.idl:

 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
 // Introduced in DOM Level 3:
 readonly attribute DOMString inputEncoding;
 // Introduced in DOM Level 3:
 readonly attribute DOMString xmlEncoding;
 // Introduced in DOM Level 3:
 attribute boolean xmlStandalone;
 // raises(DOMException) on setting

 // Introduced in DOM Level 3:
 attribute DOMString xmlVersion;
 // raises(DOMException) on setting

 // Introduced in DOM Level 3:
 attribute boolean strictErrorChecking;
 // Introduced in DOM Level 3:
 attribute DOMString documentURI;
 // Introduced in DOM Level 3:
 Node adoptNode(in Node source)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute DOMConfiguration domConfig;
 // Introduced in DOM Level 3:
 void normalizeDocument();
 // Introduced in DOM Level 3:
 Node renameNode(in Node n,
 in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 };
};

#endif // _DOM_IDL_

144

dom.idl:

Appendix D: Configuration Settings
Editor:

Elena Litani, IBM

D.1 Configuration Scenarios
Using the DOMConfiguration [p.106] users can change behavior of the DOMParser,
DOMSerializer and Document.normalizeDocument() [p.54] . If a DOM implementation
supports XML Schemas and DTD validation, the table below defines behavior of such implementation
following various parameter settings on the DOMConfiguration. Errors are effectively reported only if
a DOMErrorHandler [p.105] object is attached to the "error-handler [p.108] " parameter.

"schema-type [p.110] "
"validate
[p.110] "

"validate-if-schema
[p.111] "

Instance
schemas,
i.e. the
current
schema

Outcome Other parameters

null true false DTD and
XML
Schema

Implementation
dependent

The outcome of setting the
"datatype-normalization
[p.108] ",
"element-content-whitespace
[p.108] " or "namespaces
[p.109] " parameters to
true or false is
implementation dependent.

false true

null true false none Report an error Setting the
"datatype-normalization
[p.108] " to true or false
has no effect on the DOM.

false true No error is
reported

null true false DTD Validate against
DTD

Setting the
"datatype-normalization
[p.108] " to true or false
has no effect on the DOM.

false true

null true false XML
Schema

Validate against
XML Schema

The outcome of setting the
"namespaces [p.109] " to
false is implementation
dependent (likely to be an
error). Setting the
"element-content-whitespace
[p.108] " to false does not
have any effect on the
DOM.

false true

"http://www.w3.org/TR/REC-xml" true false DTD or
XML
Schema
or both

If DTD is
found, validate
against DTD.
Otherwise,
report an error.

Setting the
"datatype-normalization
[p.108] " to true or false
has no effect on the DOM.

false true If DTD is
found, validate
against DTD.

145

Appendix D: Configuration Settings

"http://www.w3.org/2001/XMLSchema" true false DTD or
XML
Schema
or both

If XML Schema
is found,
validate against
the schema.
Otherwise,
report an error.

Setting the
"datatype-normalization
[p.108] " to true exposes
XML Schema normalized
values in the DOM. The
outcome of setting the
"namespaces [p.109] " to
false is implementation
dependent (likely to be an
error).

false true If XML Schema
is found,
validate against
the schema.

"http://www.w3.org/2001/XMLSchema"
or "http://www.w3.org/TR/REC-xml"

false false DTD or
XML
Schema
or both

If XML Schema
is found, it is
ignored. DOM
implementations
may use
information
available in the
DTD to perform
entity
resolution.

Setting the
"datatype-normalization
[p.108] " to true of false
has no effect on the DOM.

Note: If an error has to be reported, as specified in the "Outcome" column above, the DOMError.type
[p.105] is "no-schema-available".

146

D.1 Configuration Scenarios

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#key-nv
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#key-nv
http://www.w3.org/TR/2004/REC-xml-20040204#proc-types
http://www.w3.org/TR/2004/REC-xml-20040204#intern-replacement
http://www.w3.org/TR/2004/REC-xml-20040204#intern-replacement

Appendix C: Infoset Mapping
Editor:

Philippe Le Hégaret, W3C

This appendix contains the mappings between the XML Information Set [XML Information Set] model
and the Document Object Model. Starting from a Document [p.41] node, each information item is
mapped to its respective Node [p.56] , and each Node is mapped to its respective information item. As
used in the Infoset specification, the Infoset property names are shown in square brackets, [thus].

Unless specified, the Infoset to DOM node mapping makes no distinction between unknown and no value
since both will be exposed as null (or false if the DOM attribute is of type boolean).

C.1 Document Node Mapping

C.1.1 Infoset to Document Node

An document information item maps to a Document [p.41] node. The attributes of the corresponding
Document node are constructed as follows:

Attribute Value

Node.nodeName [p.62] "#document"

Node.nodeValue [p.62] null

Node.nodeType [p.62] Node.DOCUMENT_NODE [p.58]

Node.parentNode [p.62] null

Node.childNodes [p.61] A NodeList [p.73] containing the information items in
the [children] property.

Node.firstChild [p.61] The first node contained in Node.childNodes [p.61]

Node.lastChild [p.61] The last node contained in Node.childNodes [p.61]

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] null

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] same as Document.documentURI [p.42]

147

Appendix C: Infoset Mapping

Node.textContent [p.63] null

Document.doctype [p.42] The document type information item

Document.implementation [p.43] The DOMImplementation [p.37] object used to create
this node

Document.documentElement [p.42] The [document element] property

Document.inputEncoding [p.43] The [character encoding scheme] property

Document.xmlEncoding [p.43] null

Document.xmlStandalone [p.43] The [standalone] property, or false if the latter has no
value.

Document.xmlVersion [p.43] The [version] property, or "1.0" if the latter has no
value.

Document.strictErrorChecking
[p.43]

true

Document.documentURI [p.42] The [base URI] property

Document.domConfig [p.43] A DOMConfiguration [p.106] object whose
parameters are set to their default values

The [notations], [unparsed entities] properties are being exposed in the DocumentType [p.115] node.

Note: The [all declarations processed] property is not exposed through the Document [p.41] node.

C.1.2 Document Node to Infoset

A Document [p.41] node maps to an document information item. Document nodes with no namespace
URI (Node.namespaceURI [p.61] equals to null) cannot be represented using the Infoset. The
properties of the corresponding document information item are constructed as follows:

148

C.1.2 Document Node to Infoset

Property Value

[children] Node.childNodes [p.61]

[document element] Document.documentElement [p.42]

[notations] Document.doctype.notations

[unparsed entities] The information items from Document.doctype.entities, whose
Node.childNodes [p.61] is an empty list

[base URI] Document.documentURI [p.42]

[character encoding
scheme]

Document.inputEncoding [p.43]

[standalone] Document.xmlStandalone [p.43]

[version] Document.xmlVersion [p.43]

[all declarations
processed]

The value is implementation dependent

C.2 Element Node Mapping

C.2.1 Infoset to Element Node

An element information item maps to a Element [p.85] node. The attributes of the corresponding
Element node are constructed as follows:

149

C.2 Element Node Mapping

Attribute Value

Node.nodeName [p.62] same as Element.tagName [p.86]

Node.nodeValue [p.62] null

Node.nodeType [p.62] Node.ELEMENT_NODE [p.59]

Node.parentNode [p.62] The [parent] property

Node.childNodes [p.61] A NodeList [p.73] containing the information items in the
[children] property

Node.firstChild [p.61] The first node contained in Node.childNodes [p.61]

Node.lastChild [p.61] The last node contained in Node.childNodes [p.61]

Node.previousSibling
[p.63]

The information item preceding the current one on the [children]
property contained in the [parent] property

Node.nextSibling [p.62] The information item following the current one on the [children]
property contained in the [parent] property

Node.attributes [p.61] The information items contained in the [attributes] and [namespace
attributes] properties

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] The [namespace name] property

Node.prefix [p.62] The [prefix] property

Node.localName [p.61] The [local name] property

Node.baseURI [p.61] The [base URI] property

Node.textContent [p.63] Concatenation of the Node.textContent [p.63] attribute value of
every child node, excluding COMMENT_NODE and
PROCESSING_INSTRUCTION_NODE nodes. This is the empty
string if the node has no children.

Element.tagName [p.86] If the [prefix] property has no value, this contains the [local name]
property. Otherwise, this contains the concatenation of the [prefix]
property, the colon ’:’ character, and the [local name] property.

Element.schemaTypeInfo
[p.86]

A TypeInfo [p.99] object whose TypeInfo.typeNamespace
[p.102] and TypeInfo.typeName [p.102] are inferred from the
schema in use if available.

Note: The [in-scope namespaces] property is not exposed through the Element [p.85] node.

150

C.2.1 Infoset to Element Node

C.2.2 Element Node to Infoset

An Element [p.85] node maps to an element information item. Because the Infoset only represents
unexpanded entity references, non-empty EntityReference [p.118] nodes contained in
Node.childNodes [p.61] need to be replaced by their content. DOM applications could use the
Document.normalizeDocument() [p.54] method for that effect with the "entities [p.108] "
parameter set to false. The properties of the corresponding element information item are constructed as
follows:

Property Value

[namespace
name]

Node.namespaceURI [p.61]

[local name] Node.localName [p.61]

[prefix] Node.prefix [p.62]

[children] Node.childNodes [p.61] , whose expanded entity references
(EntityReference [p.118] nodes with children) have been replaced with their
content.

[attributes] The nodes contained in Node.attributes [p.61] , whose Node.namespaceURI
[p.61] value is different from "http://www.w3.org/2000/xmlns/"

[namespace
attributes]

The nodes contained in Node.attributes [p.61] , whose Node.namespaceURI
[p.61] value is "http://www.w3.org/2000/xmlns/"

[in-scope
namespaces]

The namespace information items computed using the [namespace attributes]
properties of this node and its ancestors. If the [DOM Level 3 XPath] module is
supported, the namespace information items can also be computed from the
XPathNamespace nodes.

[base URI] Node.baseURI [p.61]

[parent] Node.parentNode [p.62]

C.3 Attr Node Mapping

C.3.1 Infoset to Attr Node

An attribute information item map to a Attr [p.81] node. The attributes of the corresponding Attr node
are constructed as follows:

151

C.3 Attr Node Mapping

Attribute/Method Value

Node.nodeName [p.62] same as Attr.name [p.84]

Node.nodeValue [p.62] same as Attr.value [p.84]

Node.nodeType [p.62] Node.ATTRIBUTE_NODE [p.58]

Node.parentNode [p.62] null

Node.childNodes [p.61] A NodeList [p.73] containing one Text [p.95] node whose text
content is the same as Attr.value [p.84] .

Node.firstChild [p.61] The Text [p.95] node contained in Node.childNodes [p.61]

Node.lastChild [p.61] The Text [p.95] node contained in Node.childNodes [p.61]

Node.previousSibling
[p.63]

null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument
[p.62]

The document information item

Node.namespaceURI
[p.61]

The [namespace name] property

Node.prefix [p.62] The [prefix] property

Node.localName [p.61] The [local name] property

Node.baseURI [p.61] null

Node.textContent [p.63] the value of Node.textContent [p.63] of the Text [p.95] child.
same as Node.nodeValue [p.62] (since this attribute node only
contains one Text node)

Attr.name [p.84] If the [prefix] property has no value, this contains the [local name]
property. Otherwise, this contains the concatenation of the [prefix]
property, the colon ’:’ character, and the [local name] property.

Attr.specified [p.84] The [specified] property

Attr.value [p.84] The [normalized value] property

Attr.ownerElement
[p.84]

The [owner element] property

Attr.schemaTypeInfo
[p.84]

A TypeInfo [p.99] object whose TypeInfo.typeNamespace
[p.102] is "http://www.w3.org/TR/REC-xml" and
TypeInfo.typeName [p.102] is the [attribute type] property

Attr.isId [p.83] if the [attribute type] property is ID, this method return true

152

C.3.1 Infoset to Attr Node

C.3.2 Attr Node to Infoset

An Attr [p.81] node maps to an attribute information item. Attr nodes with no namespace URI
(Node.namespaceURI [p.61] equals to null) cannot be represented using the Infoset. The properties
of the corresponding attribute information item are constructed as follows:

Property Value

[namespace
name]

Node.namespaceURI [p.61]

[local name] Node.localName [p.61]

[prefix] Node.prefix [p.62]

[normalized
value]

Attr.value [p.84]

[specified] Attr.specified [p.84]

[attribute
type]

Using the TypeInfo [p.99] object referenced from Attr.schemaTypeInfo [p.84] ,
the value of TypeInfo.typeName [p.102] if TypeInfo.typeNamespace [p.102]
is "http://www.w3.org/TR/REC-xml".

[references] if the computed [attribute type] property is IDREF, IDREFS, ENTITY, ENTITIES, or
NOTATION, the value of this property is an ordered list of the element, unparsed entity,
or notation information items referred to in the attribute value, in the order that they
appear there. The ordered list is computed using
Node.ownerDocument.getElementById,
Node.ownerDocument.doctype.entities, and
Node.ownerDocument.doctype.notations.

[owner
element]

Attr.ownerElement [p.84]

C.4 ProcessingInstruction Node Mapping

C.4.1 Infoset to ProcessingInstruction Node

A processing instruction information item map to a ProcessingInstruction [p.118] node. The
attributes of the corresponding ProcessingInstruction node are constructed as follows:

153

C.4 ProcessingInstruction Node Mapping

Attribute Value

Node.nodeName [p.62] same as ProcessingInstruction.target [p.119]

Node.nodeValue [p.62] same as ProcessingInstruction.data [p.119]

Node.nodeType [p.62] Node.PROCESSING_INSTRUCTION_NODE [p.59]

Node.parentNode [p.62] The [parent] property

Node.childNodes [p.61] empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] The [base URI] property of the parent element if any. The
[base URI] property of the processing instruction
information item is not exposed through the
ProcessingInstruction [p.118] node.

Node.textContent [p.63] same as Node.nodeValue [p.62]

ProcessingInstruction.target
[p.119]

The [target] property

ProcessingInstruction.data
[p.119]

The [content] property

C.4.2 ProcessingInstruction Node to Infoset

A ProcessingInstruction [p.118] node maps to an processing instruction information item. The
properties of the corresponding processing instruction information item are constructed as follows:

154

C.4.2 ProcessingInstruction Node to Infoset

Property Value

[target] ProcessingInstruction.target [p.119]

[content] ProcessingInstruction.data [p.119]

[base
URI]

Node.baseURI [p.61] (which is equivalent to the base URI of its parent element if any)

[notation] The Notation [p.116] node named by the target and if available from
Node.ownerDocument.doctype.notations

[parent] Node.parentNode [p.62]

C.5 EntityReference Node Mapping

C.5.1 Infoset to EntityReference Node

An unexpanded entity reference information item maps to a EntityReference [p.118] node. The
attributes of the corresponding EntityReference node are constructed as follows:

Attribute Value

Node.nodeName [p.62] The [name] property

Node.nodeValue [p.62] null

Node.nodeType [p.62] Node.ENTITY_REFERENCE_NODE [p.59]

Node.parentNode [p.62] the [parent] property

Node.childNodes [p.61] Empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] The [declaration base URI] property

Node.textContent [p.63] null (the node has no children)

155

C.5 EntityReference Node Mapping

Note: The [system identifier] and [public identifier] properties are not exposed through the
EntityReference [p.118] node, but through the Entity [p.116] node reference from this
EntityReference node, if any.

C.5.2 EntityReference Node to Infoset

An EntityReference [p.118] node maps to an unexpanded entity reference information item.
EntityReference nodes with children (Node.childNodes [p.61] contains a non-empty list)
cannot be represented using the Infoset. The properties of the corresponding unexpanded entity reference
information item are constructed as follows:

Property Value

[name] Node.nodeName [p.62]

[system
identifier]

The Entity.systemId [p.117] value of the Entity [p.116] node available from
Node.ownerDocument.doctype.entities if available

[public
identifier]

The Entity.publicId [p.117] value of the Entity [p.116] node available from
Node.ownerDocument.doctype.entities if available

[declaration
base URI]

Node.baseURI [p.61]

[parent] Node.parentNode [p.62]

C.6 Text and CDATASection Nodes Mapping
Since the [XML Information Set] doesn’t represent the boundaries of CDATA marked sections,
CDATASection [p.114] nodes cannot occur from an infoset mapping.

C.6.1 Infoset to Text Node

Consecutive character information items map to a Text [p.95] node. The attributes of the corresponding
Text node are constructed as follows:

156

C.6 Text and CDATASection Nodes Mapping

Attribute/Method Value

Node.nodeName [p.62] "#text"

Node.nodeValue [p.62] same as CharacterData.data [p.79]

Node.nodeType [p.62] Node.TEXT_NODE [p.59]

Node.parentNode [p.62] The [parent] property

Node.childNodes [p.61] empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] null

Node.textContent [p.63] same as Node.nodeValue [p.62]

CharacterData.data [p.79] A DOMString [p.24] including all [character code]
contained in the character information items

CharacterData.length [p.79] The number of 16-bit units needed to encode all ISO
10646 character code contained in the character
information items using the UTF-16 encoding.

Text.isElementContentWhitespace
[p.96]

The [element content whitespace] property

Text.wholeText [p.96] same as CharacterData.data [p.79]

Note: By construction, the values of the [parent] and [element content whitespace] properties are
necessarily the sames for all consecutive character information items.

C.6.2 Text and CDATASection Nodes to Infoset

The text content of a Text [p.95] or a CDATASection [p.114] node maps to a sequence of character
information items. The number of items is less or equal to CharacterData.length [p.79] . Text
nodes contained in Attr [p.81] nodes are mapped to the Infoset using the Attr.value [p.84] attribute.
Text nodes contained in Document [p.41] nodes cannot be represented using the Infoset. The properties
of the corresponding character information items are constructed as follows:

157

C.6.2 Text and CDATASection Nodes to Infoset

Property Value

[character code] The ISO 10646 character code produced using one or two 16-bit units from
CharacterData.data [p.79]

[element content
whitespace]

Text.isElementContentWhitespace [p.96]

[parent] Node.parentNode [p.62]

C.7 Comment Node Mapping

C.7.1 Infoset to Comment Node

A comment information item maps to a Comment [p.99] node. The attributes of the corresponding
Comment node are constructed as follows:

158

C.7 Comment Node Mapping

Attribute Value

Node.nodeName [p.62] "#comment"

Node.nodeValue [p.62] same as CharacterData.data [p.79]

Node.nodeType [p.62] Node.COMMENT_NODE [p.58]

Node.parentNode [p.62] The [parent] property

Node.childNodes [p.61] empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling
[p.63]

null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument
[p.62]

The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] null

Node.textContent [p.63] same as Node.nodeValue [p.62]

CharacterData.data
[p.79]

The [content] property encoded using the UTF-16 encoding.

CharacterData.length
[p.79]

The number of 16-bit units needed to encode all ISO character code
contained in the [content] property using the UTF-16 encoding.

C.7.2 Comment Node to Infoset

A Comment [p.99] maps to a comment information item. The properties of the corresponding comment
information item are constructed as follows:

Property Value

[content] CharacterData.data [p.79]

[parent] Node.parentNode [p.62]

159

C.7.2 Comment Node to Infoset

C.8 DocumentType Node Mapping

C.8.1 Infoset to DocumentType Node

A document type declaration information item maps to a DocumentType [p.115] node. The attributes of
the corresponding DocumentType node are constructed as follows:

Attribute Value

Node.nodeName [p.62] same as DocumentType.name [p.116]

Node.nodeValue [p.62] null

Node.nodeType [p.62] Node.DOCUMENT_TYPE_NODE [p.59]

Node.parentNode [p.62] The [parent] property

Node.childNodes [p.61] empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] null

Node.textContent [p.63] null

DocumentType.name [p.116] The name of the document element.

DocumentType.entities [p.115] The [unparsed entities] property available from the
document information item.

DocumentType.notations [p.116] The [notations] property available from the document
information item.

DocumentType.publicId [p.116] The [public identifier] property

DocumentType.systemId [p.116] The [system identifier] property

DocumentType.internalSubset
[p.115]

The value is implementation dependent

160

C.8 DocumentType Node Mapping

Note: The [children] property is not exposed through the DocumentType [p.115] node.

C.8.2 DocumentType Node to Infoset

A DocumentType [p.115] maps to a document type declaration information item. The properties of the
corresponding document type declaration information item are constructed as follows:

Property Value

[system identifier] DocumentType.systemId [p.116]

[public identifier] DocumentType.publicId [p.116]

[children] The value of this property is implementation dependent

[parent] Node.parentNode [p.62]

C.9 Entity Node Mapping

C.9.1 Infoset to Entity Node

An unparsed entity information item maps to a Entity [p.116] node. The attributes of the corresponding
Entity node are constructed as follows:

161

C.9 Entity Node Mapping

Attribute Value

Node.nodeName [p.62] The [name] property

Node.nodeValue [p.62] null

Node.nodeType [p.62] Node.ENTITY_NODE [p.59]

Node.parentNode [p.62] null

Node.childNodes [p.61] Empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] The [declaration base URI] property

Node.textContent [p.63] "" (the node has no children)

Entity.publicId [p.117] The [public identifier] property

Entity.systemId [p.117] The [system identifier] property

Entity.notationName [p.117] The [notation name] property

Entity.inputEncoding [p.117] null

Entity.xmlEncoding [p.118] null

Entity.xmlVersion [p.118] null

Note: The [notation] property is available through the DocumentType [p.115] node.

C.9.2 Entity Node to Infoset

An Entity [p.116] node maps to an unparsed entity information item. Entity nodes with children
(Node.childNodes [p.61] contains a non-empty list) cannot be represented using the Infoset. The
properties of the corresponding unparsed entity information item are constructed as follows:

162

C.9.2 Entity Node to Infoset

Property Value

[name] Node.nodeName [p.62]

[system
identifier]

Entity.systemId [p.117]

[public identifier] Entity.publicId [p.117]

[declaration base
URI]

Node.baseURI [p.61]

[notation name] Entity.notationName [p.117]

[notation] The Notation [p.116] node referenced from DocumentType.notations
[p.116] whose name is the [notation name] property

C.10 Notation Node Mapping

C.10.1 Infoset to Notation Node

A notation information item maps to a Notation [p.116] node. The attributes of the corresponding
Notation node are constructed as follows:

163

C.10 Notation Node Mapping

Attribute Value

Node.nodeName [p.62] The [name] property

Node.nodeValue [p.62] null

Node.nodeType [p.62] Node.NOTATION_NODE [p.59]

Node.parentNode [p.62] null

Node.childNodes [p.61] Empty NodeList [p.73]

Node.firstChild [p.61] null

Node.lastChild [p.61] null

Node.previousSibling [p.63] null

Node.nextSibling [p.62] null

Node.attributes [p.61] null

Node.ownerDocument [p.62] The document information item

Node.namespaceURI [p.61] null

Node.prefix [p.62] null

Node.localName [p.61] null

Node.baseURI [p.61] The [declaration base URI] property

Node.textContent [p.63] null

Notation.publicId [p.116] The [public identifier] property

Notation.systemId [p.116] The [system identifier] property

C.10.2 Notation Node to Infoset

A Notation [p.116] maps to a notation information item. The properties of the corresponding notation
information item are constructed as follows:

Property Value

[name] Node.nodeName [p.62]

[system identifier] Notation.systemId [p.116]

[public identifier] Notation.publicId [p.116]

[parent] Node.parentNode [p.62]

164

C.10.2 Notation Node to Infoset

Appendix G: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Core.

The Java files are also available as
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/java-binding.zip

G.1 Java Binding Extension
Note: This section is informative.

This section defines the DOMImplementationRegistry object, discussed in Bootstrapping [p.30] ,
for Java.

The DOMImplementationRegistry is first initialized by the application or the implementation,
depending on the context, through the Java system property
"org.w3c.dom.DOMImplementationSourceList". The value of this property is a space separated list of
names of available classes implementing the DOMImplementationSource [p.36] interface.

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:
package org.w3c.dom.bootstrap;

import java.util.StringTokenizer;
import java.util.Vector;
import org.w3c.dom.DOMImplementationSource;
import org.w3c.dom.DOMImplementationList;
import org.w3c.dom.DOMImplementation;
import java.io.InputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.security.AccessController;
import java.security.PrivilegedAction;

/**
 * A factory that enables applications to obtain instances of
 * <code>DOMImplementation</code>.
 *
 * <p>
 * Example:
 * </p>
 *
 * <pre class=’example’>
 * // get an instance of the DOMImplementation registry
 * DOMImplementationRegistry registry =
 * DOMImplementationRegistry.newInstance();
 * // get a DOM implementation the Level 3 XML module
 * DOMImplementation domImpl =
 * registry.getDOMImplementation("XML 3.0");
 * </pre>
 *
 * <p>

165

Appendix G: Java Language Binding

 * This provides an application with an implementation-independent starting
 * point. DOM implementations may modify this class to meet new security
 * standards or to provide *additional* fallbacks for the list of
 * DOMImplementationSources.
 * </p>
 *
 * @see DOMImplementation
 * @see DOMImplementationSource
 * @since DOM Level 3
 */
public final class DOMImplementationRegistry {
 /**
 * The system property to specify the
 * DOMImplementationSource class names.
 */
 public static final String PROPERTY =
 "org.w3c.dom.DOMImplementationSourceList";

 /**
 * Default columns per line.
 */
 private static final int DEFAULT_LINE_LENGTH = 80;

 /**
 * The list of DOMImplementationSources.
 */
 private Vector sources;

 /**
 * Private constructor.
 * @param srcs Vector List of DOMImplementationSources
 */
 private DOMImplementationRegistry(final Vector srcs) {
 sources = srcs;
 }

 /**
 * Obtain a new instance of a <code>DOMImplementationRegistry</code>.
 *

 * The <code>DOMImplementationRegistry</code> is initialized by the
 * application or the implementation, depending on the context, by
 * first checking the value of the Java system property
 * <code>org.w3c.dom.DOMImplementationSourceList</code> and
 * the the service provider whose contents are at
 * "<code>META_INF/services/org.w3c.dom.DOMImplementationSourceList</code>"
 * The value of this property is a white-space separated list of
 * names of availables classes implementing the
 * <code>DOMImplementationSource</code> interface. Each class listed
 * in the class name list is instantiated and any exceptions
 * encountered are thrown to the application.
 *
 * @return an initialized instance of DOMImplementationRegistry
 * @throws ClassNotFoundException
 * If any specified class can not be found
 * @throws InstantiationException
 * If any specified class is an interface or abstract class

166

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

 * @throws IllegalAccessException
 * If the default constructor of a specified class is not accessible
 * @throws ClassCastException
 * If any specified class does not implement
 * <code>DOMImplementationSource</code>
 */
 public static DOMImplementationRegistry newInstance()
 throws
 ClassNotFoundException,
 InstantiationException,
 IllegalAccessException,
 ClassCastException {
 Vector sources = new Vector();

 ClassLoader classLoader = getClassLoader();
 // fetch system property:
 String p = getSystemProperty(PROPERTY);

 //
 // if property is not specified then use contents of
 // META_INF/org.w3c.dom.DOMImplementationSourceList from classpath
 if (p == null) {
 p = getServiceValue(classLoader);
 }
 if (p == null) {
 //
 // DOM Implementations can modify here to add *additional* fallback
 // mechanisms to access a list of default DOMImplementationSources.

 }
 if (p != null) {
 StringTokenizer st = new StringTokenizer(p);
 while (st.hasMoreTokens()) {
 String sourceName = st.nextToken();
 // Use context class loader, falling back to Class.forName
 // if and only if this fails...
 Class sourceClass = null;
 if (classLoader != null) {
 sourceClass = classLoader.loadClass(sourceName);
 } else {
 sourceClass = Class.forName(sourceName);
 }
 DOMImplementationSource source =
 (DOMImplementationSource) sourceClass.newInstance();
 sources.addElement(source);
 }
 }
 return new DOMImplementationRegistry(sources);
 }

 /**
 * Return the first implementation that has the desired
 * features, or <code>null</code> if none is found.
 *
 * @param features
 * A string that specifies which features are required. This is
 * a space separated list in which each feature is specified by

167

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

 * its name optionally followed by a space and a version number.
 * This is something like: "XML 1.0 Traversal +Events 2.0"
 * @return An implementation that has the desired features,
 * or <code>null</code> if none found.
 */
 public DOMImplementation getDOMImplementation(final String features) {
 int size = sources.size();
 String name = null;
 for (int i = 0; i < size; i++) {
 DOMImplementationSource source =
 (DOMImplementationSource) sources.elementAt(i);
 DOMImplementation impl = source.getDOMImplementation(features);
 if (impl != null) {
 return impl;
 }
 }
 return null;
 }

 /**
 * Return a list of implementations that support the
 * desired features.
 *
 * @param features
 * A string that specifies which features are required. This is
 * a space separated list in which each feature is specified by
 * its name optionally followed by a space and a version number.
 * This is something like: "XML 1.0 Traversal +Events 2.0"
 * @return A list of DOMImplementations that support the desired features.
 */
 public DOMImplementationList getDOMImplementationList(final String features) {
 final Vector implementations = new Vector();
 int size = sources.size();
 for (int i = 0; i < size; i++) {
 DOMImplementationSource source =
 (DOMImplementationSource) sources.elementAt(i);
 DOMImplementationList impls =
 source.getDOMImplementationList(features);
 for (int j = 0; j < impls.getLength(); j++) {
 DOMImplementation impl = impls.item(j);
 implementations.addElement(impl);
 }
 }
 return new DOMImplementationList() {
 public DOMImplementation item(final int index) {
 if (index >= 0 && index < implementations.size()) {
 try {
 return (DOMImplementation)
 implementations.elementAt(index);
 } catch (ArrayIndexOutOfBoundsException e) {
 return null;
 }
 }
 return null;
 }

 public int getLength() {

168

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

 return implementations.size();
 }
 };
 }

 /**
 * Register an implementation.
 *
 * @param s The source to be registered, may not be <code>null</code>
 */
 public void addSource(final DOMImplementationSource s) {
 if (s == null) {
 throw new NullPointerException();
 }
 if (!sources.contains(s)) {
 sources.addElement(s);
 }
 }

 /**
 *
 * Gets a class loader.
 *
 * @return A class loader, possibly <code>null</code>
 */
 private static ClassLoader getClassLoader() {
 try {
 ClassLoader contextClassLoader = getContextClassLoader();

 if (contextClassLoader != null) {
 return contextClassLoader;
 }
 } catch (Exception e) {
 // Assume that the DOM application is in a JRE 1.1, use the
 // current ClassLoader
 return DOMImplementationRegistry.class.getClassLoader();
 }
 return DOMImplementationRegistry.class.getClassLoader();
 }

 /**
 * This method attempts to return the first line of the resource
 * META_INF/services/org.w3c.dom.DOMImplementationSourceList
 * from the provided ClassLoader.
 *
 * @param classLoader classLoader, may not be <code>null</code>.
 * @return first line of resource, or <code>null</code>
 */
 private static String getServiceValue(final ClassLoader classLoader) {
 String serviceId = "META-INF/services/" + PROPERTY;
 // try to find services in CLASSPATH
 try {
 InputStream is = getResourceAsStream(classLoader, serviceId);

 if (is != null) {
 BufferedReader rd;
 try {

169

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

 rd =
 new BufferedReader(new InputStreamReader(is, "UTF-8"),
 DEFAULT_LINE_LENGTH);
 } catch (java.io.UnsupportedEncodingException e) {
 rd =
 new BufferedReader(new InputStreamReader(is),
 DEFAULT_LINE_LENGTH);
 }
 String serviceValue = rd.readLine();
 rd.close();
 if (serviceValue != null && serviceValue.length() > 0) {
 return serviceValue;
 }
 }
 } catch (Exception ex) {
 return null;
 }
 return null;
 }

 /**
 * A simple JRE (Java Runtime Environment) 1.1 test
 *
 * @return <code>true</code> if JRE 1.1
 */
 private static boolean isJRE11() {
 try {
 Class c = Class.forName("java.security.AccessController");
 // java.security.AccessController existed since 1.2 so, if no
 // exception was thrown, the DOM application is running in a JRE
 // 1.2 or higher
 return false;
 } catch (Exception ex) {
 // ignore
 }
 return true;
 }

 /**
 * This method returns the ContextClassLoader or <code>null</code> if
 * running in a JRE 1.1
 *
 * @return The Context Classloader
 */
 private static ClassLoader getContextClassLoader() {
 return isJRE11()
 ? null
 : (ClassLoader)
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 ClassLoader classLoader = null;
 try {
 classLoader =
 Thread.currentThread().getContextClassLoader();
 } catch (SecurityException ex) {
 }
 return classLoader;

170

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

 }
 });
 }

 /**
 * This method returns the system property indicated by the specified name
 * after checking access control privileges. For a JRE 1.1, this check is
 * not done.
 *
 * @param name the name of the system property
 * @return the system property
 */
 private static String getSystemProperty(final String name) {
 return isJRE11()
 ? (String) System.getProperty(name)
 : (String) AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 return System.getProperty(name);
 }
 });
 }

 /**
 * This method returns an Inputstream for the reading resource
 * META_INF/services/org.w3c.dom.DOMImplementationSourceList after checking
 * access control privileges. For a JRE 1.1, this check is not done.
 *
 * @param classLoader classLoader
 * @param name the resource
 * @return an Inputstream for the resource specified
 */
 private static InputStream getResourceAsStream(final ClassLoader classLoader,
 final String name) {
 if (isJRE11()) {
 InputStream ris;
 if (classLoader == null) {
 ris = ClassLoader.getSystemResourceAsStream(name);
 } else {
 ris = classLoader.getResourceAsStream(name);
 }
 return ris;
 } else {
 return (InputStream)
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 InputStream ris;
 if (classLoader == null) {
 ris =
 ClassLoader.getSystemResourceAsStream(name);
 } else {
 ris = classLoader.getResourceAsStream(name);
 }
 return ris;
 }

171

org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

 });
 }
 }
}

G.2 Other Core interfaces

org/w3c/dom/DOMException.java:
package org.w3c.dom;

public class DOMException extends RuntimeException {
 public DOMException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionCode
 public static final short INDEX_SIZE_ERR = 1;
 public static final short DOMSTRING_SIZE_ERR = 2;
 public static final short HIERARCHY_REQUEST_ERR = 3;
 public static final short WRONG_DOCUMENT_ERR = 4;
 public static final short INVALID_CHARACTER_ERR = 5;
 public static final short NO_DATA_ALLOWED_ERR = 6;
 public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
 public static final short NOT_FOUND_ERR = 8;
 public static final short NOT_SUPPORTED_ERR = 9;
 public static final short INUSE_ATTRIBUTE_ERR = 10;
 public static final short INVALID_STATE_ERR = 11;
 public static final short SYNTAX_ERR = 12;
 public static final short INVALID_MODIFICATION_ERR = 13;
 public static final short NAMESPACE_ERR = 14;
 public static final short INVALID_ACCESS_ERR = 15;
 public static final short VALIDATION_ERR = 16;
 public static final short TYPE_MISMATCH_ERR = 17;

}

org/w3c/dom/DOMStringList.java:
package org.w3c.dom;

public interface DOMStringList {
 public String item(int index);

 public int getLength();

 public boolean contains(String str);

}

172

G.2 Other Core interfaces

org/w3c/dom/NameList.java:
package org.w3c.dom;

public interface NameList {
 public String getName(int index);

 public String getNamespaceURI(int index);

 public int getLength();

 public boolean contains(String str);

 public boolean containsNS(String namespaceURI,
 String name);

}

org/w3c/dom/DOMImplementationList.java:
package org.w3c.dom;

public interface DOMImplementationList {
 public DOMImplementation item(int index);

 public int getLength();

}

org/w3c/dom/DOMImplementationSource.java:
package org.w3c.dom;

public interface DOMImplementationSource {
 public DOMImplementation getDOMImplementation(String features);

 public DOMImplementationList getDOMImplementationList(String features);

}

org/w3c/dom/DOMImplementation.java:
package org.w3c.dom;

public interface DOMImplementation {
 public boolean hasFeature(String feature,
 String version);

 public DocumentType createDocumentType(String qualifiedName,
 String publicId,
 String systemId)
 throws DOMException;

 public Document createDocument(String namespaceURI,
 String qualifiedName,

173

org/w3c/dom/NameList.java:

 DocumentType doctype)
 throws DOMException;

 public Object getFeature(String feature,
 String version);

}

org/w3c/dom/DocumentFragment.java:
package org.w3c.dom;

public interface DocumentFragment extends Node {
}

org/w3c/dom/Document.java:
package org.w3c.dom;

public interface Document extends Node {
 public DocumentType getDoctype();

 public DOMImplementation getImplementation();

 public Element getDocumentElement();

 public Element createElement(String tagName)
 throws DOMException;

 public DocumentFragment createDocumentFragment();

 public Text createTextNode(String data);

 public Comment createComment(String data);

 public CDATASection createCDATASection(String data)
 throws DOMException;

 public ProcessingInstruction createProcessingInstruction(String target,
 String data)
 throws DOMException;

 public Attr createAttribute(String name)
 throws DOMException;

 public EntityReference createEntityReference(String name)
 throws DOMException;

 public NodeList getElementsByTagName(String tagname);

 public Node importNode(Node importedNode,
 boolean deep)
 throws DOMException;

 public Element createElementNS(String namespaceURI,
 String qualifiedName)

174

org/w3c/dom/DocumentFragment.java:

 throws DOMException;

 public Attr createAttributeNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public Element getElementById(String elementId);

 public String getInputEncoding();

 public String getXmlEncoding();

 public boolean getXmlStandalone();
 public void setXmlStandalone(boolean xmlStandalone)
 throws DOMException;

 public String getXmlVersion();
 public void setXmlVersion(String xmlVersion)
 throws DOMException;

 public boolean getStrictErrorChecking();
 public void setStrictErrorChecking(boolean strictErrorChecking);

 public String getDocumentURI();
 public void setDocumentURI(String documentURI);

 public Node adoptNode(Node source)
 throws DOMException;

 public DOMConfiguration getDomConfig();

 public void normalizeDocument();

 public Node renameNode(Node n,
 String namespaceURI,
 String qualifiedName)
 throws DOMException;

}

org/w3c/dom/Node.java:
package org.w3c.dom;

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_NODE = 7;

175

org/w3c/dom/Node.java:

 public static final short COMMENT_NODE = 8;
 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;
 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;

 public String getNodeName();

 public String getNodeValue()
 throws DOMException;
 public void setNodeValue(String nodeValue)
 throws DOMException;

 public short getNodeType();

 public Node getParentNode();

 public NodeList getChildNodes();

 public Node getFirstChild();

 public Node getLastChild();

 public Node getPreviousSibling();

 public Node getNextSibling();

 public NamedNodeMap getAttributes();

 public Document getOwnerDocument();

 public Node insertBefore(Node newChild,
 Node refChild)
 throws DOMException;

 public Node replaceChild(Node newChild,
 Node oldChild)
 throws DOMException;

 public Node removeChild(Node oldChild)
 throws DOMException;

 public Node appendChild(Node newChild)
 throws DOMException;

 public boolean hasChildNodes();

 public Node cloneNode(boolean deep);

 public void normalize();

 public boolean isSupported(String feature,
 String version);

 public String getNamespaceURI();

 public String getPrefix();

176

org/w3c/dom/Node.java:

 public void setPrefix(String prefix)
 throws DOMException;

 public String getLocalName();

 public boolean hasAttributes();

 public String getBaseURI();

 // DocumentPosition
 public static final short DOCUMENT_POSITION_DISCONNECTED = 0x01;
 public static final short DOCUMENT_POSITION_PRECEDING = 0x02;
 public static final short DOCUMENT_POSITION_FOLLOWING = 0x04;
 public static final short DOCUMENT_POSITION_CONTAINS = 0x08;
 public static final short DOCUMENT_POSITION_CONTAINED_BY = 0x10;
 public static final short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC = 0x20;

 public short compareDocumentPosition(Node other)
 throws DOMException;

 public String getTextContent()
 throws DOMException;
 public void setTextContent(String textContent)
 throws DOMException;

 public boolean isSameNode(Node other);

 public String lookupPrefix(String namespaceURI);

 public boolean isDefaultNamespace(String namespaceURI);

 public String lookupNamespaceURI(String prefix);

 public boolean isEqualNode(Node arg);

 public Object getFeature(String feature,
 String version);

 public Object setUserData(String key,
 Object data,
 UserDataHandler handler);

 public Object getUserData(String key);

}

org/w3c/dom/NodeList.java:
package org.w3c.dom;

public interface NodeList {
 public Node item(int index);

 public int getLength();

}

177

org/w3c/dom/NodeList.java:

org/w3c/dom/NamedNodeMap.java:
package org.w3c.dom;

public interface NamedNodeMap {
 public Node getNamedItem(String name);

 public Node setNamedItem(Node arg)
 throws DOMException;

 public Node removeNamedItem(String name)
 throws DOMException;

 public Node item(int index);

 public int getLength();

 public Node getNamedItemNS(String namespaceURI,
 String localName)
 throws DOMException;

 public Node setNamedItemNS(Node arg)
 throws DOMException;

 public Node removeNamedItemNS(String namespaceURI,
 String localName)
 throws DOMException;

}

org/w3c/dom/CharacterData.java:
package org.w3c.dom;

public interface CharacterData extends Node {
 public String getData()
 throws DOMException;
 public void setData(String data)
 throws DOMException;

 public int getLength();

 public String substringData(int offset,
 int count)
 throws DOMException;

 public void appendData(String arg)
 throws DOMException;

 public void insertData(int offset,
 String arg)
 throws DOMException;

 public void deleteData(int offset,
 int count)
 throws DOMException;

178

org/w3c/dom/NamedNodeMap.java:

 public void replaceData(int offset,
 int count,
 String arg)
 throws DOMException;

}

org/w3c/dom/Attr.java:
package org.w3c.dom;

public interface Attr extends Node {
 public String getName();

 public boolean getSpecified();

 public String getValue();
 public void setValue(String value)
 throws DOMException;

 public Element getOwnerElement();

 public TypeInfo getSchemaTypeInfo();

 public boolean isId();

}

org/w3c/dom/Element.java:
package org.w3c.dom;

public interface Element extends Node {
 public String getTagName();

 public String getAttribute(String name);

 public void setAttribute(String name,
 String value)
 throws DOMException;

 public void removeAttribute(String name)
 throws DOMException;

 public Attr getAttributeNode(String name);

 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;

 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;

 public NodeList getElementsByTagName(String name);

 public String getAttributeNS(String namespaceURI,

179

org/w3c/dom/Attr.java:

 String localName)
 throws DOMException;

 public void setAttributeNS(String namespaceURI,
 String qualifiedName,
 String value)
 throws DOMException;

 public void removeAttributeNS(String namespaceURI,
 String localName)
 throws DOMException;

 public Attr getAttributeNodeNS(String namespaceURI,
 String localName)
 throws DOMException;

 public Attr setAttributeNodeNS(Attr newAttr)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName)
 throws DOMException;

 public boolean hasAttribute(String name);

 public boolean hasAttributeNS(String namespaceURI,
 String localName)
 throws DOMException;

 public TypeInfo getSchemaTypeInfo();

 public void setIdAttribute(String name,
 boolean isId)
 throws DOMException;

 public void setIdAttributeNS(String namespaceURI,
 String localName,
 boolean isId)
 throws DOMException;

 public void setIdAttributeNode(Attr idAttr,
 boolean isId)
 throws DOMException;

}

org/w3c/dom/Text.java:
package org.w3c.dom;

public interface Text extends CharacterData {
 public Text splitText(int offset)
 throws DOMException;

 public boolean isElementContentWhitespace();

180

org/w3c/dom/Text.java:

 public String getWholeText();

 public Text replaceWholeText(String content)
 throws DOMException;

}

org/w3c/dom/Comment.java:
package org.w3c.dom;

public interface Comment extends CharacterData {
}

org/w3c/dom/TypeInfo.java:
package org.w3c.dom;

public interface TypeInfo {
 public String getTypeName();

 public String getTypeNamespace();

 // DerivationMethods
 public static final int DERIVATION_RESTRICTION = 0x00000001;
 public static final int DERIVATION_EXTENSION = 0x00000002;
 public static final int DERIVATION_UNION = 0x00000004;
 public static final int DERIVATION_LIST = 0x00000008;

 public boolean isDerivedFrom(String typeNamespaceArg,
 String typeNameArg,
 int derivationMethod);

}

org/w3c/dom/UserDataHandler.java:
package org.w3c.dom;

public interface UserDataHandler {
 // OperationType
 public static final short NODE_CLONED = 1;
 public static final short NODE_IMPORTED = 2;
 public static final short NODE_DELETED = 3;
 public static final short NODE_RENAMED = 4;
 public static final short NODE_ADOPTED = 5;

 public void handle(short operation,
 String key,
 Object data,
 Node src,
 Node dst);

}

181

org/w3c/dom/Comment.java:

org/w3c/dom/DOMError.java:
package org.w3c.dom;

public interface DOMError {
 // ErrorSeverity
 public static final short SEVERITY_WARNING = 1;
 public static final short SEVERITY_ERROR = 2;
 public static final short SEVERITY_FATAL_ERROR = 3;

 public short getSeverity();

 public String getMessage();

 public String getType();

 public Object getRelatedException();

 public Object getRelatedData();

 public DOMLocator getLocation();

}

org/w3c/dom/DOMErrorHandler.java:
package org.w3c.dom;

public interface DOMErrorHandler {
 public boolean handleError(DOMError error);

}

org/w3c/dom/DOMLocator.java:
package org.w3c.dom;

public interface DOMLocator {
 public int getLineNumber();

 public int getColumnNumber();

 public int getByteOffset();

 public int getUtf16Offset();

 public Node getRelatedNode();

 public String getUri();

}

182

org/w3c/dom/DOMError.java:

org/w3c/dom/DOMConfiguration.java:
package org.w3c.dom;

public interface DOMConfiguration {
 public void setParameter(String name,
 Object value)
 throws DOMException;

 public Object getParameter(String name)
 throws DOMException;

 public boolean canSetParameter(String name,
 Object value);

 public DOMStringList getParameterNames();

}

org/w3c/dom/CDATASection.java:
package org.w3c.dom;

public interface CDATASection extends Text {
}

org/w3c/dom/DocumentType.java:
package org.w3c.dom;

public interface DocumentType extends Node {
 public String getName();

 public NamedNodeMap getEntities();

 public NamedNodeMap getNotations();

 public String getPublicId();

 public String getSystemId();

 public String getInternalSubset();

}

org/w3c/dom/Notation.java:
package org.w3c.dom;

public interface Notation extends Node {
 public String getPublicId();

 public String getSystemId();

}

183

org/w3c/dom/DOMConfiguration.java:

org/w3c/dom/Entity.java:
package org.w3c.dom;

public interface Entity extends Node {
 public String getPublicId();

 public String getSystemId();

 public String getNotationName();

 public String getInputEncoding();

 public String getXmlEncoding();

 public String getXmlVersion();

}

org/w3c/dom/EntityReference.java:
package org.w3c.dom;

public interface EntityReference extends Node {
}

org/w3c/dom/ProcessingInstruction.java:
package org.w3c.dom;

public interface ProcessingInstruction extends Node {
 public String getTarget();

 public String getData();
 public void setData(String data)
 throws DOMException;

}

184

org/w3c/dom/Entity.java:

Appendix H: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Core definitions.

H.1 ECMAScript Binding Extension
This section defines the DOMImplementationRegistry object, discussed in Bootstrapping [p.30] ,
for ECMAScript.

Objects that implements the DOMImplementationRegistry interface
DOMImplementationRegistry is a global variable which has the following functions:

getDOMImplementation(features)
This method returns the first registered object that implements the DOMImplementation
interface and has the desired features, or null if none is found.
The features parameter is a String. See also
DOMImplementationSource.getDOMImplementation() [p.36] .

getDOMImplementationList(features)
This method returns a DOMImplementationList [p.35] list of registered object that
implements the DOMImplementation interface and has the desired features.
The features parameter is a String. See also
DOMImplementationSource.getDOMImplementationList() [p.37] .

H.2 Other Core interfaces
Properties of the DOMException Constructor function:

DOMException.INDEX_SIZE_ERR
The value of the constant DOMException.INDEX_SIZE_ERR is 1.

DOMException.DOMSTRING_SIZE_ERR
The value of the constant DOMException.DOMSTRING_SIZE_ERR is 2.

DOMException.HIERARCHY_REQUEST_ERR
The value of the constant DOMException.HIERARCHY_REQUEST_ERR is 3.

DOMException.WRONG_DOCUMENT_ERR
The value of the constant DOMException.WRONG_DOCUMENT_ERR is 4.

DOMException.INVALID_CHARACTER_ERR
The value of the constant DOMException.INVALID_CHARACTER_ERR is 5.

DOMException.NO_DATA_ALLOWED_ERR
The value of the constant DOMException.NO_DATA_ALLOWED_ERR is 6.

DOMException.NO_MODIFICATION_ALLOWED_ERR
The value of the constant DOMException.NO_MODIFICATION_ALLOWED_ERR is 7.

DOMException.NOT_FOUND_ERR
The value of the constant DOMException.NOT_FOUND_ERR is 8.

DOMException.NOT_SUPPORTED_ERR
The value of the constant DOMException.NOT_SUPPORTED_ERR is 9.

185

Appendix H: ECMAScript Language Binding

DOMException.INUSE_ATTRIBUTE_ERR
The value of the constant DOMException.INUSE_ATTRIBUTE_ERR is 10.

DOMException.INVALID_STATE_ERR
The value of the constant DOMException.INVALID_STATE_ERR is 11.

DOMException.SYNTAX_ERR
The value of the constant DOMException.SYNTAX_ERR is 12.

DOMException.INVALID_MODIFICATION_ERR
The value of the constant DOMException.INVALID_MODIFICATION_ERR is 13.

DOMException.NAMESPACE_ERR
The value of the constant DOMException.NAMESPACE_ERR is 14.

DOMException.INVALID_ACCESS_ERR
The value of the constant DOMException.INVALID_ACCESS_ERR is 15.

DOMException.VALIDATION_ERR
The value of the constant DOMException.VALIDATION_ERR is 16.

DOMException.TYPE_MISMATCH_ERR
The value of the constant DOMException.TYPE_MISMATCH_ERR is 17.

Objects that implement the DOMException interface:
Properties of objects that implement the DOMException interface:

code
This property is a Number.

Objects that implement the DOMStringList interface:
Properties of objects that implement the DOMStringList interface:

length
This read-only property is a Number.

Functions of objects that implement the DOMStringList interface:
item(index)

This function returns a String.
The index parameter is a Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item function with that
index.

contains(str)
This function returns a Boolean.
The str parameter is a String.

Objects that implement the NameList interface:
Properties of objects that implement the NameList interface:

length
This read-only property is a Number.

Functions of objects that implement the NameList interface:
getName(index)

This function returns a String.
The index parameter is a Number.

getNamespaceURI(index)
This function returns a String.
The index parameter is a Number.

186

H.2 Other Core interfaces

contains(str)
This function returns a Boolean.
The str parameter is a String.

containsNS(namespaceURI, name)
This function returns a Boolean.
The namespaceURI parameter is a String.
The name parameter is a String.

Objects that implement the DOMImplementationList interface:
Properties of objects that implement the DOMImplementationList interface:

length
This read-only property is a Number.

Functions of objects that implement the DOMImplementationList interface:
item(index)

This function returns an object that implements the DOMImplementation interface.
The index parameter is a Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item function with that
index.

Objects that implement the DOMImplementationSource interface:
Functions of objects that implement the DOMImplementationSource interface:

getDOMImplementation(features)
This function returns an object that implements the DOMImplementation interface.
The features parameter is a String.

getDOMImplementationList(features)
This function returns an object that implements the DOMImplementationList interface.
The features parameter is a String.

Objects that implement the DOMImplementation interface:
Functions of objects that implement the DOMImplementation interface:

hasFeature(feature, version)
This function returns a Boolean.
The feature parameter is a String.
The version parameter is a String.

createDocumentType(qualifiedName, publicId, systemId)
This function returns an object that implements the DocumentType interface.
The qualifiedName parameter is a String.
The publicId parameter is a String.
The systemId parameter is a String.
This function can raise an object that implements the DOMException interface.

createDocument(namespaceURI, qualifiedName, doctype)
This function returns an object that implements the Document interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
The doctype parameter is an object that implements the DocumentType interface.
This function can raise an object that implements the DOMException interface.

getFeature(feature, version)
This function returns an object that implements the Object interface.

187

H.2 Other Core interfaces

The feature parameter is a String.
The version parameter is a String.

Objects that implement the DocumentFragment interface:
Objects that implement the DocumentFragment interface have all properties and functions of the
Node interface.

Objects that implement the Document interface:
Objects that implement the Document interface have all properties and functions of the Node
interface as well as the properties and functions defined below.
Properties of objects that implement the Document interface:

doctype
This read-only property is an object that implements the DocumentType interface.

implementation
This read-only property is an object that implements the DOMImplementation interface.

documentElement
This read-only property is an object that implements the Element interface.

inputEncoding
This read-only property is a String.

xmlEncoding
This read-only property is a String.

xmlStandalone
This property is a Boolean and can raise an object that implements the DOMException
interface on setting.

xmlVersion
This property is a String and can raise an object that implements the DOMException
interface on setting.

strictErrorChecking
This property is a Boolean.

documentURI
This property is a String.

domConfig
This read-only property is an object that implements the DOMConfiguration interface.

Functions of objects that implement the Document interface:
createElement(tagName)

This function returns an object that implements the Element interface.
The tagName parameter is a String.
This function can raise an object that implements the DOMException interface.

createDocumentFragment()
This function returns an object that implements the DocumentFragment interface.

createTextNode(data)
This function returns an object that implements the Text interface.
The data parameter is a String.

createComment(data)
This function returns an object that implements the Comment interface.
The data parameter is a String.

createCDATASection(data)
This function returns an object that implements the CDATASection interface.

188

H.2 Other Core interfaces

The data parameter is a String.
This function can raise an object that implements the DOMException interface.

createProcessingInstruction(target, data)
This function returns an object that implements the ProcessingInstruction interface.
The target parameter is a String.
The data parameter is a String.
This function can raise an object that implements the DOMException interface.

createAttribute(name)
This function returns an object that implements the Attr interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

createEntityReference(name)
This function returns an object that implements the EntityReference interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

getElementsByTagName(tagname)
This function returns an object that implements the NodeList interface.
The tagname parameter is a String.

importNode(importedNode, deep)
This function returns an object that implements the Node interface.
The importedNode parameter is an object that implements the Node interface.
The deep parameter is a Boolean.
This function can raise an object that implements the DOMException interface.

createElementNS(namespaceURI, qualifiedName)
This function returns an object that implements the Element interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
This function can raise an object that implements the DOMException interface.

createAttributeNS(namespaceURI, qualifiedName)
This function returns an object that implements the Attr interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
This function can raise an object that implements the DOMException interface.

getElementsByTagNameNS(namespaceURI, localName)
This function returns an object that implements the NodeList interface.
The namespaceURI parameter is a String.
The localName parameter is a String.

getElementById(elementId)
This function returns an object that implements the Element interface.
The elementId parameter is a String.

adoptNode(source)
This function returns an object that implements the Node interface.
The source parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

normalizeDocument()
This function has no return value.

189

H.2 Other Core interfaces

renameNode(n, namespaceURI, qualifiedName)
This function returns an object that implements the Node interface.
The n parameter is an object that implements the Node interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
This function can raise an object that implements the DOMException interface.

Properties of the Node Constructor function:
Node.ELEMENT_NODE

The value of the constant Node.ELEMENT_NODE is 1.
Node.ATTRIBUTE_NODE

The value of the constant Node.ATTRIBUTE_NODE is 2.
Node.TEXT_NODE

The value of the constant Node.TEXT_NODE is 3.
Node.CDATA_SECTION_NODE

The value of the constant Node.CDATA_SECTION_NODE is 4.
Node.ENTITY_REFERENCE_NODE

The value of the constant Node.ENTITY_REFERENCE_NODE is 5.
Node.ENTITY_NODE

The value of the constant Node.ENTITY_NODE is 6.
Node.PROCESSING_INSTRUCTION_NODE

The value of the constant Node.PROCESSING_INSTRUCTION_NODE is 7.
Node.COMMENT_NODE

The value of the constant Node.COMMENT_NODE is 8.
Node.DOCUMENT_NODE

The value of the constant Node.DOCUMENT_NODE is 9.
Node.DOCUMENT_TYPE_NODE

The value of the constant Node.DOCUMENT_TYPE_NODE is 10.
Node.DOCUMENT_FRAGMENT_NODE

The value of the constant Node.DOCUMENT_FRAGMENT_NODE is 11.
Node.NOTATION_NODE

The value of the constant Node.NOTATION_NODE is 12.
Node.DOCUMENT_POSITION_DISCONNECTED

The value of the constant Node.DOCUMENT_POSITION_DISCONNECTED is 0x01.
Node.DOCUMENT_POSITION_PRECEDING

The value of the constant Node.DOCUMENT_POSITION_PRECEDING is 0x02.
Node.DOCUMENT_POSITION_FOLLOWING

The value of the constant Node.DOCUMENT_POSITION_FOLLOWING is 0x04.
Node.DOCUMENT_POSITION_CONTAINS

The value of the constant Node.DOCUMENT_POSITION_CONTAINS is 0x08.
Node.DOCUMENT_POSITION_CONTAINED_BY

The value of the constant Node.DOCUMENT_POSITION_CONTAINED_BY is 0x10.
Node.DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC

The value of the constant
Node.DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC is 0x20.

Objects that implement the Node interface:

190

H.2 Other Core interfaces

Properties of objects that implement the Node interface:
nodeName

This read-only property is a String.
nodeValue

This property is a String, can raise an object that implements the DOMException interface
on setting and can raise an object that implements the DOMException interface on
retrieval.

nodeType
This read-only property is a Number.

parentNode
This read-only property is an object that implements the Node interface.

childNodes
This read-only property is an object that implements the NodeList interface.

firstChild
This read-only property is an object that implements the Node interface.

lastChild
This read-only property is an object that implements the Node interface.

previousSibling
This read-only property is an object that implements the Node interface.

nextSibling
This read-only property is an object that implements the Node interface.

attributes
This read-only property is an object that implements the NamedNodeMap interface.

ownerDocument
This read-only property is an object that implements the Document interface.

namespaceURI
This read-only property is a String.

prefix
This property is a String and can raise an object that implements the DOMException
interface on setting.

localName
This read-only property is a String.

baseURI
This read-only property is a String.

textContent
This property is a String, can raise an object that implements the DOMException interface
on setting and can raise an object that implements the DOMException interface on
retrieval.

Functions of objects that implement the Node interface:
insertBefore(newChild, refChild)

This function returns an object that implements the Node interface.
The newChild parameter is an object that implements the Node interface.
The refChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

replaceChild(newChild, oldChild)
This function returns an object that implements the Node interface.

191

H.2 Other Core interfaces

The newChild parameter is an object that implements the Node interface.
The oldChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

removeChild(oldChild)
This function returns an object that implements the Node interface.
The oldChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

appendChild(newChild)
This function returns an object that implements the Node interface.
The newChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

hasChildNodes()
This function returns a Boolean.

cloneNode(deep)
This function returns an object that implements the Node interface.
The deep parameter is a Boolean.

normalize()
This function has no return value.

isSupported(feature, version)
This function returns a Boolean.
The feature parameter is a String.
The version parameter is a String.

hasAttributes()
This function returns a Boolean.

compareDocumentPosition(other)
This function returns a Number.
The other parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

isSameNode(other)
This function returns a Boolean.
The other parameter is an object that implements the Node interface.

lookupPrefix(namespaceURI)
This function returns a String.
The namespaceURI parameter is a String.

isDefaultNamespace(namespaceURI)
This function returns a Boolean.
The namespaceURI parameter is a String.

lookupNamespaceURI(prefix)
This function returns a String.
The prefix parameter is a String.

isEqualNode(arg)
This function returns a Boolean.
The arg parameter is an object that implements the Node interface.

getFeature(feature, version)
This function returns an object that implements the Object interface.
The feature parameter is a String.

192

H.2 Other Core interfaces

The version parameter is a String.
setUserData(key, data, handler)

This function returns an object that implements the any type interface.
The key parameter is a String.
The data parameter is an object that implements the any type interface.
The handler parameter is an object that implements the UserDataHandler interface.

getUserData(key)
This function returns an object that implements the any type interface.
The key parameter is a String.

Objects that implement the NodeList interface:
Properties of objects that implement the NodeList interface:

length
This read-only property is a Number.

Functions of objects that implement the NodeList interface:
item(index)

This function returns an object that implements the Node interface.
The index parameter is a Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item function with that
index.

Objects that implement the NamedNodeMap interface:
Properties of objects that implement the NamedNodeMap interface:

length
This read-only property is a Number.

Functions of objects that implement the NamedNodeMap interface:
getNamedItem(name)

This function returns an object that implements the Node interface.
The name parameter is a String.

setNamedItem(arg)
This function returns an object that implements the Node interface.
The arg parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

removeNamedItem(name)
This function returns an object that implements the Node interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

item(index)
This function returns an object that implements the Node interface.
The index parameter is a Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item function with that
index.

getNamedItemNS(namespaceURI, localName)
This function returns an object that implements the Node interface.
The namespaceURI parameter is a String.
The localName parameter is a String.

193

H.2 Other Core interfaces

This function can raise an object that implements the DOMException interface.
setNamedItemNS(arg)

This function returns an object that implements the Node interface.
The arg parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

removeNamedItemNS(namespaceURI, localName)
This function returns an object that implements the Node interface.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

Objects that implement the CharacterData interface:
Objects that implement the CharacterData interface have all properties and functions of the Node
interface as well as the properties and functions defined below.
Properties of objects that implement the CharacterData interface:

data
This property is a String, can raise an object that implements the DOMException interface
on setting and can raise an object that implements the DOMException interface on
retrieval.

length
This read-only property is a Number.

Functions of objects that implement the CharacterData interface:
substringData(offset, count)

This function returns a String.
The offset parameter is a Number.
The count parameter is a Number.
This function can raise an object that implements the DOMException interface.

appendData(arg)
This function has no return value.
The arg parameter is a String.
This function can raise an object that implements the DOMException interface.

insertData(offset, arg)
This function has no return value.
The offset parameter is a Number.
The arg parameter is a String.
This function can raise an object that implements the DOMException interface.

deleteData(offset, count)
This function has no return value.
The offset parameter is a Number.
The count parameter is a Number.
This function can raise an object that implements the DOMException interface.

replaceData(offset, count, arg)
This function has no return value.
The offset parameter is a Number.
The count parameter is a Number.
The arg parameter is a String.
This function can raise an object that implements the DOMException interface.

194

H.2 Other Core interfaces

Objects that implement the Attr interface:
Objects that implement the Attr interface have all properties and functions of the Node interface as
well as the properties and functions defined below.
Properties of objects that implement the Attr interface:

name
This read-only property is a String.

specified
This read-only property is a Boolean.

value
This property is a String and can raise an object that implements the DOMException
interface on setting.

ownerElement
This read-only property is an object that implements the Element interface.

schemaTypeInfo
This read-only property is an object that implements the TypeInfo interface.

isId
This read-only property is a Boolean.

Objects that implement the Element interface:
Objects that implement the Element interface have all properties and functions of the Node interface
as well as the properties and functions defined below.
Properties of objects that implement the Element interface:

tagName
This read-only property is a String.

schemaTypeInfo
This read-only property is an object that implements the TypeInfo interface.

Functions of objects that implement the Element interface:
getAttribute(name)

This function returns a String.
The name parameter is a String.

setAttribute(name, value)
This function has no return value.
The name parameter is a String.
The value parameter is a String.
This function can raise an object that implements the DOMException interface.

removeAttribute(name)
This function has no return value.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

getAttributeNode(name)
This function returns an object that implements the Attr interface.
The name parameter is a String.

setAttributeNode(newAttr)
This function returns an object that implements the Attr interface.
The newAttr parameter is an object that implements the Attr interface.
This function can raise an object that implements the DOMException interface.

195

H.2 Other Core interfaces

removeAttributeNode(oldAttr)
This function returns an object that implements the Attr interface.
The oldAttr parameter is an object that implements the Attr interface.
This function can raise an object that implements the DOMException interface.

getElementsByTagName(name)
This function returns an object that implements the NodeList interface.
The name parameter is a String.

getAttributeNS(namespaceURI, localName)
This function returns a String.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

setAttributeNS(namespaceURI, qualifiedName, value)
This function has no return value.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
The value parameter is a String.
This function can raise an object that implements the DOMException interface.

removeAttributeNS(namespaceURI, localName)
This function has no return value.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

getAttributeNodeNS(namespaceURI, localName)
This function returns an object that implements the Attr interface.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

setAttributeNodeNS(newAttr)
This function returns an object that implements the Attr interface.
The newAttr parameter is an object that implements the Attr interface.
This function can raise an object that implements the DOMException interface.

getElementsByTagNameNS(namespaceURI, localName)
This function returns an object that implements the NodeList interface.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

hasAttribute(name)
This function returns a Boolean.
The name parameter is a String.

hasAttributeNS(namespaceURI, localName)
This function returns a Boolean.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

196

H.2 Other Core interfaces

setIdAttribute(name, isId)
This function has no return value.
The name parameter is a String.
The isId parameter is a Boolean.
This function can raise an object that implements the DOMException interface.

setIdAttributeNS(namespaceURI, localName, isId)
This function has no return value.
The namespaceURI parameter is a String.
The localName parameter is a String.
The isId parameter is a Boolean.
This function can raise an object that implements the DOMException interface.

setIdAttributeNode(idAttr, isId)
This function has no return value.
The idAttr parameter is an object that implements the Attr interface.
The isId parameter is a Boolean.
This function can raise an object that implements the DOMException interface.

Objects that implement the Text interface:
Objects that implement the Text interface have all properties and functions of the CharacterData
interface as well as the properties and functions defined below.
Properties of objects that implement the Text interface:

isElementContentWhitespace
This read-only property is a Boolean.

wholeText
This read-only property is a String.

Functions of objects that implement the Text interface:
splitText(offset)

This function returns an object that implements the Text interface.
The offset parameter is a Number.
This function can raise an object that implements the DOMException interface.

replaceWholeText(content)
This function returns an object that implements the Text interface.
The content parameter is a String.
This function can raise an object that implements the DOMException interface.

Objects that implement the Comment interface:
Objects that implement the Comment interface have all properties and functions of the
CharacterData interface.

Properties of the TypeInfo Constructor function:
TypeInfo.DERIVATION_RESTRICTION

The value of the constant TypeInfo.DERIVATION_RESTRICTION is 0x00000001.
TypeInfo.DERIVATION_EXTENSION

The value of the constant TypeInfo.DERIVATION_EXTENSION is 0x00000002.
TypeInfo.DERIVATION_UNION

The value of the constant TypeInfo.DERIVATION_UNION is 0x00000004.
TypeInfo.DERIVATION_LIST

The value of the constant TypeInfo.DERIVATION_LIST is 0x00000008.

197

H.2 Other Core interfaces

Objects that implement the TypeInfo interface:
Properties of objects that implement the TypeInfo interface:

typeName
This read-only property is a String.

typeNamespace
This read-only property is a String.

Functions of objects that implement the TypeInfo interface:
isDerivedFrom(typeNamespaceArg, typeNameArg, derivationMethod)

This function returns a Boolean.
The typeNamespaceArg parameter is a String.
The typeNameArg parameter is a String.
The derivationMethod parameter is a Number.

Properties of the UserDataHandler Constructor function:
UserDataHandler.NODE_CLONED

The value of the constant UserDataHandler.NODE_CLONED is 1.
UserDataHandler.NODE_IMPORTED

The value of the constant UserDataHandler.NODE_IMPORTED is 2.
UserDataHandler.NODE_DELETED

The value of the constant UserDataHandler.NODE_DELETED is 3.
UserDataHandler.NODE_RENAMED

The value of the constant UserDataHandler.NODE_RENAMED is 4.
UserDataHandler.NODE_ADOPTED

The value of the constant UserDataHandler.NODE_ADOPTED is 5.
UserDataHandler function:

This function has no return value. The first parameter is a Number. The second parameter is a
String. The third parameter is an object that implements the any type interface. The fourth parameter
is an object that implements the Node interface. The fifth parameter is an object that implements the
Node interface.

Properties of the DOMError Constructor function:
DOMError.SEVERITY_WARNING

The value of the constant DOMError.SEVERITY_WARNING is 1.
DOMError.SEVERITY_ERROR

The value of the constant DOMError.SEVERITY_ERROR is 2.
DOMError.SEVERITY_FATAL_ERROR

The value of the constant DOMError.SEVERITY_FATAL_ERROR is 3.
Objects that implement the DOMError interface:

Properties of objects that implement the DOMError interface:
severity

This read-only property is a Number.
message

This read-only property is a String.
type

This read-only property is a String.
relatedException

This read-only property is an object that implements the Object interface.

198

H.2 Other Core interfaces

relatedData
This read-only property is an object that implements the Object interface.

location
This read-only property is an object that implements the DOMLocator interface.

DOMErrorHandler function:
This function returns a Boolean. The parameter is an object that implements the DOMError
interface.

Objects that implement the DOMLocator interface:
Properties of objects that implement the DOMLocator interface:

lineNumber
This read-only property is a Number.

columnNumber
This read-only property is a Number.

byteOffset
This read-only property is a Number.

utf16Offset
This read-only property is a Number.

relatedNode
This read-only property is an object that implements the Node interface.

uri
This read-only property is a String.

Objects that implement the DOMConfiguration interface:
Properties of objects that implement the DOMConfiguration interface:

parameterNames
This read-only property is an object that implements the DOMStringList interface.

Functions of objects that implement the DOMConfiguration interface:
setParameter(name, value)

This function has no return value.
The name parameter is a String.
The value parameter is an object that implements the any type interface.
This function can raise an object that implements the DOMException interface.

getParameter(name)
This function returns an object that implements the any type interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

canSetParameter(name, value)
This function returns a Boolean.
The name parameter is a String.
The value parameter is an object that implements the any type interface.

Objects that implement the CDATASection interface:
Objects that implement the CDATASection interface have all properties and functions of the Text
interface.

Objects that implement the DocumentType interface:
Objects that implement the DocumentType interface have all properties and functions of the Node
interface as well as the properties and functions defined below.

199

H.2 Other Core interfaces

Properties of objects that implement the DocumentType interface:
name

This read-only property is a String.
entities

This read-only property is an object that implements the NamedNodeMap interface.
notations

This read-only property is an object that implements the NamedNodeMap interface.
publicId

This read-only property is a String.
systemId

This read-only property is a String.
internalSubset

This read-only property is a String.
Objects that implement the Notation interface:

Objects that implement the Notation interface have all properties and functions of the Node interface
as well as the properties and functions defined below.
Properties of objects that implement the Notation interface:

publicId
This read-only property is a String.

systemId
This read-only property is a String.

Objects that implement the Entity interface:
Objects that implement the Entity interface have all properties and functions of the Node interface as
well as the properties and functions defined below.
Properties of objects that implement the Entity interface:

publicId
This read-only property is a String.

systemId
This read-only property is a String.

notationName
This read-only property is a String.

inputEncoding
This read-only property is a String.

xmlEncoding
This read-only property is a String.

xmlVersion
This read-only property is a String.

Objects that implement the EntityReference interface:
Objects that implement the EntityReference interface have all properties and functions of the Node
interface.

Objects that implement the ProcessingInstruction interface:
Objects that implement the ProcessingInstruction interface have all properties and functions of the
Node interface as well as the properties and functions defined below.
Properties of objects that implement the ProcessingInstruction interface:

target
This read-only property is a String.

200

H.2 Other Core interfaces

data
This property is a String and can raise an object that implements the DOMException
interface on setting.

Note: In addition of having DOMConfiguration [p.106] parameters exposed to the application using
the setParameter and getParameter, those parameters are also exposed as ECMAScript
properties on the DOMConfiguration object. The name of the parameter is converted into a property
name using a camel-case convention: the character ’-’ (HYPHEN-MINUS) is removed and the following
character is being replaced by its uppercase equivalent.

201

H.2 Other Core interfaces

202

H.2 Other Core interfaces

Appendix I: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including participants of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett-Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB and invited expert), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin
Nicol (INSO), Ian Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell),
Jeroen van Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former Chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C Team Contact and former Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray
Whitmer (iMall, Excite@Home, and Netscape/AOL, Chair), Rezaur Rahman (Intel), Rich Rollman
(Microsoft), Rick Gessner (Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs
(Microsoft), Sharon Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom
Pixley (Netscape/AOL), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

Many thanks to Andrew Clover, Petteri Stenius, Curt Arnold, Glenn A. Adams, Christopher Aillon, Scott
Nichol, François Yergeau, Anjana Manian, Susan Lesch, and Jeffery B. Rancier for their review and
comments of this document.

Special thanks to the DOM Conformance Test Suites contributors: Fred Drake, Mary Brady (NIST), Rick
Rivello (NIST), Robert Clary (Netscape), with a special mention to Curt Arnold.

I.1 Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

203

Appendix I: Acknowledgements

http://www.w3.org/DOM/Test
http://www.flightlab.com/cost
http://xml.apache.org/xerces-j
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

204

I.1 Production Systems

http://user.it.uu.se/~jan/html2ps.html

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Some of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString [p.24] . This indicates that indexing on a DOMString occurs in
units of 16 bits. This must not be misunderstood to mean that a DOMString can store arbitrary
16-bit units. A DOMString is a character string encoded in UTF-16; this means that the restrictions
of UTF-16 as well as the other relevant restrictions on character strings must be maintained. A single
character, for example in the form of a numeric character reference, may correspond to one or two
16-bit units.

ancestor
An ancestor node of any node A is any node above A in a tree model, where "above" means "toward
the root."

API
An API is an Application Programming Interface, a set of functions or methods used to access some
functionality.

anonymous type name
An anonymous type name is an implementation-defined, globally unique qualified name provided by
the processor for every anonymous type declared in a schema [p.208] .

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model [COM], a technology for building applications from
binary software components.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

descendant
A descendant node of any node A is any node below A in a tree model, where "below" means "away
from the root."

205

Glossary

document element
There is only one document element in a Document [p.41] . This element node is a child of the
Document node. See Well-Formed XML Documents in XML [XML 1.0].

document order
There is an ordering, document order, defined on all the nodes in the document corresponding to the
order in which the first character of the XML representation of each node occurs in the XML
representation of the document after expansion of general entities. Thus, the document element
[p.206] node will be the first node. Element nodes occur before their children. Thus, document order
orders element nodes in order of the occurrence of their start-tag in the XML (after expansion of
entities). The attribute nodes of an element occur after the element and before its children. The
relative order of attribute nodes is implementation-dependent.

ECMAScript
The programming language defined by the ECMA-262 standard [ECMAScript]. As stated in the
standard, the originating technology for ECMAScript was JavaScript [JavaScript]. Note that in the
ECMAScript binding, the word "property" is used in the same sense as the IDL term "attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. See
Logical Structures in XML [XML 1.0].

information item
An information item is an abstract representation of some component of an XML document. See the
[XML Information Set] for details.

logically-adjacent text nodes
Logically-adjacent text nodes are Text [p.95] or CDATASection [p.114] nodes that can be visited
sequentially in document order [p.206] or in reversed document order without entering, exiting, or
passing over Element [p.85] , Comment [p.99] , or ProcessingInstruction [p.118] nodes.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML 4.01]

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually
inherit from one another.

206

Glossary

http://www.w3.org/TR/2004/REC-xml-20040204#dt-root
http://www.w3.org/TR/2004/REC-xml-20040204#sec-logical-struct

language binding
A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document
Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

local name
A local name is the local part of a qualified name. This is called the local part in Namespaces in
XML [XML Namespaces].

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a
document. The model might be a tree, or a directed graph, or something else.

namespace prefix
A namespace prefix is a string that associates an element or attribute name with a namespace URI in
XML. See namespace prefix in Namespaces in XML [XML Namespaces].

namespace URI
A namespace URI is a URI that identifies an XML namespace. This is called the namespace name in
Namespaces in XML [XML Namespaces]. See also sections 1.3.2 "DOM URIs" and 1.3.3 "XML
Namespaces" regarding URIs and namespace URIs handling and comparison in the DOM APIs.

namespace well-formed
A node is a namespace well-formed XML node if it is a well-formed [p.208] node, and follows the
productions and namespace constraints. If [XML 1.0] is used, the constraints are defined in [XML
Namespaces]. If [XML 1.1] is used, the constraints are defined in [XML Namespaces 1.1].

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

partially valid
A node in a DOM tree is partially valid if it is well formed [p.208] (this part is for comments and
processing instructions) and its immediate children are those expected by the content model. The
node may be missing trailing required children yet still be considered partially valid.

qualified name
A qualified name is the name of an element or attribute defined as the concatenation of a local name
(as defined in this specification), optionally preceded by a namespace prefix and colon character. See
Qualified Names in Namespaces in XML [XML Namespaces].

read only node
A read only node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a read only node can
possibly be moved, when it is not itself contained in a read only node.

root node
The root node is a node that is not a child of any other node. All other nodes are children or other
descendants of the root node.

207

Glossary

http://www.w3.org/TR/DOM-Level-3-Core/core.html#baseURIs-Considerations
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Namespaces-Considerations
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Namespaces-Considerations
http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-qualnames

schema
A schema defines a set of structural and value constraints applicable to XML documents. Schemas
can be expressed in schema languages, such as DTD, XML Schema, etc.

sibling
Two nodes are siblings if they have the same parent node.

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from [Unicode].

token
An information item such as an XML Name which has been tokenized [p.208] .

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed
A node is a well-formed XML node if its serialized form, without doing any transformation during its
serialization, matches its respective production in [XML 1.0] or [XML 1.1] (depending on the XML
version in use) with all well-formedness constraints related to that production, and if the entities
which are referenced within the node are also well-formed. If namespaces for XML are in use, the
node must also be namespace well-formed [p.207] .

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML which is completely
described in this document. The goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML. [XML 1.0]

208

Glossary

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

K.1 Normative References
[ECMAScript]

ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
Standard ECMA-262, December 1999. This version of the ECMAScript Language is available from
http://www.ecma-international.org/.

[ISO/IEC 10646]
ISO/IEC 10646-2000 (E). Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane, as, from time to time, amended, replaced
by a new edition or expanded by the addition of new parts. [Geneva]: International Organization for
Standardization, 2000. See also International Organization for Standardization, available at
http://www.iso.ch, for the latest version.

[Java]
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls

[OMG IDL]
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm.

[Unicode]
The Unicode Standard, Version 4, ISBN 0-321-18578-1, as updated from time to time by the
publication of new versions. The Unicode Consortium, 2000. See also Versions of the Unicode
Standard, available at http://www.unicode.org/unicode/standard/versions, for latest version and
additional information on versions of the standard and of the Unicode Character Database.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Third Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, E. Maler, and F. Yergeau, Editors. World Wide Web Consortium, 4 February
2004, revised 10 February 1998 and 6 October 2000. This version of the XML 1.0 Recommendation
is http://www.w3.org/TR/2004/REC-xml-20040204. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

[XML 1.1]
XML 1.1, T. Bray, and al., Editors. World Wide Web Consortium, 4 February 2004. This version of
the XML 1.1 Recommendation is http://www.w3.org/TR/2004/REC-xml11-20040204. The latest
version of XML 1.1 is available at http://www.w3.org/TR/xml11.

[XML Base]
XML Base, J. Marsh, Editor. World Wide Web Consortium, June 2001. This version of the XML
Base Recommendation is http://www.w3.org/TR/2001/REC-xmlbase-20010627. The latest version
of XML Base is available at http://www.w3.org/TR/xmlbase.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors. World Wide Web
Consortium, 4 February 2004, revised 24 October 2001. This version of the XML Information Set

209

References

http://www.w3.org/TR
http://www.iso.ch/
http://java.sun.com/docs/books/jls
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.unicode.org/unicode/standard/versions
http://www.unicode.org/unicode/standard/versions
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/

Recommendation is http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of
XML Information Set is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the Namespaces in XML Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

[XML Namespaces 1.1]
Namespaces in XML 1.1, T. Bray, D. Hollander, A. Layman, and R. Tobin, Editors. World Wide
Web Consortium, 4 February 2004. This version of the Namespaces in XML 1.1 Recommendation is
http://www.w3.org/TR/2004/REC-xml-names11-20040204. The latest version of Namespaces in
XML 1.1 is available at http://www.w3.org/TR/xml-names11/.

[XML Schema Part 1]
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 2 May 2001. This version of the XML Part 1 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of XML Schema Part
1 is available at http://www.w3.org/TR/xmlschema-1.

[XPointer]
XPointer Framework, P. Grosso, E. Maler, J. Marsh, and N. Walsh., Editors. World Wide Web
Consortium, 25 March 2003. This version of the XPointer Framework Recommendation is
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/. The latest version of XPointer
Framework is available at http://www.w3.org/TR/xptr-framework/.

K.2 Informative References
[Canonical XML]

Canonical XML Version 1.0, J. Boyer, Editor. World Wide Web Consortium, 15 March 2001. This
version of the Canonical XML Recommendation is
http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version of Canonical XML is
available at http://www.w3.org/TR/xml-c14n.

[COM]
The Microsoft Component Object Model, Microsoft Corporation. Available at
http://www.microsoft.com/com.

[CORBA]
The Common Object Request Broker: Architecture and Specification, version 2. Object Management
Group. The latest version of CORBA version 2.0 is available at
http://www.omg.org/technology/documents/formal/corba_2.htm.

[DOM Level 1]
DOM Level 1 Specification, V. Apparao, et al., Editors. World Wide Web Consortium, 1 October
1998. This version of the DOM Level 1 Recommendation is
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001. The latest version of DOM Level 1 is
available at http://www.w3.org/TR/REC-DOM-Level-1.

[DOM Level 2 Core]
Document Object Model Level 2 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 13 November 2000. This version of the DOM Level 2 Core Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest version of DOM Level

210

K.2 Informative References

http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/2004/REC-xml-names11-20040204/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/xml-c14n
http://www.microsoft.com/com/
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-2-Core

2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core.
[DOM Level 3 Events]

Document Object Model Level 3 Events Specification, P. Le Hégaret, T. Pixley, Editors. World Wide
Web Consortium, November 2003. This version of the Document Object Model Level 3 Events
specification is http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107. The latest
version of Document Object Model Level 3 Events is available at
http://www.w3.org/TR/DOM-Level-3-Events.

[DOM Level 3 Load and Save]
Document Object Model Level 3 Load and Save Specification, J. Stenback, A. Heninger, Editors.
World Wide Web Consortium, 7 April 2004. This version of the DOM Level 3 Load and Save
Recommendation is http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407. The latest
version of DOM Level 3 Load and Save is available at http://www.w3.org/TR/DOM-Level-3-LS.

[DOM Level 2 HTML]
Document Object Model Level 2 HTML Specification, J. Stenback, et al., Editors. World Wide Web
Consortium, 9 January 2003. This version of the Document Object Model Level 2 HTML
Recommendation is http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109. The latest
version of Document Object Model Level 2 HTML is available at
http://www.w3.org/TR/DOM-Level-2-HTML.

[DOM Level 3 Validation]
Document Object Model Level 3 Validation Specification, B. Chang, J. Kesselman, R. Rahman,
Editors. World Wide Web Consortium, 27 January 2003. This version of the DOM Level 3
Validation Recommendation is http://www.w3.org/TR/2004/REC-DOM-Level-3-Val-20040127/.
The latest version of DOM Level 3 Validation is available at
http://www.w3.org/TR/DOM-Level-3-Val.

[DOM Level 3 XPath]
Document Object Model Level 3 XPath Specification, R. Whitmer, Editor. World Wide Web
Consortium, March 2003. This version of the Document Object Model Level 3 XPath specification is
http://www.w3.org/TR/2004/NOTE-DOM-Level-3-XPath-20040226. The latest version of
Document Object Model Level 3 XPath is available at http://www.w3.org/TR/DOM-Level-3-XPath.

[HTML 4.01]
HTML 4.01 Specification, D. Raggett, A. Le Hors, and I. Jacobs, Editors. World Wide Web
Consortium, 17 December 1997, revised 24 April 1998, revised 24 December 1999. This version of
the HTML 4.01 Recommendation is http://www.w3.org/TR/1999/REC-html401-19991224. The
latest version of HTML 4 is available at http://www.w3.org/TR/html4.

[Java IDL]
Java IDL. Sun Microsystems. Available at http://java.sun.com/products/jdk/idl/

[JavaScript]
JavaScript Resources. Netscape Communications Corporation. Available at
http://devedge.netscape.com/central/javascript/

[JScript]
JScript Resources. Microsoft. Available at
http://msdn.microsoft.com/library/en-us/script56/html/js56jslrfjscriptlanguagereference.asp

[MathML 2.0]
Mathematical Markup Language (MathML) Version 2.0 (Second Edition), D. Carlisle, P. Ion, R.
Miner, N. Poppelier, Editors. World Wide Web Consortium, 21 October 2001, revised 21 February
2001. This version of the Math 2.0 Recommendation is

211

K.2 Informative References

http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/2004/REC-DOM-Level-3-Val-20040127/
http://www.w3.org/TR/DOM-Level-3-Val
http://www.w3.org/TR/2004/NOTE-DOM-Level-3-XPath-20040226/
http://www.w3.org/TR/DOM-Level-3-XPath
http://www.w3.org/TR/DOM-Level-3-XPath
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/html4
http://java.sun.com/products/jdk/idl/
http://devedge.netscape.com/central/javascript/
http://msdn.microsoft.com/library/en-us/script56/html/js56jslrfjscriptlanguagereference.asp
http://www.w3.org/TR/2003/REC-MathML2-20031021

http://www.w3.org/TR/2003/REC-MathML2-20031021. The latest version of MathML 2.0 is
available at http://www.w3.org/TR/MathML2.

[MIDL]
MIDL Language Reference. Microsoft. Available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/midl_language_reference.asp.

[IETF RFC 2396]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

[SAX]
Simple API for XML, D. Megginson and D. Brownell, Maintainers. Available at
http://www.saxproject.org/.

[SVG 1.1]
Scalable Vector Graphics (SVG) 1.1 Specification, J. Ferraiolo, 藤沢 淳
(FUJISAWA Jun), and D. Jackson, Editors. World Wide Web Consortium, 14 January 2003. This
version of the SVG 1.1 Recommendation is http://www.w3.org/TR/2003/REC-SVG11-20030114/.
The latest version of SVG 1.1 is available at http://www.w3.org/TR/SVG.

[XPath 1.0]
XML Path Language (XPath) Version 1.0, J. Clark and S. DeRose, Editors. World Wide Web
Consortium, 16 November 1999. This version of the XPath 1.0 Recommendation is
http://www.w3.org/TR/1999/REC-xpath-19991116. The latest version of XPath 1.0 is available at
http://www.w3.org/TR/xpath.

212

K.2 Informative References

http://www.w3.org/TR/MathML2
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/midl/midl/midl_language_reference.asp
http://www.ietf.org/rfc/rfc2396.txt
http://www.saxproject.org/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/SVG
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xpath

Index
"canonical-form" 106, 107 "cdata-sections" 106, 107 "check-character-normalization" 25, 107

"comments" 106, 107 "datatype-normalization" 106, 108 "element-content-whitespace" 106, 108

"entities" 106, 108 "error-handler" 54, 105, 113, 108 "infoset"

"namespace-declarations" 106, 109 "namespaces" 50, 49, 106, 109 "normalize-characters" 23, 25, 71, 106, 109

"schema-location" "schema-type" 106, 110 "split-cdata-sections" 105, 110

"validate" 43, 106, 110 "validate-if-schema" 106, 111 "well-formed" 106, 111

16-bit unit 23, 24, 25, 78, 79, 80, 79, 80, 98, 205

adoptNode ancestor 67, 71, 64, 205 anonymous type name 99, 205

API 13, 13, 15, 21, 23, 23, 205 appendChild appendData

Attr ATTRIBUTE_NODE attributes

baseURI byteOffset

Canonical XML 106, 210 canSetParameter CDATA_SECTION_NODE

CDATASection CharacterData child 21, 26, 205

childNodes client application 13, 205 cloneNode

columnNumber COM 13, 15, 23, 205, 210 Comment

COMMENT_NODE compareDocumentPosition contains 33, 34

containsNS convenience 42, 85, 205 CORBA 13, 210

createAttribute createAttributeNS createCDATASection

createComment createDocument createDocumentFragment

createDocumentType createElement createElementNS

createEntityReference createProcessingInstruction createTextNode

data 79, 119 data model 13, 205 deleteData

DERIVATION_EXTENSION DERIVATION_LIST DERIVATION_RESTRICTION

DERIVATION_UNION descendant 26, 52, 88, 88, 116, 118, 205 doctype

Document document element 42, 55, 206 document order 51, 52, 66, 88, 88, 206

DOCUMENT_FRAGMENT_NODE DOCUMENT_NODE DOCUMENT_POSITION_CONTAINED_BY

DOCUMENT_POSITION_CONTAINS DOCUMENT_POSITION_DISCONNECTED DOCUMENT_POSITION_FOLLOWING

DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC DOCUMENT_POSITION_PRECEDING DOCUMENT_TYPE_NODE

documentElement DocumentFragment DocumentType

documentURI DOM Level 1 114, 210 DOM Level 2 Core 28, 30, 114, 210

DOM Level 2 HTML 30, 37, 42, 42, 61, 211 DOM Level 3 Events 17, 211
DOM Level 3 Load and Save 17, 21, 25, 28,
106, 211

DOM Level 3 Validation 17, 33, 211 DOM Level 3 XPath 17, 211 domConfig

DOMConfiguration DOMError DOMErrorHandler

DOMException DOMImplementation DOMImplementationList

DOMImplementationSource DOMLocator DOMObject

DOMString DOMSTRING_SIZE_ERR DOMStringList

213

Index

DOMTimeStamp DOMUserData

ECMAScript 13, 22, 22, 206, 209 Element 85, 21, 22, 25, 26, 206 ELEMENT_NODE

entities Entity ENTITY_NODE

ENTITY_REFERENCE_NODE EntityReference extension

firstChild

getAttribute getAttributeNode getAttributeNodeNS

getAttributeNS getDOMImplementation getDOMImplementationList

getElementById getElementsByTagName 51, 88 getElementsByTagNameNS 52, 88

getFeature 39, 66 getName getNamedItem

getNamedItemNS getNamespaceURI getParameter

getUserData

handle handleError hasAttribute

hasAttributeNS hasAttributes hasChildNodes

hasFeature HIERARCHY_REQUEST_ERR hosting implementation 16, 206

HTML 13, 206
HTML 4.01 21, 26, 38, 37, 74, 77, 76, 87, 91,
90, 87, 93, 88, 89, 206, 211

IETF RFC 2396 26, 212 implementation importNode

INDEX_SIZE_ERR information item 95, 206 inheritance 23, 206

inputEncoding 43, 117 insertBefore insertData

interface 13, 206 internalSubset INUSE_ATTRIBUTE_ERR

INVALID_ACCESS_ERR INVALID_CHARACTER_ERR INVALID_MODIFICATION_ERR

INVALID_STATE_ERR isDefaultNamespace isDerivedFrom

isElementContentWhitespace isEqualNode isId

ISO/IEC 10646 23, 106, 209 isSameNode isSupported

item 33, 35, 73, 75

Java 13, 209 Java IDL 13, 211 JavaScript 13, 206, 211

JScript 13, 211

language binding 13, 207 lastChild length 33, 34, 35, 73, 74, 79

lineNumber list live 22, 73, 73

local name 48, 46, 52, 74, 76, 87, 90, 87, 93, 88, 89, 94, 207 localName location

logically-adjacent text nodes 96, 97, 206 lookupNamespaceURI lookupPrefix

MathML 2.0 28, 211 message method 17, 207

MIDL 13, 212 model 13, 207

name 84, 116 NamedNodeMap NameList

214

Index

namespace prefix 26, 49, 62, 116, 118, 207
namespace URI 26, 37, 48, 45, 48, 46, 52, 55,
61, 74, 76, 87, 91, 90, 87, 93, 88, 89, 94, 99,
118, 207

namespace well-formed 54, 207

NAMESPACE_ERR namespaceURI nextSibling

NO_DATA_ALLOWED_ERR NO_MODIFICATION_ALLOWED_ERR Node

NODE_ADOPTED NODE_CLONED NODE_DELETED

NODE_IMPORTED NODE_RENAMED NodeList

nodeName nodeType nodeValue

normalize normalizeDocument NOT_FOUND_ERR

NOT_SUPPORTED_ERR Notation NOTATION_NODE

notationName notations

object model 13, 15, 207 OMG IDL 13, 22, 23, 209 ownerDocument

ownerElement

parameterNames parent 62, 207 parentNode

partially valid 33, 207 prefix previousSibling

PROCESSING_INSTRUCTION_NODE ProcessingInstruction publicId 116, 116, 117

qualified name 26, 38, 37, 48, 45, 48, 46, 55, 62, 61, 84, 86,
91, 207

read only node 54, 62, 65, 62, 97, 115, 116, 116, 118, 207 relatedData relatedException

relatedNode removeAttribute removeAttributeNode

removeAttributeNS removeChild removeNamedItem

removeNamedItemNS renameNode replaceChild

replaceData replaceWholeText restriction

root node 41, 207

SAX 106, 212 schema 99, 106, 208 schemaTypeInfo 84, 86

setAttribute setAttributeNode setAttributeNodeNS

setAttributeNS setIdAttribute setIdAttributeNode

setIdAttributeNS setNamedItem setNamedItemNS

setParameter setUserData severity

SEVERITY_ERROR SEVERITY_FATAL_ERROR SEVERITY_WARNING

sibling 40, 98, 208 specified splitText

strictErrorChecking string comparison 25, 26, 208 substringData

SVG 1.1 28, 84, 212 SYNTAX_ERR systemId 116, 116, 117

tagName target Text

TEXT_NODE textContent token 119, 208

tokenized 81, 208 type TYPE_MISMATCH_ERR

TypeInfo typeName typeNamespace

Unicode 23, 106, 106, 208, 209 union uri

215

Index

UserDataHandler utf16Offset

VALIDATION_ERR value

well-formed 40, 106, 208 wholeText WRONG_DOCUMENT_ERR

XML 13, 208
XML 1.0 16, 21, 26, 38, 37, 43, 43, 99, 99,
106, 114, 116, 118, 206, 206, 207, 208, 208,
209

XML 1.1 23, 25, 26, 52, 43, 106, 207, 208,
209

XML Base 28, 209
XML Information Set 13, 15, 28, 99, 106, 206,
209

XML Namespaces 26, 26, 28, 37, 48, 46, 55,
61, 62, 74, 77, 76, 87, 91, 90, 87, 93, 89, 106,
207, 207, 207, 207, 207, 210

XML Namespaces 1.1 26, 26, 106, 207, 210
XML Schema Part 1 83, 99, 101, 101, 101,
101, 106, 210

xmlEncoding 43, 118

xmlStandalone xmlVersion 43, 118 XPath 1.0

XPointer 71, 83, 210

216

Index

	Document Object Model †DOM‡ Level 3 Core Specification
	Version 1.0
	W3C Recommendation 07 April 2004
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	W3C Copyright Notices and Licenses
	W3C® Document Copyright Notice and License
	W3C® Software Copyright Notice and License
	W3C® Short Software Notice

	What is the Document Object Model?
	Introduction
	What the Document Object Model is
	What the Document Object Model is not
	Where the Document Object Model came from
	Entities and the DOM Core
	DOM Architecture
	Conformance
	DOM Interfaces and DOM Implementations

	1. Document Object Model Core
	1.1 Overview of the DOM Core Interfaces
	1.1.1 The DOM Structure Model
	1.1.2 Memory Management
	1.1.3 Naming Conventions
	1.1.4 Inheritance vs. Flattened Views of the API

	1.2 Basic Types
	1.2.1 The DOMString Type
	1.2.2 The DOMTimeStamp Type
	1.2.3 The DOMUserData Type
	1.2.4 The DOMObject Type

	1.3 General Considerations
	1.3.1 String Comparisons in the DOM
	1.3.2 DOM URIs
	1.3.3 XML Namespaces
	1.3.4 Base URIs
	1.3.5 Mixed DOM Implementations
	1.3.6 DOM Features
	1.3.7 Bootstrapping

	1.4 Fundamental Interfaces: Core Module
	1.5 Extended Interfaces: XML Module

	Appendix A: Changes
	A.1 New sections
	A.2 Changes to DOM Level 2 Core interfaces and exceptions
	A.3 New DOM features
	A.4 New types
	A.5 New interfaces
	A.6 Objects

	Appendix B: Namespaces Algorithms
	B.1 Namespace Normalization
	B.1.1 Scope of a Binding
	B.1.2 Conflicting Namespace Declaration

	B.2 Namespace Prefix Lookup
	B.3 Default Namespace Lookup
	B.4 Namespace URI Lookup

	Appendix E: Accessing code point boundaries
	E.1 Introduction
	E.2 Methods

	Appendix F: IDL Definitions
	
	dom.idl:

	Appendix D: Configuration Settings
	D.1 Configuration Scenarios

	Appendix C: Infoset Mapping
	C.1 Document Node Mapping
	C.1.1 Infoset to Document Node
	C.1.2 Document Node to Infoset

	C.2 Element Node Mapping
	C.2.1 Infoset to Element Node
	C.2.2 Element Node to Infoset

	C.3 Attr Node Mapping
	C.3.1 Infoset to Attr Node
	C.3.2 Attr Node to Infoset

	C.4 ProcessingInstruction Node Mapping
	C.4.1 Infoset to ProcessingInstruction Node
	C.4.2 ProcessingInstruction Node to Infoset

	C.5 EntityReference Node Mapping
	C.5.1 Infoset to EntityReference Node
	C.5.2 EntityReference Node to Infoset

	C.6 Text and CDATASection Nodes Mapping
	C.6.1 Infoset to Text Node
	C.6.2 Text and CDATASection Nodes to Infoset

	C.7 Comment Node Mapping
	C.7.1 Infoset to Comment Node
	C.7.2 Comment Node to Infoset

	C.8 DocumentType Node Mapping
	C.8.1 Infoset to DocumentType Node
	C.8.2 DocumentType Node to Infoset

	C.9 Entity Node Mapping
	C.9.1 Infoset to Entity Node
	C.9.2 Entity Node to Infoset

	C.10 Notation Node Mapping
	C.10.1 Infoset to Notation Node
	C.10.2 Notation Node to Infoset

	Appendix G: Java Language Binding
	G.1 Java Binding Extension
	org/w3c/dom/bootstrap/DOMImplementationRegistry.java:

	G.2 Other Core interfaces
	org/w3c/dom/DOMException.java:
	org/w3c/dom/DOMStringList.java:
	org/w3c/dom/NameList.java:
	org/w3c/dom/DOMImplementationList.java:
	org/w3c/dom/DOMImplementationSource.java:
	org/w3c/dom/DOMImplementation.java:
	org/w3c/dom/DocumentFragment.java:
	org/w3c/dom/Document.java:
	org/w3c/dom/Node.java:
	org/w3c/dom/NodeList.java:
	org/w3c/dom/NamedNodeMap.java:
	org/w3c/dom/CharacterData.java:
	org/w3c/dom/Attr.java:
	org/w3c/dom/Element.java:
	org/w3c/dom/Text.java:
	org/w3c/dom/Comment.java:
	org/w3c/dom/TypeInfo.java:
	org/w3c/dom/UserDataHandler.java:
	org/w3c/dom/DOMError.java:
	org/w3c/dom/DOMErrorHandler.java:
	org/w3c/dom/DOMLocator.java:
	org/w3c/dom/DOMConfiguration.java:
	org/w3c/dom/CDATASection.java:
	org/w3c/dom/DocumentType.java:
	org/w3c/dom/Notation.java:
	org/w3c/dom/Entity.java:
	org/w3c/dom/EntityReference.java:
	org/w3c/dom/ProcessingInstruction.java:

	Appendix H: ECMAScript Language Binding
	H.1 ECMAScript Binding Extension
	H.2 Other Core interfaces

	Appendix I: Acknowledgements
	I.1 Production Systems

	Glossary
	References
	K.1 Normative References
	K.2 Informative References

	Index

