
 125

Practical Analysis of TCP Implementations:
Tahoe, Reno, NewReno

Bogdan Moraru
Technical University

of Cluj-Napoca
Bogdan.Moraru@

com.utcluj.ro

Flavius Copaciu
Technical University

of Cluj-Napoca
Flavius.Copaciu@

com.utcluj.ro

Gabriel Lazar
Technical University

of Cluj-Napoca
Gabriel.Lazar@

com.utcluj.ro

Virgil Dobrota
Technical University

of Cluj-Napoca
Virgil.Dobrota@

com.utcluj.ro

Abstract

The paper presents the experimental evaluation
of the existing TCP implementations: Tahoe without
Fast Retransmit, Reno, New-Reno. The short time
analysis involved a software tool called TBIT (TCP
Behavior Inference Tool), which was designed by
AT&T Center for Internet Research. It generates
short TCP traffic (about 25 segments), with the 13th
and the 16th segments intentionally dropped.
Depending on the type of TCP implementation the
behavior was different, due to the activation/missing
of the following congestion control algorithms:
"Slow-Start", "Congestion Avoidance", "Fast
Recovery" and "Fast Retransmit". TCP segments
were captured at both ends of the TCP connection
using tcpdump tool and then the data was analyzed
with several programs (tcptrace, xplot and
proprietary programs developed for Linux Red Hat).

1. Introduction

During the last years, computer networks have
experienced tremendous growth. More and more
computers get connected to both private and public
networks, the most common protocol stack used
being TCP/IP.

Nowadays it is difficult to identify the
congestion control algorithms that are currently
implemented by various machines in Internet. The
TCP header does not provide any information about
them.

Another important issue is the way that these
algorithms are implemented in different operating
systems. By this time, the most frequent TCP
implementation for clients is based on the Windows
2000 kernel. On the other hand, most Internet
servers use various FreeBSD or Linux-based
versions.

The related work on TCP congestion control
covers at least two major issues. The first one

includes simulations based on theoretical analysis of
TCP implementations, such as in [1]. Although new
ideas could be tested, this kind of work is not always
close to real implementations from the operating
system’s kernel. For this reason, a second major
issue is focused on real TCP implementations, such
as in [2].

TCP is trying to provide reliable data
transmission between two entities. It implies anyway
to handle packet losses, that are due to transmission
errors or traffic congestion.

2. TCP congestion control

Let us define the following parameters:

• sender maximum segment size (smss)
represents the maximum amount of data that
can be sent in a single TCP segment,
without including the header.

• sender’s window (swnd) represents the
maximum number of bytes that the can be
sent. Its value is the lowest between
receiver’s window and congestion window.

• receiver’s window (rwnd) is the latest
window advertised by the receiver.

• congestion window (cwnd) is a TCP state
variable, limiting the amount of data that can
be sent.

• loss window (lw) is the value of the
congestion window after a packet loss has
been detected.

• slow-start threshold (ssthresh) is another
TCP state variable that determines the
congestion control algorithm to be
employed: either slow-start (if cwnd ≤
ssthresh) , either congestion avoidance (if
cwnd ≥ ssthresh).

Basic TCP congestion control is done using

Slow-Start and Congestion Avoidance algorithms,
based on the work initiated by Van Jacobson.

 126

According to [3] these algorithms are mandatory,
but they could be accompanied by two new ones:
Fast Retransmit and Fast Recovery.

2.1 Slow-Start and Congestion Avoidance

These two algorithms must be implemented by

TCP entities in order to control the amount of data
sent over the network.

The Slow-Start, improperly called like this,
actually increases exponentially the size of the
congestion window. It is used by a TCP entity at the
beginning of a transmission or after detecting a
packet loss. The purpose of Slow-Start is to fill as
soon as possible a transmission channel.

Figure 1. Slow-Start and
Congestion Avoidance

After the congestion window has reached the

threshold value, the Congestion Avoidance
algorithm is employed. It continues to increase
linearly the congestion window, adding up to one
SMSS but not less then one byte. In both cases a
retransmission timer is used for every packet. The
timeout signals the loss of the packet. This leads to
the retransmission of that packet and halving of the
Slow-Start threshold. The congestion window is also
set to the value of the loss window.

2.2 Fast Recovery and Fast Retransmit

After implementing the previous two algorithms,
new problems arise. The first one is related to the
packet loss detection. Normally a packet loss is
inferred based on the timeout of the retransmission
timer. This, however, may lead to significant delays
in data transmissions, so another way to determine
packet loss has been added to TCP.

Under normal circumstances a TCP entity must
send a duplicate ACK for every packet that arrives
out of sequence. A packet may be received out of
sequence due to packet duplication by the network,
packet delays or loss.

The Fast Retransmission algorithm considers that
a packet has been lost when it receives 3 duplicate
ACKs, before the timeout of the retransmission
timer. In this way valuable time is saved.

The second problem is related to the drastic
decrease of the congestion window after a packet
loss detection. If a packet is lost during Slow-Start
or Congestion Avoidance the value of the
congestion window is set to the value of the loss
window (1 SMSS). The Fast Recovery algorithm
tackles this problem. The new value of the
congestion window after a packet loss is detected by
the Fast Retransmission is set to ssthresh + 3 SMSS.
This is called “artificial inflation” of the congestion
window. Beside that, for every new duplicate ACK
received the congestion window is further increased
with 1 SMSS.

3. Tools and Environment

3.1 Tools

In order to identify the TCP implementation

within the operating system’s kernel, an apache web
server should run on the tested host. This software is
free and there are ports available for all the systems
we tested.

The TCP packets exchanged between the testing
and the tested system were captured using tcpdump
and stored for analysis. On Windows systems
ethereal was preferred. The most important tool
we used was TBIT (TCP Behavior Inference Tool).

This tool was developed at AT&T Center for
Internet Research and it can be used to characterize
the behavior of a TCP implementation from a distant
machine running a web server.

Generally speaking TBIT works like a regular
web browser: it establishes a TCP connection to the
web server and requires a web page. TBIT builds
it’s own TCP packets and uses an IP socket to send
them to the server. It also uses a Berkley Packet
Filter to prevent the TCP packages received from
the web server from reaching the operating systems
kernel and to redirect them towards TBIT. Then
TBIT creates controlled packet loss by confirming
only certain received packets. The web server
interprets those losses as a sign of congestion and
reacts according to the congestion control
algorithms it implements. This reaction can be
analyzed, the algorithms used can be recognized and
the TCP version estimated.

3.2 Network Configuration

In order to perform the experiments we used 2

machines: the testing system and the tested system.
The testing machine was based on FreeBSD 4.5 with
a recompiled kernel (according to TBIT
specifications), TBIT and tcpdump. On the tested
system we installed various versions of FreeBSD,
Linux and Windows. A web server plus tcpdump or
ethereal ran on the system. The testbed
configuration is presented in Figure 2.

 127

Figure 2. Testbed Configuration

The tests were performed as follows:

1. The http daemon was started on the tested
system.

2. tcpdump was started on both systems. The
captured packets were written into a file for
future analysis.

3. TBIT was started with the required parameters
on the testing system. The TBIT output was
redirected to another file for analysis.

4. After the TBIT test was finished, both the
tcpdump and httpd were stopped.

At the end of the tests we proved that both the

TBIT results and those from the dump files
converged. They are indicating the same TCP
implementation.

4. Experimental Results

4.1. TCP Implementations

According to [2],[4], [5] the most popular TCP
implementations are the following:

• Tahoe without Fast Retransmit: includes

Slow-Start, Congestion Avoidance.
• Tahoe: includes also Fast Retransmit.
• Reno: adds Fast Recovery to Tahoe TCP.
• New-Reno: enhanced Reno TCP using a

modified version of Fast Recovery.
• Reno Plus: on some Solaris systems.
• SACK: uses selective acknowledgements.

 Other current TCP implementations are Vegas,
Peach, ATCP etc. As we can see, the differences
between versions are related to the congestion
control algorithms involved. We can exploit this
observation in order to determine the TCP
implementation on a certain machine.

4.2. Tahoe without Fast Retransmit

The TCP sender that implements Tahoe without

Fast Retransmit does not count the duplicate ACKs
in order to determine if a packet has been lost. The
sender infers that a packet has been lost only when
the retransmission timer expires.

Figure 3. Tahoe without Fast Retransmit

 128

This implementation includes two algorithms
only: Slow Start and Congestion Avoidance. Figure
3 describes the working mode of this
implementation:

1. The first 12 packets are acknowledged

appropriately.
2. Packet 13 is dropped.
3. Packets 14 and 15 are acknowledged, but the

ACKs sent are duplicate ACKs for segment 12
4. Packet 16 is dropped
5. Packet 17 is acknowledged, but the ACK sent is

a duplicate ACK for segment 12
6. The last 5 segments were not acknowledged

properly so the sender cannot send anymore
packets.

7. The transmission restarts (with Slow Start
algorithm) when the retransmission timer for
packet 13 expires (timeout). Segment 13 is
retransmitted.

8. The ACK generated because of the correct
reception of packet 13 is the ACK for packet
15, because packets 14 and 15 are already in the
receiver’s buffer. This ACK segment
acknowledges segments 13, 14 and 15.

9. Packet 16 is retransmitted, but there is also an
useless retransmission of packet 17 because this
packet is already in the receiver’s buffer

TCP TahoeNoFR is characterized by a

retransmission timeout for segment 13 and an
useless retransmission of segment 17.

 The situation when multiple packets are lost
from one window is almost similar with the situation
when there is only one packet lost from that
window. The first lost packet will generate a
retransmission timeout (a lot of time wasted), and all
the lost packets will be retransmitted immediately
afterwards.

This implementation performance is very poor
especially when at least one packet per window is
lost and packet loss happens very often. This would
lead to many timeouts.

4.3. Tahoe TCP

Tahoe implementation added a number of new

algorithms and refinements to earlier
implementations (including TCP without Fast
Retransmit). The algorithms suite included Slow-
Start, Congestion Avoidance and Fast Retransmit.
With the latter one, after receiving a 3 duplicate
acknowledgments for the same TCP segment, the
data sender inferred that a packet has been lost and
retransmitted the packet. Note that this happened
before the retransmission timer generated timeout,
leading to a higher channel utilization and
connection throughput. Unfortunately, in practice

we were not able to find any workstations in the
Internet currently using this TCP version.

4.4. Reno TCP

Figure 4. Reno TCP

Reno implements two new algorithms beside the

those ones implemented by TahoeNoFR: Fast
Retransmit and Fast Recovery.

In Figure 4 the area for the first 18 segments is
zoomed because the initial figure might create the
idea that there is no Slow Start, which is not true.
The implementation works as follows:

1. The first 12 packets are acknowledged

appropriately .
2. Packets 13 and 16 are dropped.
3. Segments 14, 15 and 17 generate duplicate

ACKs for segment 12. Because of the 3
consecutive duplicate ACKs, Fast Retransmit
and Fast Recovery algorithms are started.

4. Packet 13 is fast retransmitted.
5. The received ACK confirms packets 13, 14, and

15, and asks for segment 16. This is a new and
distinct ACK and because of it Fast Retransmit
algorithm ends and a new packet is transmitted:
18.

6. Packet 18 generates a duplicate ACK for packet
15.

7. Since there are no new and distinct ACKs, no
more data can be sent. Because there aren’t
enough duplicate ACKs to start the Fast
Retransmit algorithm for packet 16,
transmission restarts only when the
retransmission timer for packet 16 generates
timeout.

8. When the timer expires, packet 16 is
retransmitted, and because packets 17 and 18
are already in the receiver’s buffer, an ACK for
packet 18 will be generated.

Fast Retransmission algorithm solves one

problem from TahoeNoFR: there is no timeout for
the first packet lost for one window. But this

 129

happens when we have a multiple packet loss from
the same window. Reno TCP works best for only
one lost packet per window. Another problem of
TahoeNoFR that is solved by Reno is the useless
retransmission of packet 17.

This was a problem because we were loading the
network with unnecessary packets since they are
already in the receiver’s buffer.

Reno TCP is characterized by a Fast Retransmit
for packet 13, a Retransmit Timeout for packet 16,
and no unnecessary retransmission of packet 17 (for
the scenario described in Figure 5).

4.5. NewReno TCP

NewReno TCP is a variant of Reno with a little

modification within Fast Recovery algorithm. This
was done in order to solve the timeout problem
when multiple packets are lost form the same
window.

Figure 5. NewReno TCP

Figure 5 shows the way this implementation

works:

1. The first 12 packets are acknowledged

appropriately
2. Packets 13 and 16 are dropped
3. Segments 14, 15 and 17 generate duplicate

ACKs duplicate for segment 12. Because of the
3 duplicate ACK Fast Retransmit and Fast
Recovery algorithms are started.

4. Packet 13 is fast retransmitted
5. The received ACK confirms packets 13, 14, and

15, and it asks for segment 16. This is a new
and distinct ACK, but an intermediate one (it
acknowledges only some of the segments not all
the segments that need to be acknowledged).
Because of it Fast Retransmit algorithm does
not stop, and is applied for segment 16

6. Segment 16 is fast retransmitted and it generates
an ACK for segment 17, because packet 17
already in the receiver’s buffer.

7. All the packets that needed to be acknowledged
were acknowledged, so the Fast Retransmit
algorithm stops.

Note that higher performances were obtained

due to the little modification of Reno TCP.
Although NewReno solves the timeout problem
when multiple packets are lost form the same
window, it can retransmit only one packet per
Round Trip Time.

4.6. RenoPlus TCP

This implementation was found on Solaris 2.51.
In Figure 6 it can be observed the way this

implementation works, and also that this
implementation does not perform a correct Slow
Start.

Figure 6. RenoPlus TCP

1. The first 12 packets are acknowledged

appropriately.
2. Packets 13 and 16 are dropped.
3. Segments 14, 15 and 17 generate duplicate

ACKs duplicate for segment 12. Because of the
3 duplicate ACK Fast Retransmit and Fast
Recovery algorithms are started.

4. Packet 13 is fast retransmitted.
5. The received ACK confirms packets 13, 14, and

15, and it asks for segment 16. This new and
distinct ACK is not considered as an
intermediate ACK (like NewReno). Because of
this ACK segments 18, 19 and 20 are
transmitted.

6. These 3 segments will generate duplicate ACKs
for segment 15. Fast Retransmit and Fast
Recovery algorithms are started.

7. Packet 16 is fast retransmitted.

 130

8. The received ACK (acknowledgement for
segment 20) confirms packets 16, 17, 18, 19
and 20.

4.7. TCP Versions Used by Some of the
 Current Operating Systems

OS TCP
Implementation

FreeBSD 3.5.1 Reno
FreeBSD 4.2 Reno
FreeBSD 4.3 NewReno
FreeBSD 4.4 NewReno
FreeBSD 4.5 NewReno
Windows 98 TahoeNoFR

Windows 2000 TahoeNoFR
RedHat 7.2 NewReno

Table 1. TCP Versions

We tested several operating systems in order to

determine the TCP implementation. Some old
editions of tested systems used Reno (FreeBSD
3.5.1 and 4.2), whilst the latest versions evolved
towards NewReno (FreeBSD 4.3, 4.4, 4.5, RedHat
7.2). Surprisingly, Windows 98/2000 Professional
are currently using TahoeNoFR (Tahoe without Fast
Retransmit).

5. Conclusions and further work

 The most reliable implementation is NewReno
TCP.

1. It has no useless retransmissions and very low

probability of retransmission timeouts.
2. Most web servers prefers NewReno.
3. To avoid the performance decreasing in case of

a congested network, the selective ACK option
should be enabled.

Several other tests, related to the new coming

operating systems (Windows XP/2003, RedHat
8.0/9.0 etc.) are under progress. We want to extend
also our study for the new congestion control
algorithms used in the latest TCP implementations:
Vegas, Peach, ATCP etc. Also we plan to study the
dynamics of the congestion window in order to
analyze TCP throughput for different
implementations.

Acknowledgments

We would like to acknowledge the support from

Departament d’Arquitectura de Computadors,
Universitat Politecnica de Catalunya, Barcelona
(Spain), led by Professor Jordi Domingo-Pascual.

Special thanks go to Carles Kishimoto Bisbe and
Roberto Borgione. The initial work was carried out
within SOCRATES/ERASMUS 2001-2002
programme.

References

[1] K. Fall, and S. Floyd, “Simulation–Based
Comparison of Tahoe, Reno and SACK TCP”,
Computer Communications Review ACM-
SIGCOMM, Vol. 26, No. 3, July 1996
[2] J. Padhye, and S. Floyd, “ On Inferring TCP
Behavior”, Computer Communications Review
ACM-SIGCOMM, Vol. 31, August 2001
[3] M. Allman, V. Paxson, and W. Stevens, “TCP
Congestion Control”, RFC 2581, IETF, April 1999
[4] Dobrota, V., Digital Networks in
Telecommunications. Volume III: OSI and TCP/IP,
Second Edition, Mediamira Science Publishers,
Cluj-Napoca, 2003 (in Romanian)
[5] M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanow, “TCP Selective Acknowledgement
Options”, RFC 2018, IETF, October 1996

