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Online social networks

The total number of 
active user accounts 

exceeds 
two billions!
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Empirical Analysis

• This sort of analysis is becoming more and more 
important in social networks research 

• Exact user data is very hard to obtain for privacy 
related reasons 

• Researchers have a hard time testing their 
hypotheses.
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the missing data, 

using existing observations and a 
reasonable theoretical model
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the missing data, 

using existing observations and a 
reasonable theoretical model

“Data Traces”

Theoretical researchers can help by 
trying to understand whether 

sound guessing algorithms exist



Online Guessing Tasks

• Which of these people are 
friends? 

• How contagious was this 
meme? 

• How enjoyable is this piece 
of music?



• Which of these people are 
friends? 
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infected by this meme? 

• How enjoyable is this piece 
of music?
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Online Guessing Tasks

• We see little pieces of some online social process. 

• We would like to make some sensible guesses on 
the process as a whole.



Network 
Reconstruction!

!
Joint with!

Bruno Abrahao, Robert Kleinberg, Alessandro Panconesi



Network Reconstruction

• Incomplete Traces of Information Flow. 

• Wish to infer the hidden network.



Network Reconstruction
• Rich area of study, pioneered by [Adar, Adamic, ’05] 

in the context of social networks. 
• MLE-based approaches: 

• [Gomez-Rodriguez, Leskovec, Krause ’10], 
• [Gomez-Rodriguez, Balduzzi, Scholkopf ’11], 
• [Myers, Leskovec ’11], 
• [Du et al. ’12] 

• Information theoretic approaches 
• [Netrapalli, Sanghavi ’12], 
• [Grippon, Rabbat ’13]



“Inferring networks of diffusion and influence” 
Gomez-Rodriguez, Leskovec, Krause [KDD’10] 

!
!

“

• Gomez-Rodriguez et al studied a large collection of 
blogs and memes to guess the blogger network 
that allowed memes to spread. 

• They proposed a random meme-diffusion model, 
and used heuristics for making the guess.



“Inferring networks of diffusion and influence” 
Gomez-Rodriguez, Leskovec, Krause [KDD’10] 

!
!

“

• Gomez-Rodriguez et al studied a large collection of 
blogs and memes to guess the blogger network 
that allowed memes to spread. 

• They proposed a random meme-diffusion model, 
and used it for making the guess.



Flow of Memes



Mar 4, 2014, 8:25am 
Mrs. Hudson’s cake shop will reopen!

Flow of Memes



Mar 4, 2014, 8:25am 
Mrs. Hudson’s cake shop will reopen!

Mar 4, 2014, 9:00am 
Rejoice! Mrs. Hudson cake shop is reopening

Flow of Memes



Mar 4, 2014, 8:25am 
Mrs. Hudson’s cake shop will reopen!

Mar 4, 2014, 9:00am 
Rejoice! Mrs. Hudson cake shop is reopening

Mar 4, 2014, 10:00am 
OMG! Hudson’s is back in business!

Flow of Memes



Mar 4, 2014, 8:25am 
Mrs. Hudson’s cake shop will reopen!

Mar 4, 2014, 9:00am 
Rejoice! Mrs. Hudson cake shop is reopening

Mar 4, 2014, 10:00am 
OMG! Hudson’s is back in business!

Mar 4, 2014, 10:30am 
Hudson’s is about to reopen! Slurp!

Flow of Memes



Mar 4, 2014, 8:25am 
Mrs. Hudson’s cake shop will reopen!

Mar 4, 2014, 9:00am 
Rejoice! Mrs. Hudson cake shop is reopening

Mar 4, 2014, 10:00am 
OMG! Hudson’s is back in business!

Mar 4, 2014, 10:30am 
Hudson’s is about to reopen! Slurp!

Flow of Memes

Can we infer which blogger follows which blog?
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…
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Inference

B  12’  D  15’  A  10’  C  25’  E  30’  F
…

Given a set of traces
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Inference

Given a set of traces

we would like to infer the 
unknown blogger graph G

B  10’  E  20’  F  15’  A  15’  D  30’  C
B  12’  D  15’  A  10’  C  25’  E  30’  F

…
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• The unique source is chosen uniformly at random 
• The time to traverse an edge is an iid sample of  
• The trace follows the shortest path tree from the source
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Can we make a sensible 
guess of the network?

How many traces would we 
need?



Our Contributions 
Abrahao, Chierichetti, Kleinberg, Panconesi [KDD’13]

• We show that                      traces are sufficient for 
reconstruction. 

• We show that, in some cases,                    traces 
are necessary. 

• We also show that                                traces are 
sufficient.

⌦

✓
n�

log

2 n

◆

O (n� log n)

    is the number of nodes of the unknown graph, 
    is its maximum degree.�
n



Our Contributions 
Abrahao, Chierichetti, Kleinberg, Panconesi [KDD’13]

• We show that                      traces are sufficient for 
reconstruction. 

• We show that, in some cases,                    traces 
are necessary. 

• We also show that                                traces are 
sufficient, that               traces are sufficient for 
trees…

⌦

✓
n�

log

2 n

◆

O (poly(�) · log n)

O (n� log n)

O(log n)



A simple algorithm

• Observation 
If u and v are the first two nodes of a trace then the 
edge {u,v} is in the unknown graph. 

• We can then perfectly reconstruct if, for each 
unknown edge {u,v}, there exists a trace that 
begins with its two endpoints.
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A simple algorithm

• The probability that a specific node is the first one 
in a trace is       . 

• The probability that the edge {u,v} is spanned by 
the first two nodes of the trace is then at least          

• Then, by the Chernoff bound,                      traces 
are enough to perfectly reconstruct the graph.
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A simple algorithm

• The probability that a specific node is the first one 
in a trace is       . 

• The probability that the edge {u,v} is spanned by 
the first two nodes of the trace is then at least          

• Then, by the Chernoff bound,                      traces 
are enough to perfectly reconstruct the graph.

1/n

1

n ·min(deg(u), deg(v))

Exp(�)

Exp(�)
Exp(�)



A simple algorithm

• The probability that a specific node is the first one 
in a trace is       . 

• The probability that the edge {u,v} is spanned by 
the first two nodes of the trace is then at least          

• Then, by the Chernoff bound,                      traces 
are enough to perfectly reconstruct the graph.

1/n

1

n ·min(deg(u), deg(v))

• Any classical tail bound then proves that                            
traces are enough to perfectly reconstruct the graph.

O(n� log n)



The first-edge algorithm

• Works for any (uniform) edge waiting time 
distribution. 

• It is competitive with more complex machine-
learning based algorithms  
(Gomez-Rodriguez, Leskovec, Krause [KDD’10]). 



Performances

We use two real social networks, namely two Facebook subnetworks comprising 503 (� = 48) graduate and 1220
(� = 287) undergraduate students, respectively [20]. We also generate three synthetic networks, each possessing 1024
vertices, whose generative models frequently arise in practice in the analysis of networks. We generated a Barabasi-
Albert Network [5] (� = 174), which is a preferential attachment model, a G

(n,p)

Network [10] (� = 253) with
p = 0.2, and a Power-Law Tree, whose node degree distribution follows a power-law distribution with exponent 3
(� = 94).

First, we evaluate the performance of the algorithm to reconstruct the degree distribution of networks without
inferring the network itself (Section 4.3). Figure 1 shows the reconstruction of the degree distribution using ⌦(n)
traces of the Barabasi-Albert Network and the two Facebook subnetworks. We used 10n traces, and the plots show
that the CCDF curves for the real degrees and for the reconstructed distribution have almost perfect overlap.

Turning our attention back to network inference, the ⌦(n�1�✏

) lower-bound established in Section 3 tells us that
the First-Edge algorithm is nearly optimal for perfect network inference in the general case. Thus, we assess the
performance of our algorithms against this limit. The performance of First-Edge is notoriously predictable: if we use
` traces where ` is less than the total number of edges in the network, then it returns nearly ` edges which are all true
positives, and it never returns false positives.

If we allow false positives, we can use heuristics to improve the First-Edge’s recall. To this end, we propose the
following heuristic that uses the degree distribution reconstruction algorithm (Section 4.3) in a pre-processing phase,
and places an edge in the inferred network provided the edge has probability at least p of being in the graph. We call
this heuristic First-Edge+.

(a) Barabasi-Albert (b) Facebook-Rice Undergrad

(c) Power-Law Tree (d) Gn,p

Figure 2: F1 score of the First-Edge, First-Edge+, and NETINF algorithms applied to different real and synthetic
networks against a varying number of traces. (best viewed in color)

In First-Edge+, we use the memoryless property of the exponential distribution to establish the probability p of
an edge pertaining to a network G. The algorithm works as follows. Consider a node u that appears as the root of a
trace at time t

0

= 0. When u spreads the epidemic, some node v is going to be the next infected at time t
1

, which
was sampled from an exponential distribution with parameter �. At time t

1

, notice that there are exactly d
u

� 1 nodes
waiting to be infected by u, and exactly d

v

� 1 waiting to be infected by v, where d
u

and d
v

are the degrees of u and v
respectively. At time t

1

any of these nodes is equally likely to be infected, due to the memoryless property. Moreover,
the next node w that appears in a trace after time t

1

is going to be infected by u with probability p
(u,w)

=

du�1

du+dv�2

and

15
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Why ~ 40K traces?
Most edges are incident on nodes having small degree
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that the CCDF curves for the real degrees and for the reconstructed distribution have almost perfect overlap.

Turning our attention back to network inference, the ⌦(n�1�✏

) lower-bound established in Section 3 tells us that
the First-Edge algorithm is nearly optimal for perfect network inference in the general case. Thus, we assess the
performance of our algorithms against this limit. The performance of First-Edge is notoriously predictable: if we use
` traces where ` is less than the total number of edges in the network, then it returns nearly ` edges which are all true
positives, and it never returns false positives.

If we allow false positives, we can use heuristics to improve the First-Edge’s recall. To this end, we propose the
following heuristic that uses the degree distribution reconstruction algorithm (Section 4.3) in a pre-processing phase,
and places an edge in the inferred network provided the edge has probability at least p of being in the graph. We call
this heuristic First-Edge+.

(a) Barabasi-Albert (b) Facebook-Rice Undergrad

(c) Power-Law Tree (d) Gn,p

Figure 2: F1 score of the First-Edge, First-Edge+, and NETINF algorithms applied to different real and synthetic
networks against a varying number of traces. (best viewed in color)

In First-Edge+, we use the memoryless property of the exponential distribution to establish the probability p of
an edge pertaining to a network G. The algorithm works as follows. Consider a node u that appears as the root of a
trace at time t

0

= 0. When u spreads the epidemic, some node v is going to be the next infected at time t
1

, which
was sampled from an exponential distribution with parameter �. At time t

1

, notice that there are exactly d
u

� 1 nodes
waiting to be infected by u, and exactly d

v

� 1 waiting to be infected by v, where d
u

and d
v

are the degrees of u and v
respectively. At time t

1

any of these nodes is equally likely to be infected, due to the memoryless property. Moreover,
the next node w that appears in a trace after time t

1

is going to be infected by u with probability p
(u,w)

=

du�1

du+dv�2

and

15

The graph has 
1220 nodes 

and 
average degree 

equal to 
35.41…

Why ~ 40K traces?
Most edges are incident on nodes having small degree

Back-of-envelope 
calculation



We use two real social networks, namely two Facebook subnetworks comprising 503 (� = 48) graduate and 1220
(� = 287) undergraduate students, respectively [20]. We also generate three synthetic networks, each possessing 1024
vertices, whose generative models frequently arise in practice in the analysis of networks. We generated a Barabasi-
Albert Network [5] (� = 174), which is a preferential attachment model, a G

(n,p)

Network [10] (� = 253) with
p = 0.2, and a Power-Law Tree, whose node degree distribution follows a power-law distribution with exponent 3
(� = 94).

First, we evaluate the performance of the algorithm to reconstruct the degree distribution of networks without
inferring the network itself (Section 4.3). Figure 1 shows the reconstruction of the degree distribution using ⌦(n)
traces of the Barabasi-Albert Network and the two Facebook subnetworks. We used 10n traces, and the plots show
that the CCDF curves for the real degrees and for the reconstructed distribution have almost perfect overlap.

Turning our attention back to network inference, the ⌦(n�1�✏

) lower-bound established in Section 3 tells us that
the First-Edge algorithm is nearly optimal for perfect network inference in the general case. Thus, we assess the
performance of our algorithms against this limit. The performance of First-Edge is notoriously predictable: if we use
` traces where ` is less than the total number of edges in the network, then it returns nearly ` edges which are all true
positives, and it never returns false positives.

If we allow false positives, we can use heuristics to improve the First-Edge’s recall. To this end, we propose the
following heuristic that uses the degree distribution reconstruction algorithm (Section 4.3) in a pre-processing phase,
and places an edge in the inferred network provided the edge has probability at least p of being in the graph. We call
this heuristic First-Edge+.

(a) Barabasi-Albert (b) Facebook-Rice Undergrad

(c) Power-Law Tree (d) Gn,p

Figure 2: F1 score of the First-Edge, First-Edge+, and NETINF algorithms applied to different real and synthetic
networks against a varying number of traces. (best viewed in color)

In First-Edge+, we use the memoryless property of the exponential distribution to establish the probability p of
an edge pertaining to a network G. The algorithm works as follows. Consider a node u that appears as the root of a
trace at time t

0

= 0. When u spreads the epidemic, some node v is going to be the next infected at time t
1

, which
was sampled from an exponential distribution with parameter �. At time t

1

, notice that there are exactly d
u

� 1 nodes
waiting to be infected by u, and exactly d

v

� 1 waiting to be infected by v, where d
u

and d
v

are the degrees of u and v
respectively. At time t

1

any of these nodes is equally likely to be infected, due to the memoryless property. Moreover,
the next node w that appears in a trace after time t

1

is going to be infected by u with probability p
(u,w)

=

du�1

du+dv�2

and

15

The graph has 
1220 nodes 

and 
average degree 

equal to 
35.41…

Why ~ 40K traces?

1220 x 35.41 = 43200.2

Most edges are incident on nodes having small degree

Back-of-envelope 
calculation



Too many traces?

• In some cases such a large number of traces is not 
available. 

• In those cases, one can still try to reconstruct some 
(less precise) missing information about the 
network.



E-mail Activisim!
!

Joint with!
Jon Kleinberg, David Liben-Nowell



Internet Activism

• Very important phenomenon 

• Incomplete Traces 

• Chain Letter Petitions:  
   how to estimate the reach?



NPR Chain Letter
PBS, NPR (National Public Radio), and the arts are 
facing major cutbacks in funding. In spite of the 
efforts of each station to reduce spending costs 
and streamline their services, the government 
officials believe that the funding currently going 
to these programs is too large a portion of 
funding for something which is seen as 
"unworthwhile."!!
[...]!!
When this issue comes up in 1996, the funding will 
be determined for fiscal years 1996-1998.!!
The only way that our representatives can be aware 
of the base of support or PBS and funding for 
these types of programs is by making our voices 
heard.!!
Please add your name to this list if you believe 
in what we stand for. This list will be forwarded 
to the President of the United States, the Vice 
President of the United States, the House of 
Representatives and Congress.!!
If you happen to be the 50th, 100th, 150th, etc. 
signer of this petition, please forward to: 
kubi7975@blue.univnorthco.edu . This way we can 
keep track of the lists and organize them. Forward 
this to everyone you know, and help us to keep 
these programs alive.!!
Thank you.!!

1. Elizabeth Weinert, student, University of Northern 
Colorado, Greeley, Colorado.!
2. Robert M. Penn; San Francisco, CA!
3. Gregory S. Williamson, San Francisco, CA!
4. Daniel C. Knightly, Austin, TX!
5. Andrew H. Knightly, Los Angeles, CA!
6. Aaron C. Yeater, Somerville, MA!
7.  Tobie M. Cornejo, Washington, DC!
8. John T. Mason, Dalton, MA!
9. Eric W. Fish, Williamstown, MA!
10. Courtney E. Estill, Hamilton College, NY!
11. Vanessa Moore, Northfield, MN!
12. Lynne Raschke, Haverford College, PA!
    (originally Minnesota)!
13. Deborah Bielak, Haverford, PA!
14. Morgan Lloyd, Haverford, PA 19041!
15. Galen Lloyd, Goucher College, MD!
16. Brian Eastwood, University of Vermont, VT!
17. Elif Batuman, Harvard University, MA!
18. Kohar Jones, Yale University, CT!
19. Claudia Brittenham, Yale University, CT!
20. Alexandra Block, Yale University, CT!
21. Susanna Chu, Yale University, CT!
22. Michelle Chen, Harvard University, MA!
23. Jessica Hammer, Harvard University, MA!
24. Ann Pettigrew, Haverford College, PA!
25. Kirstin Knox, Swarthmore College, PA!
26. Jason Adler, Swarthmore College, PA!
27. Daniel Gottlieb, Swarthmore College!
    (but truly from Lawrence, KS)!
28. Josh Feltman, Tufts University, MA!
29. Louise Forrest, Massachusetts Institute of!
    Technology, MA!
30. HongSup Park, Massachusetts Institute of !
    Technology, MA!
    (originally from Portage, Wisconsin)!
31. Ana Sandoval,Massachusetts Institute of Technology!
[...]

mailto:kubi7975@blue.univnorthco.edu
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Chain Letters

Aaron

Betty Charles David

Earl Fran George
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H

Dear all,!
an important 
cause demands 
your attention.!
[…]!
If you care 
about this, add 
your name and 
forward this 
letter.!
[…]!
The signers,!
Aaron!
Betty!
Earl!
Hilary



Chain Letters

Aaron

Betty Charles David

Earl Fran George

Hilary
A	


B	


E	


H

A	


D



Chain Letters

Aaron

Betty Charles David

Earl Fran George

Hilary



Chain Letters

Aaron

Betty Charles David

Earl Fran George

Hilary
G



George’s Blog

Chain Letters

Aaron

Betty Charles David

Earl Fran

Hilary

Here is something that 
I sent to my friends 
today:	


Dear all,!
an important 
cause demands 
your attention.!
[…]!
If you care about 
this, add your 
name and forward 
this letter.!
[…]!
The signers,!
Aaron!
David!
George

G

George



George’s Blog

Chain Letters

Aaron
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Earl Fran
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George

Here is something that 
I sent to my friends 
today:	


Dear all,!
an important 
cause demands 
your attention.!
[…]!
If you care about 
this, add your 
name and forward 
this letter.!
[…]!
The signers,!
Aaron!
David!
George
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Chain Letters

Aaron

Betty Charles David

Earl Fran

Hilary

George

George and Hilary, by exposing their emails, 
revealed a subtree of the Chain Letter tree.



Real-World Chain 
Letters’ Tree

• [Liben-Nowell, Kleinberg, PNAS’08], mined	



• web-accessible mailing-lists,	



• blog posts.	



• They obtained some “exposed” nodes of 
two Chain Letters’ trees, and	



• they produced two “revealed” trees.



NPR revealed tree 
Liben-Nowell, Kleinberg, PNAS’08
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NPR revealed tree 
Liben-Nowell, Kleinberg, PNAS’08

Non-exponential growth

13K nodes



Iraq Chain Letter
Dear all:!!
The US Congress has just authorized the President!
of the US to go to  war against Iraq. The UN is!
gathering signatures in an effort to  avoid this 
tragic world event.!!
Please consider this an urgent request: UN 
Petition for Peace - Stand for Peace. Islam is not 
the Enemy.!
War is NOT the Answer.!!
Today we are at a point of imbalance in the world!
and are moving  toward what may be the beginning 
of a THIRD WORLD WAR.!!
Please COPY (rather than Forward) this e-mail in a 
new message, sign at the end of the list, and send 
it to all the people whom you know.!!
If you receive this list with more than 500 names!
signed, please send a copy of the message to:!!
usa@un.int!
president@whitehouse.gov!!
Even if you decide not to sign, please consider!
forwarding the petition!
on instead of!
deleting it.!!
1) Suzanne Dathe, Grenoble, France!
2) Laurence COMPARAT, Grenoble, France!
3) Philippe MOTTE, Grenoble, France!

4) Jok FERRAND, Mont St. Martin, France!
5) Emmanuelle PIGNOL, St Martin d'Heres, FRANCE!
6) Marie GAUTHIER, Grenoble, FRANCE!
7) Laurent VESCALO, Grenoble, FRANCE!
8) Mathieu MOY, St Egreve, FRANCE!
9) Bernard BLANCHET, Mont St Martin,FRANCE!
10) Tassadite FAVRIE, Grenoble, FRANCE!
11) Loic GODARD, St Ismier, FRANCE!
12) Benedicte PASCAL, Grenoble, FRANCE!
13) Khedaidja BENATIA, Grenoble, FRANCE!
14) Marie-Therese LLORET, Grenoble,FRANCE!
15) Benoit THEAU, Poitiers, FRANCE!
16) Bruno CONSTANTIN, Poitiers, FRANCE!
17) Christian COGNARD, Poitiers, FRANCE!
18) Robert GARDETTE, Paris, FRANCE!
19) Claude CHEVILLARD, Montpellier, FRANCE!
20) Gilles FREISS, Montpellier, FRANCE!
21) Patrick AUGEREAU, Montpellier, FRANCE!
22) Jean IMBER! T, Marseille, FRANCE!
23) Jean-Claude MURAT, Toulouse, France!
24) Anna BASSOLS, Barcelona, Catalonia!
25) Mireia DUNACH, Barcelona, Catalonia!
26) Michel VILLAZ, Grenoble, France!
27) Pages Frederique, Dijon, France!
28) Rodolphe FISCHMEISTER,Chatenay-Malabry, France!
29) Francois BOUTEAU, Paris, France!
30) Patrick PETER, Paris, France!
31) Lorenza RADICI, Paris, France!
32) Monika Siegenthaler, Bern, Switzerland!
33) Mark Philp,Glasgow,Scotland!
34) Tomas Andersson, Stockholm, Sweden!
35) Jonas Eriksson, Stockholm, Sweden!
36) Karin Eriksson, Stockholm, Sweden!
...
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18,119 nodes	


17,079 nodes with one child (94%)	


00,620  exposed  nodes	


00,557 (exposed) leaves	



IRAQ revealed tree 
Liben-Nowell, Kleinberg, PNAS’08

Why is this fraction so high?

What can we infer about the	


original, unknown, Chain Letter Tree?
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Liben-Nowell, Kleinberg, PNAS’08
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Tree-Revealing Process 
Liben-Nowell, Kleinberg, PNAS’08



Previous Work

• Golub, Jackson, PNAS’10 perform simulations,	



• using branching process trees near the 
critical threshold as the Chain Letter Trees,	



• and exposing nodes as in 
Kleinberg, Liben-Nowell, PNAS’08.	



• They observe that the revealed tree has a 
high fraction of nodes with only one child 
(and some other properties).



Our Contribution

• Our 1st result, informally, states that the 
tree-revealing process, is enough to explain 
the high fraction of single-child nodes,  
assuming only a degree bound on the 
unknown chain letter tree.
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Size? Width? Height? Degree Distribution? ...
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• Our 2nd result, informally, states that (under 
reasonable assumptions) it is possible to 
estimate the size of the unknown chain 
letter tree with a small error, with high 
probability.



Our Contribution

• Our 2nd result, informally, states that (under 
reasonable assumptions) it is possible to 
estimate the size of the unknown chain 
letter tree with a small error, with high 
probability.

Observe that we do not know	


the exposing probability �



Our Contribution

• Our 2nd result, informally, states that (under 
reasonable assumptions) it is possible to 
estimate the size of the unknown chain 
letter tree with a small error, with high 
probability.

We use this theorem to estimate that ~ 173k 
people that signed the IRAQ chain letter
This estimate is backed by a probability bound 

(on the probability space induced by the revealing process)



Our Contribution

• Our 2nd result, informally, states that (under 
reasonable assumptions) it is possible to 
estimate the size of the unknown chain 
letter tree with a small error, with high 
probability.

We use this theorem to estimate that ~ 173k 
people that signed the IRAQ chain letter

The chain letter generated ~ 3.5M emails



Single-Child Fraction

• Nodes are exposed with probability	



• We assume that the unknown tree’s 
maximum degree is at most 

� > 0

k



Single-Child Fraction

We partition the tree into subforests,  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The high single-child fraction can be explained	


by assuming just a degree bound on the unknown tree
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How to guess the size of the unknown tree? 

Aaron

Betty David

Earl

Hilary

George

Revealed Tree

Aaron

Betty David

Earl

Charles

Unknown Tree

Kurt

Hilary

GeorgeFran

Ian Jason

Larry

Number of Signers



Unknown Tree Exposure



?

Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ? ?



?

Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ? ?



?

Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ? ?



Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ? ?



Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ? ?



Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ?



Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

?? ?



Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?

?

? ? ? ?

???



Unknown Tree Exposure
?

? ?

? ? ?

? ? ?

?



Revealed Tree
?

? ?

? ? ?

? ? ?

?



Revealed Tree
?

? ?

? ? ?

? ? ?

?

Nodes exposures are IID here!



Size Estimation
?

? ?

? ? ?

? ? ?

?

Nodes exposures are IID here!

1. Estimate    �



Size Estimation
Nodes exposures are IID here!

1. Estimate    �



Size Estimation
Nodes exposures are IID here!

� ' 3

10

1. Estimate    �



Size Estimation
Nodes exposures are IID here!

2. Estimate         using the number of 
exposed nodes in the revealed tree

� ' 3

10

n · �



Size Estimation
Nodes exposures are IID here!

� ' 3

10

n · � ' 7

2. Estimate         using the number of 
exposed nodes in the revealed tree

n · �



Size Estimation
Nodes exposures are IID here!

� ' 3

10

n · � ' 7

n ' 23.3̄

3. Take the ratio



Size Estimation
Nodes exposures are IID here!

� ' 3

10

n · � ' 7

n ' 23.3̄

What can go wrong?



Size Estimation
Nodes exposures are IID here!

� ' 3

10

n · � ' 7

n ' 23.3̄

The “yellow area” could contain too few nodes for the 
estimation of    to be successful.�



Size Estimation

The “yellow area” could contain too few nodes for the 
estimation of    to be successful.�

?



Size Estimation

The “yellow area” could contain too few nodes for the 
estimation of    to be successful.�

?



Size Estimation

The “yellow area” could contain too few nodes for the 
estimation of    to be successful.�

?



Theorem
• The previous algorithm can guess the size 

with high probability if  
 
 
   is the maximum number of children in  
   the unknown tree,  
   is the exposing probability.	
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IRAQ Tree Size

• We refined our asymptotic theorem for 
the IRAQ revealed tree (18k nodes)	



• Assuming the tree-revealing model,  
we estimate that  
the number of signers of the IRAQ petition 
is within a factor of 2 of 173k  
with probability � 95%



Conclusion



Reconstruction Problems

• Answers depend on: 

• the random model that drives the process; 

• the number of traces we have; 

• the random algorithm that reveals pieces of 
information by “cutting” them out of a model run.



Random Model

• It is important to check whether the random model 
is close to reality; 

• without this step, the guesses might be “close” to 
the model’s runs, but very far from reality.

This step is possibly the hardest one to do.



Random Model

This step is possibly the hardest one to do.
Checking whether the guesses 
are close to reality is sometimes 

the only viable approach.

• It is important to check whether the random model 
is close to reality; 

• without this step, the guesses might be “close” to 
the model’s runs, but very far from reality.



Number of Traces

• If we want to get a significant understanding of 
some partially-known process, 

• we first and foremost need to verify whether the 
questions we are asking can be significantly 
answered by the amount of data we have.

This step can be carried out 
(theorems and/or simulations)



Trace Generation

• The number of “traces” needed depends strongly 
on which pieces of information of a model’s run are 
revealed (as well as on the random model). 

• In some cases, it might be possible to get more 
informative traces by a deeper mining of the data.



Complexity of Guessing

• If not enough traces are available, we should 
simplify the questions we ask about the unknown 
process. 

• Otherwise, our guesses might be completely off 
and insignificant.



Complexity of Guessing

• How many traces do we need for other guessing 
tasks? 

• Very, very, rich area of problems.



Thanks!


