Logspace Computability and Regressive Machines

S. Mazzanti

Università Iuav di Venezia

ICTCS 2014 - Perugia 17-19/9/2014
Outline

1. Preliminaries
2. Regressive Functions and Machines
3. New Characterizations of Logspace Functions and Predicates
4. Future Work
Introduction

- The set L of languages decidable in logarithmic space is the set of languages recognized by:
 - read-only while programs [Jones, 1999];
 - the functions belonging to the closure with respect to substitution and simultaneous recursion on notation of the constant functions and the projection functions [Kristiansen, 2005].
Results

This work:

- introduces the class E of number theoretic functions generated by the constant functions, the projection functions, the predecessor function, the substitution operator, and the recursion on notation operator;
- introduces *regressive machines*, i.e. register machines which have the division by 2 and the predecessor as basic operations;
- shows that E is the class of functions computable by regressive machines and that the sharply bounded functions of E coincide with the sharply bounded logspace computable functions.
Advantages

- Function algebra E is defined without making use of ramified (safe) or bounded recursion schemes.
- Even if the present work is concerned with number theoretic functions, it can be considered an improvement of the characterization of L given in [Kristiansen, 2005] because:
 - recursion on notation is used instead of simultaneous recursion.
 - not only the $0−1$ valued logspace computable functions, but also the sharply bounded logspace computable functions are characterized.\(^1\)
- Regressive machines are a simple computation model for L.

\(^1\)Sharply bounded logspace functions were characterized using safe recursion in [Bellantoni thesis].
Definitions

- Let f, g, h be functions of finite arity on the set $\mathbb{N} = \{0, 1, \ldots\}$ of natural numbers.
 - f is a **polynomial growth function** iff there is a polynomial p such that $|f(x)| \leq p(|x|)$ for any x.\(^2\)
 - f is **sharply bounded** iff there is a polynomial p such that $f(x) \leq p(|x|)$ for any x.
 - f is **regressive** iff there is some constant k such that $f(x) \leq \max(x, k)$ for any x.
- For any f, we set $\text{bit}_f(x, i) = \text{bit}(f(x), i)$ and $\text{len}_f(x) = |f(x)|$.
- The characteristic function ch_P of a predicate P returns 1 if $P(x)$ is true, 0 otherwise.

\(^2\)|x_1, \ldots, x_n| = |x_1|, \ldots, |x_n| and |x| = \lceil \log_2(x + 1) \rceil is the number of bits of the binary representation of x.\]
Some basic functions

- the constant functions \(C_n : x \mapsto n \);
- the binary successor functions \(s_i : x \mapsto 2x + i \ (i \in \{0, 1\}) \);
- the bit function \(bit : x, y \mapsto \text{rem}(\lfloor x/2^y \rfloor, 2) \);
- the length function \(len : x \mapsto |x| = \lceil \log_2(x + 1) \rceil \);
- the conditional function \(cond : 0, y, z \mapsto y; x + 1, y, z \mapsto z \);
- the smash function \(smash : x, y \mapsto x \# y = 2^{|x|\cdot|y|} \);
- the most significant part function \(MSP : x, y \mapsto \lfloor x/2^y \rfloor \);
- the log most significant part function \(msp : x, y \mapsto \lfloor x/2^{|y|} \rfloor \);
- the predecessor function \(P : x + 1 \mapsto x; 0 \mapsto 0 \);
- the projection functions \(I^a[i] : x_1, \ldots, x_a \mapsto x_i \).
The recursion on notation operator $\text{RN}(g, h_0, h_1)$ transforms function $g : \mathbb{N}^a \rightarrow \mathbb{N}$ and functions $h_0, h_1 : \mathbb{N}^{a+1} \rightarrow \mathbb{N}$ into the function $f : \mathbb{N}^{a+1} \rightarrow \mathbb{N}$ such that

\[
\begin{align*}
 f(0, y) &= g(y), \\
 f(s_i(x), y) &= h_i(x, y, f(x, y))
\end{align*}
\]

where $i \in \{0, 1\}$ and $x > 0$ when $i = 0$.
Function algebras and class $E(F)$

Let

$$\text{clos}(f_1, \ldots, f_n, F_1, \ldots, F_m; op_1, \ldots, op_b)$$

be the inductive closure of $\{f_1, \ldots, f_n\} \cup F_1 \cup \ldots \cup F_m \cup I$ with respect to operators op_1, \ldots, op_b where I is the set of the projection functions $I^a[i] : x_1, \ldots, x_a \mapsto x_i$ with $1 \leq i \leq a$. We define

$$E(F) = \text{clos}(P, \{C_n\}_n, F; SUBST, RN)$$

and set

$$E = E(\emptyset), E(f_1, \ldots, f_a) = E(\{f_1, \ldots, f_a\}).$$
Properties of class E

- $div_2, rem_2, cond, msp, MSP, bit, max, min \in E$
- E contains the (characteristic functions of the) Boolean closure of $x < y, x \leq y, x > y, x \geq y, x = y, x \neq y$
- E contains sharply bounded versions of the arithmetic operations $add, sub, mult, rem, div$ (e.g. $add_p(x, y, z) = y + z$ for $y, z \leq p(|x|)$)
- ($Polynomial\ iteration$) For any $g \in E$ and any polynomial p there is a function $f_p \in E$ such that

$$f_p(x_1, \ldots, x_k, y, z) = f(2^p(|x_1|, \ldots, |x_k|) - 1, y, z)$$

where

$$f(0, y, z) = z,$$
$$f(s_i(x), y, z) = g(y, f(x, y, z)).$$
Properties of class $E - 2$

- E is closed w.r.t. the *sharply bounded maximization* operator $\text{MAX}(g, h)$ transforming function $g : \mathbb{N}^{a+1} \to \mathbb{N}$ and s.b. function $h : \mathbb{N}^a \to \mathbb{N}$ into the function $f : \mathbb{N}^a \to \mathbb{N}$ such that

 $$f(x) = \max\{i \leq h(x)|g(x, i) \neq 0\}$$

 if $\{i \leq h(x)|g(x, i) \neq 0\} \neq \emptyset$, otherwise $f(x) = 0$.

 (CP 1) $\text{len}_g \in E(\text{bit}_g)$ for any polynomial growth function g;

 (CP 2) $ch_{g_1 < g_2} \in E(\text{bit}_{g_1}, \text{bit}_{g_2})$ for any pol. growth functions g_1, g_2;

 (CP 3) $g \in E(\text{bit}_g)$ for any sharply bounded function g.
Regressive Machines

Regressive machines are register machines that operate on a finite number of variables (the registers) X_1, \ldots, X_b. Programs are built up according to the following grammar:

$$P ::= X_i := e | \text{pred}(X_i) | \text{half}(X_i) | P_1; P_2 | \text{loop } X_i \text{ do } P \text{ end}.$$

Expression e can be any natural number constant, any register, or the least significant bit $\text{lsb}(X_j)$ of X_j. Instructions $\text{pred}(X_i)$ and $\text{half}(X_i)$ compute the predecessor and (the quotient of) the division by 2 of X_i, respectively. The program $\text{loop } X_i \text{ do } P \text{ end}$ executes $|x|$ times program P, where x is the value of X_i.

S. Mazzanti
Logspace Computability and Regressive Machines
Regressive Machines - 2

- Regressive machines compute regressive functions and operate in polynomial time.

- A program P with b registers computes a function $f : \mathbb{N}^a \rightarrow \mathbb{N}$ w.r.t. inputs X_1, \ldots, X_a and output X_j iff for any n_1, \ldots, n_a the value $f(n_1, \ldots, n_a)$ is returned in register X_j when P is executed with X_i having initial value n_i for $1 \leq i \leq a$ and all the other registers are initialized to zero.
The Main Theorem ...

- Let SB be the set of sharply bounded functions,
- let RM be the set of functions computable by regressive machines,
- let FL be the set of logspace computable functions.

Theorem (Main Theorem)

$$FL \cap SB \subseteq E \subseteq RM \subseteq FL \cap E.$$
Corollary (E is the class of functions computable by regressive machines, $E \subseteq FL$)

$$E = RM \subseteq FL.$$

Corollary (The s.b. functions in E are the s.b. logspace functions)

$$FL \cap SB = E \cap SB.$$

Corollary (New characterization of L)

*The characteristic functions of logspace predicates coincide with the $\{0, 1\}$-valued functions in E.***
Clote-Takeuti’s characterization of FL

Clote and Takeuti ([Clo-Ta 1995]) have shown that

\[FL = \text{clos}(C_0, s_0, s_1, \text{len}, \text{bit}, \text{smash}; \text{SUBST}, \text{CRN}, \text{SBRN}) \]

where:

- \(\text{CRN}(g, h_0, h_1) \) is the *concatenation recursion on notation* of \(g, h_0, h_1 \) (\(h_0, h_1 \) are 0–1 valued functions), i.e. the function

 \[
 f(0, y) = g(y), \\
 f(s_i(x), y) = s_{h_i(x,y)}(f(x, y));
 \]

- \(\text{SBRN}(g, h_0, h_1, l) \) is the *sharply bounded recursion on notation* of \(g, h_0, h_1, l \), i.e. the function \(f \) s.t.

 \[f = \text{RN}(g, h_0, h_1) \]

provided that \(f(x, y) \leq |l(x, y)| \).
Theorem

For any \(f \in FL \) and any polynomial growth functions \(g_1, \ldots, g_a \),

\[
\text{bit}_f(g_1, \ldots, g_a) \in E(\text{bit}_{g_1}, \ldots, \text{bit}_{g_a}).
\]

Proof.

The proof is carried out by induction on the characterization of \(FL \) given by Clote and Takeuti.

Induction Basis (\(f = \text{bit} \))

\[
\text{bit}_{\text{bit}(g_1, g_2)}(x, i) = \begin{cases}
\text{bit}_{g_1}(x, g_2(x)) & \text{if } (i = 0) \land (g_2(x) < |g_1(x)|) \\
0 & \text{otherwise}
\end{cases}
\]

Induction Step: \(SUBST \) (trivial); \(CRN, SBRN \) (difficult)
Step 1: $\text{FL} \cap \text{SB} \subseteq E$ (end)

Corollary

$\text{bit}_f \in E$ for any $f \in \text{FL}$.

Proof.

$\text{bit}_f = \text{bit}_f(I^a[1],...,I^a[a])$ where a is the arity of f.

Then, $\text{FL} \cap \text{SB} \subseteq E$ because for any $g \in \text{FL} \cap \text{SB}$ we have

$g \in E(\text{bit}_g) = E$

by the corollary above and CP 3.
Step 2: $E \subseteq R\text{M}$

- We show by induction on E that for any $f \in E$ there is a regressive machine computing f.
- The induction basis is trivial, as well as the induction step concerning function substitution.
- The case of recursion on notation is shown by using the LOOP construct.
Step 2: \(E \subseteq \text{RM} \)

We show the case of recursion on notation. By ind. hyp. assume that there are \(P, Q_0 \) and \(Q_1 \) s.t.

\[
\{ V_1 = y_1, \ldots V_a = y_a \} P \{ Z = g(y) \},
\]

\[
\{ U = x, V_1 = y_1, \ldots V_a = y_a, W = z \} Q_i \{ Z_i = h_i(x, y, z) \} (i = 0, 1).
\]

Let

\[
f(0, y) = g(y),
\]

\[
f(s_i(x), y) = h_i(x, y, f(x, y)).
\]
Step 2: \(E \subseteq RM \)

Then, the program

\[
P; \quad \text{W:=Z; } X_0, X_1, X_2 := X; \\
\text{loop } X \text{ do} \\
\quad \text{half}(X_0); \text{loop } X_0 \text{ do } \text{half}(X_1); \text{ end;} \\
\quad R := \text{lsb}(X_1); \text{half}(X_1); U := X_1; \\
\quad \text{if (R=0) then } Q_0; \text{ W:=Z}_0 \text{ else } Q_1; \text{ W:=Z}_1; \\
\quad X_1 = X_2;
\]

\text{end}

computes \(f \) with respect to inputs \(X, V_1, \ldots, V_a \) and output \(W \).
In order to show that $\text{RM} \subseteq \text{FL} \cap \text{E}$, we need to simulate the computations of regressive machines by storing the registers’ contents with at most $O(\log(\max(|x|)))$ bits where x is the sequence of input values (in other words, we can store values bounded by $p(|x|)$ for some polynomial p).

Since regressive machines compute regressive functions, registers are bounded by $\max(x, c))$. So, if we encoded a memory state as usual, the encoding would exceed the logarithmic bound on memory space and we could not compute RM functions in logarithmic space.

To overcome the memory space bound, we introduce *counter machines* and show that they simulate regressive machines using only a logarithmic amount of memory space.
Counter Machines

- A counter machine operates on read-only input registers Y_1, \ldots, Y_a and read/write registers Z_1, \ldots, Z_b called *counters*.
- A counter machine program is defined as follows:

 $$P ::= Z_i := e | \text{succ}(Z_i) | \text{half}(Z_i) | P_1; P_2$$
 $$\text{if } (e_1 = n) \text{ then } P_1 \text{ else } P_2 \text{ loop } E_i \text{ do } P \text{ end}$$

where e is a constant, a counter or $\text{lsb}(E_j)$ and e_1 is a counter, $\text{bit}(Y_{Z_i}, Z_j)$ or $\text{lsb}(Z_i)$. E_i has value

$$e_i^b(y, z) = \begin{cases} z_i + 2 & \text{if } z_i = 0, \\ \text{MSP}(y_{z_i}, z_{i+1}) - z_{i+2} & \text{otherwise} \end{cases} (1 \leq i \leq b - 2)$$

where $y = y_1, \ldots, y_a$ are the input values and $z = z_1, \ldots, z_b$ are the values of the counters.
Every regressive machine program P with b registers is simulated by a counter machine program Q with $3b$ counters.

The value of register X_i of program P is represented by counters $Z_{3i-2}, Z_{3i-1}, Z_{3i}$ of Q so that $e_{3i-2}(y, z) = x_i$.

If X_i has been set to a constant value, then $z_{3i-2} = 0$ and z_{3i} is the value of X_i.

Otherwise, an input value has been assigned (or copied) to X_i and decrement or division instructions have been performed on it. In that case, the value of X_i is $MSP(y_{z_{3i-2}}, z_{3i-1}) z_{3i}$.
At start, assume that $X_j = n_j$. Then, we set $Y_j = n_j$ and $Z_{3j-2} = j, Z_{3j-1} = 0, Z_{3j} = 0$.

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>X_i</th>
<th>Y_i</th>
<th>Z_{3i-2}</th>
<th>Z_{3i-1}</th>
<th>Z_{3i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>n_i</td>
<td>n_i</td>
<td>i</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$X_i := k$</td>
<td>k</td>
<td>n_i</td>
<td>0</td>
<td>0</td>
<td>k</td>
</tr>
<tr>
<td>$X_i := X_j$</td>
<td>n_j</td>
<td>n_i</td>
<td>j</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pred(X_i)</td>
<td>$n_j - 1$</td>
<td>n_i</td>
<td>j</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pred(X_i)</td>
<td>$n_j - n$</td>
<td>n_i</td>
<td>j</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>half(X_i)</td>
<td>$\lfloor \frac{n_j - n}{2} \rfloor$</td>
<td>n_i</td>
<td>j</td>
<td>1</td>
<td>$\left\lfloor \frac{n}{2} \right\rfloor + r$</td>
</tr>
</tbody>
</table>

$$\text{div}_2(MSP(u, v) \cdot w) = MSP(u, v + 1) \cdot (\text{div}_2(w) + ch\{\text{bit}(u, v) < \text{rem}_2(w)\}).$$
Simulation - formal definition

- Let $m_P : \mathbb{N}^b \rightarrow \mathbb{N}^b$ be the function such that $m_P(x)$ is the memory state after the computation of a R.M. program P starting from state x.

- Let $M_Q : \mathbb{N}^{a+b} \rightarrow \mathbb{N}^b$ be the function such that $(y, M_Q(y, z))$ is the memory state after the computation of a C.M. program Q starting from the state (y, z).

- For any $x \in \mathbb{N}^b$, $y \in \mathbb{N}^a$ and $z \in \mathbb{N}^{3b}$, if $l^b[i](x) = e_{3i-2}(y, z)$ for any $1 \leq i \leq b$, then $l^b[i](m_P(x)) = e_{3i-2}(y, M_Q(y, z))$ for any $1 \leq i \leq b$.
Step 3: \(\text{RM} \subseteq \text{FL} \cap \text{E} \)

- A function \(f : \mathbb{N}^a \rightarrow \mathbb{N} \) is computed by a R.M. program \(P \) with \(b \) registers iff
 \[
 f(x) = I^b[j](m_P(x, 0, \ldots, 0))
 \]
 where \(j \) is the index of the output register of \(P \).

- Then, there is a C.M. program \(Q \) with \(3b \) counters such that
 \[
 f(x) = e_{3j-2}(x, M_Q(x, 1, 0, 0, \ldots, a, 0, 0, \ldots, 0)).
 \]
 and the counters of \(Q \) are less than \(p(|x|) \) for some \(p \).
Step 3: $RM \subseteq FL \cap E$ (end)

- Therefore, we encode the counters with a single number
 \[c_p(x, z) = z_1 p(|x|)^{(3^b - 1)} + \ldots + z_{3^b - 1} p(|x|) + z_{3^b} < p(|x|)^{3^b}\]
 and define functions $\tilde{e}_{p,i}, \tilde{M}_{p, Q} : \mathbb{N}^{a+1} \rightarrow \mathbb{N}$ in $FL \cap E$ s.t.
 \[\tilde{e}_{p,i}(x, c_p(x, z)) = e_i(x, z), \quad \tilde{M}_{p, Q}(x, c_p(x, z)) = c_p(x, M_Q(x, z))\]
 and
 \[f(x) = \tilde{e}_{p,3j-2}(x, \tilde{M}_{p, Q}(x, c_p(x, 1, 0, 0, \ldots, a, 0, 0, \ldots, 0))).\]

- Since $c_p \in FL \cap E$, we obtain that $f \in FL \cap E$.

Open Questions

- $\text{FL} \cap \text{SB} \subseteq \text{clos}(\{C_n\}_n; \text{SUBST}, \text{RN})$?
- does E equal the set of regressive logspace computable functions?

A function f is non-size-increasing iff there is some constant k such that $|f(x)| \leq \max(|x|, k)$ for any x.

For $i \in \{0, 1\}$, consider the bounded successor functions $bs_i : x, y \mapsto 2x + i$ if $|x| < |y|$; $x, y \mapsto x$ otherwise.

- It is easy to see that $E' = \text{clos}(bs_0, bs_1, \{C_n\}_n; \text{SUBST}, \text{RN})$ contains the non-size-increasing logspace computable functions.
- $E' \subseteq \text{FL}$? (Conjecture: E' recognize $\text{P} \cap \text{LINSPACE}$).
References

