Optimal placement of storage nodes in a wireless sensor network

Gianlorenzo D’Angelo1
Daniele Diodati2 Alfredo Navarra2 Cristina M. Pinotti2

1 - Gran Sasso Science Institute
2 - University of Perugia
Scenario

- Given a wireless sensor network represented as a graph
- And a special *sink* node r
- All the sensors collect data with a regular frequency and send them to r along the shortest paths
• Alternatively the data can be forwarded to some *storage* nodes
• Storage nodes *compress* and *aggregate* the data, and then send them to the sink (reduced in size)
Given a fixed integer k, how to choose the “best” k storage nodes among the nodes of the network in order to minimize the energy consumption?
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
Given:

- a weighted connected graph \(G = (V, E, w) \) representing a wireless sensor network where each \(v \in V \) generates raw data with size \(s_d(v) \)
- an integer \(k \).

We aim at finding a set \(S \subseteq V \) of storage nodes such that \(|S| \leq k \)

- Each \(v \in V \) is associated to a storage node, denoted as \(\sigma(v) \in S \)
- In \(\sigma(v) \), the compressed size of the data produced by a node \(v \) becomes \(\alpha s_d(v) \), with \(\alpha \in [0, 1] \)

Total cost: \(\text{cost}(S) = \sum_{v \in V} s_d(v) (d(v, \sigma(v)) + \alpha d(\sigma(v), r)) \)
For $v = 2$ the cost is:

$$s_d(2) \cdot (w(2, 7) + w(7, 3)) + \alpha \cdot s_d(2) \cdot (w(3, 6), w(6, r))$$

Total cost: $cost(S) = \sum_{v \in V} s_d(v) (d(v, \sigma(v)) + \alpha d(\sigma(v), r))$

The minimum k-storage problem (briefly, MSP) consists in finding a subset $S \subseteq V$, with $|S| \leq k$ that minimizes $cost(S)$
Related Work

- [Sheng et al. 2007] 10-approximation algorithm for the case
 - $s_d(v)$ is a constant for any v
 - The distances are given by Euclidean distances
- [Sheng et al. 2010] Optimal algorithms for trees
 - Either limited or unlimited k
 - They consider the cost of diffusing the query
 - The algorithms are polynomial only if the degree of the tree is bounded
Our results

- Polynomial-time exact algorithms
 - For trees in directed graphs
 - For bounded-treewidth undirected graphs
- Approximation lower bounds
 - Not in APX in directed graphs
 - $1 + \frac{1}{e} > 1.367$ for undirected graph
- Local search algorithm for undirected graphs with constant approximation ratio
- Experimental evaluation of such algorithm on several graph topologies
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
Directed trees

Idea: Transform the generic rooted tree into an equivalent binary tree
We devise a dynamic programming algorithm for binary trees

Theorem

Given a directed tree T, there exists an algorithm that optimally solves MSP in $O(\min\{kn^2, k^2P\})$, where P is the path-length of T.

Path-length: Sum over the whole tree of the number of arcs on the path from each tree node to the root

- Balanced binary tree: $P = \Theta(n \log n)$,
- Random tree: $P = \Theta(n\sqrt{n})$
- Worst case: $P = O(n^2)$
We exploit the concept of tree decomposition to devise a dynamic programming algorithm.

Theorem

Given an undirected graph G and a tree-decomposition of G with width w, there exists an algorithm that optimally solves MSP in $O(\cdot k \cdot n^{w+3})$ time.
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
We show that MSP in undirected graphs cannot be approximated within a factor of $1 + \frac{1}{e}$, unless $P = NP$

In detail,

- We show that the metric k-median problem cannot be approximated within a factor of $1 + \frac{1}{e}$, unless $P = NP$
- We show that MSP is at least as hard to approximate as the metric k-median problem
The metric k-median problem

Let

- $G = (V, E)$ be a complete graph
- $k \in \mathbb{N}$
- $\text{dist}(u, v) \in \mathbb{N}$ be the distance from u to v over the edge $(u, v) \in E$

A k-median set for G is a subset $V' \subseteq V$ with $|V'| \leq k$

The \textit{minimum k-median problem} consists in finding a k-median set V' that minimizes

$$\sum_{u \in V} \min_{v \in V'} \text{dist}(u, v)$$

In the minimum \textit{metric} k-median problem (briefly, \textit{MMP}) the distance function is symmetric and satisfies the triangle inequality
Theorem

There is no approximation algorithm for the metric minimum k-median problem with approximation factor $\gamma < 1 + \frac{1}{e}$, unless $P = NP$.

Sketch of the proof:

It is based on an approximation factor preserving reduction from the minimum dominating set problem

Let $G = (V, E)$ be an undirected graph, a dominating set for G is a subset $V' \subseteq V$ such that for each $u \in V \setminus V'$ there is a $v \in V'$ for which $\{u, v\} \in E$

The *minimum dominating set problem* consists in finding the minimum cardinality dominating set
Given an instance of the minimum dominating set problem, we define an instance of the minimum metric k-median problem with $G' = (V, E')$, $E' = V \times V$ and

$$\text{dist}(u, v) = \begin{cases}
1 & \text{if } \{u, v\} \in E \\
2 & \text{otherwise.}
\end{cases}$$
Let us assume that there exists an approximation algorithm γ-MMP with approximation factor γ for MMP

Let us suppose that the size k of an optimal dominating set is known

We devise an algorithm for the minimum dominating set

- Select a set of size k by applying γ-MMP with parameter k
- Remove the nodes in the graph corresponding to the chosen set and their neighbors
- Repeat until all the nodes are covered

$k = 2$
Let λ be the number of iterations (the number of times that we apply γ-\textit{MMP})

At each iteration we selected k nodes

We selected $k \cdot \lambda$ nodes

As k is the value of the optimal solution, λ is the approximation ratio of the algorithm for the minimum dominating set problem
We give an upper bound for λ:

After the first iteration,

- there are k selected nodes, d_1 nodes covered \textit{directly} (with weight 1), i_1 nodes covered \textit{indirectly} (with weight 2), $k + d_1 + i_1 = |V| = n$
- The cost for MMP is $d_1 + 2i_1 \leq \gamma \text{OPT} \leq \gamma(n - k)$
- Therefore, $i_1 \leq (n - k)(\gamma - 1) \leq n(\gamma - 1)$

After $\lambda - 1$ iterations there are at most $n(\gamma - 1)^{\lambda - 1} = \eta$ uncovered nodes, for some $1 \leq \eta \leq n$, and then, $\lambda - 1 = \log(\gamma - 1) \frac{\eta}{n} \leq \log(\gamma - 1) \frac{1}{n} = \frac{\ln n}{\ln \frac{1}{\gamma - 1}}$

Cannot exists a $(c \ln n)$-approximation algorithm for the minimum dominating set for each $c < 1$, unless $P = NP$

Therefore, $\frac{1}{\ln \frac{1}{\gamma - 1}} \geq 1$ which implies $\frac{1}{\gamma - 1} \leq e$, and hence $\gamma \geq 1 + \frac{1}{e}$
Theorem

MSP is at least as hard to approximate as the metric k-median problem.

Corollary

There is no approximation algorithm for MSP with approximation factor \(\gamma < 1 + \frac{1}{e} \), unless \(P = NP \).

Theorem

For directed graphs, MSP does not belong to APX, unless \(P = NP \).
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
We define a local search algorithm as follows

- Given any initial solution S_0
- *Swap operation* of $t \leq |S|$ nodes:
 - remove t nodes from S and add t nodes in $V \setminus S$ to S
- If any swap move yields a solution of lower cost the resulting solution is set to be the new current solution
- Repeat until from the current solution no swap operation decreases the cost
- The solution found represents a local optimum
We first analyze the case of $t = 1$: a swap is defined between two nodes $s \in S$ and $s' \in V \setminus S$ and consists in adding s' and removing s

Let us define
\[
 f : (0, 1] \to \mathbb{R}, \quad f(\alpha) = \frac{2}{\alpha} \\
g : [0, \frac{1}{2}) \to \mathbb{R}, \quad g(\alpha) = \frac{12\alpha}{1 - 2\alpha} \\
h : [0, 1] \to \mathbb{R}
\]

\[
h(\alpha) = \begin{cases}
 g(\alpha) & \text{if } \alpha = 0 \\
 \min\{f(\alpha), g(\alpha)\} & \text{if } \alpha \in (0, \frac{1}{2}) \\
 f(\alpha) & \text{if } \alpha \in \left[\frac{1}{2}, 1\right]
\end{cases}
\]
Theorem

The local search algorithm for MSP exhibits a locality gap of at most $5 + h(\alpha)$.

Maximum: ≈ 12.3 for $\alpha \approx 0.274$ where $f(\alpha) = g(\alpha) \approx 7.3$
We can generalize for $t \geq 1$: the locality gap is $h'(\alpha)$, where

$$f' : (0, 1] \to \mathbb{R}, \quad f'(\alpha) = 1 + \frac{t+1}{t} \frac{1+2\alpha}{\alpha}$$

$$g' : [0, \frac{t}{t+1}] \to \mathbb{R}, \quad g'(\alpha) = \frac{(3+\alpha)t+2+\alpha}{(1-\alpha)t-\alpha}$$

$$h' : [0, 1] \to \mathbb{R}$$

$$h'(\alpha) = \begin{cases}
 g'(\alpha) & \text{if } \alpha = 0 \\
 \min\{f'(\alpha), g'(\alpha)\} & \text{if } \alpha \in \left(0, \frac{t}{t+1}\right) \\
 f'(\alpha) & \text{if } \alpha \in \left[\frac{t}{t+1}, 1\right]
\end{cases}$$

Maximum: $\approx 8.67, 7.78$ and 7.05
The algorithm can have a superpolynomial number of iterations.

We change the stopping condition: it finishes as soon as it finds a solution S is such that every neighboring solution S' of S has $\text{cost}(S') > (1 - \epsilon)\text{cost}(S)$, for some $\epsilon > 0$.

The number of iterations is at most $\frac{\log(\frac{\text{cost}(S_0)}{\text{cost}(S^*)})}{\log(\frac{1}{1-\epsilon})}$, where S_0 is the initial solution.

Corollary

There exists an $\frac{1}{1-\epsilon} h'(\alpha)$-approximation algorithm MSP for any $\epsilon \in (0, 1)$.
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
We implemented the local search algorithm in C++ (gcc).

We compared the solution found with the optimal one obtained by an IP formulation (GLPK solver).

\[
\begin{align*}
\min & \quad \sum_{v,s \in V} x_{vs} \cdot s_d(v) (d(v, s) + \alpha d(s, r)) \\
\text{s.t.} & \quad \sum_{s \in V} x_{vs} = 1 \quad \text{for each } v \in V \\
& \quad x_{vs} \leq y_s \quad \text{for each } v, s \in V \\
& \quad \sum_{s \in V} y_s \leq k, \\
& \quad y_r = 1 \\
& \quad y_s, x_{vs} \in \{0, 1\} \quad \text{for each } v, s \in V
\end{align*}
\]
Input instances

Types of graphs:
- **Random geometric graphs** (RGG) \(n \in \{100, 300, 1000\} \)
- **Barabasi-Albert graphs** (BA) \(n \in \{100, 300, 1000\} \)
- **OR Library** (PMED) \(100 \leq n \leq 900 \)
- **Erdős-Rényi random graphs** (ER) \(n \in \{100, 150\} \)

Other parameters:
- The sink node is chosen uniformly at random
- \(\alpha \in \{0.0, 0.1, \ldots, 1\} \) (11 values)
- \(k \in \{1, \ldots, n\} \) (30 values with step \(\lfloor n/30 \rfloor \))
- \(s_d(v) \) uniformly at random in the interval \([1, 10] \), independently for each \(v \in V \)
- \(\epsilon \) in \(\{0.005, 0.01, 0.1\} \)
- \(t = 1 \) (worst case for the algorithm’s approximation ratio)
Random geometric graphs – approximation ratio

- The ratio decreases with ϵ, for $\epsilon = 0.005$ it is < 1.108
- When k is small, the approximation ratio is reduced, for $k < 100$, it is < 1.07
- When k is big, the approximation ratio is reduced, for $k > 250$, it is < 1.05

Figure: Random Geometric Graphs $n = 300$, $\alpha = 0.1$
Decreasing ϵ increases the number of iterations
The good values for small k require up to 18 iterations
The good values for big k require up to 2 iterations
For small values of ϵ the ratio is very small, < 1.023 for $\epsilon = 0.005$ and < 1.042 for $\epsilon = 0.01$.

Maximum value: 1.38, obtained when $\alpha = 0$
Random geometric graphs – number of iterations

The good values of the approximation ratio required more iterations if α is small.

When α approaches 1, then the usage of storage nodes does not significantly decrease the objective function and hence the first feasible solution already has a good approximation ratio.
We do not observe any significant difference with respect to the type of graph.

In these cases the approximation ratio is smaller than the previously reported ones.
Computational time

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>n</th>
<th>k</th>
<th>Time per iteration (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGG</td>
<td>100</td>
<td>50</td>
<td>0.0121</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>150</td>
<td>0.3274</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>500</td>
<td>15.0086</td>
</tr>
<tr>
<td>BA</td>
<td>100</td>
<td>50</td>
<td>0.0122</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>150</td>
<td>0.3291</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>500</td>
<td>14.2448</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>n</th>
<th>k</th>
<th>Time per iteration (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMED</td>
<td>100</td>
<td>50</td>
<td>0.0116</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>150</td>
<td>0.3191</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>450</td>
<td>10.9442</td>
</tr>
<tr>
<td>ER</td>
<td>100</td>
<td>50</td>
<td>0.0137</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>75</td>
<td>0.0392</td>
</tr>
</tbody>
</table>

Table: Average computational time required for each iteration when \(k = n/2 \)

The computational time of the iterations in the extreme cases, i.e. \(k = 1 \) or \(n = k \) is always < 0.0001
Outline

1. The Minimum k-Storage Problem
2. Polynomial-time exact algorithms
3. Hardness of approximation
4. Local search algorithm
5. Experimental analysis
6. Conclusions
Conclusions

- We studied the minimum k-storage problem from the theoretical and experimental viewpoints
- Directed graphs:
 - There exists a polynomial-time exact algorithm for trees
 - The problem is not in APX
- Undirected graph:
 - There exists a polynomial-time exact algorithm for bounded-treewidth graphs
 - The problem is not approximable within a factor of $1 + \frac{1}{e}$, unless $P = NP$
 - There exists a constant-factor polynomial-time approximation algorithm based on local search
 - This algorithm performs very well in practical scenarios

Thank you for your attention