
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

ARRAYS

ARRAYS

An array contains objects of a given type, stored
consecutively in a continuous memory block. The
individual objects are called the elements of an array.
The elements’ type can be any object type.

An array’s type is determined by the type and number of
elements in the array. If an array’s elements have type T,
then the array is called an “array of T.”
üIf the elements have type int, for example, then the array’s

type is “array of int.”
The type is an incomplete type, however, unless it also
specifies the number of elements.
üIf an array of int has 16 elements, then it has a complete

object type, which is “array of 16 int elements”.

SUBSCRIPT [], ARRAY ELEMENTS

The subscript operator [] allows you to access individual
elements of an array.

It takes two operands. In the simplest case, one operand
is an array name and the other operand designates an
integer.
üThe expression myarray[i] then designates element number i

in the array, where the first element is element number zero
The left operand of [] need not be an array name.

The right operand must have an integer type.

DEFINITION OF ARRAYS

It is an aggregated type: a sequence of objects with the same
type
The definition of an array determines its name, the type of its
elements, and the number of elements in the array. An array
definition without any explicit initialization has the following
syntax:

type name[number_of_elements];
The number of elements, between square brackets ([]), must
be an integer expression whose value is greater than zero.
An example:
üchar buffer[4*512];
This line defines an array with the name buffer, which consists
of 2,048 elements of type char.
üsizeof(buffer) yields the value of 2048 * sizeof(char).

VARIABLE-LENGTH ARRAYS

Since C99 it is possible to define an array using a non-
constant expression for the number of elements

Since C11 they are an optional features of compilers:
some compilers might not implement VLAs.

void func(int n)
{

int vla1[2*n];
int vla2[n];
/* ... */

}

ACCESSING ELEMENTS

The expression myArray[i] designates the array element
with the index i.
üArray elements are indexed beginning with 0.
üif len is the number of elements in an array, the last element

of the array has the index len-1.

const int a= 4;
long mArray[a];
for (int i = 0; i < a; ++i)

mArray[i] = 2 * i;

mArray[0]
0

mArray[1]
2

mArray[2]
4

mArray[3]
6

INITIALIZING ARRAYS

To initialize an array explicitly when you define it, you
must use an initialization list: this is a comma-separated
list of initializers
üint a[4] = { 1, 2, 4, 8 };
üa[0] = 1, a[1] = 2, a[2] = 4, a[3] = 8;

AN EXAMPLE
Element [1]= 1
Element [2]= 2
Element [3]= 3
Element [4]= 4
Element [5]= 5
Element [6]= 6
Element [7]= 7
Element [8]= 8
Element [9]= 9
Element [10]= 10
Element [11]= 1339107492
Element [12]= 2097207605
Element [13]= 1477040992
Element [14]= 32767
Element [15]= -1796807251
Element [16]= 32767
Element [17]= 0
Element [18]= 0
Element [19]= 1
Element [20]= 0

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

for (int i= 0; i < 20; i++) {
printf(”Element[%d]= %d\n", i+1, a[i]);

}

SOME RULES FOR INITIALIZATION

When you initialize an array, observe the following rules:
üYou cannot include an initialization in the definition of a

variable-length array.
üYou may omit the length of the array in its definition if you

supply an initialization list. The array’s length is then
determined by the index of the last array element for which
the list contains an initializer

üIf the definition of an array contains both a length
specification and an initialization list, then the length is that
specified by the expression between the square brackets.
Any elements for which there is no initializer in the list are
initialized to zero.

• If the list contains more initializers than the array has elements, the
superfluous initializers are simply ignored.

üLast comma in the initializers is ignored.

EXAMPLE

As a result of these rules, all of the following definitions
are equivalent:

In the final definition, the initializer 5 is ignored.
üMost compilers generate a warning when such a mismatch

occurs.
If array initializers have not the same type as the array
elements, implicit type conversion.

int a[4] = { 1, 2 };
int a[] = { 1, 2, 0, 0 };
int a[] = { 1, 2, 0, 0, };
int a[4] = { 1, 2, 0, 0, 5 };

INITIALIZING SPECIFIC ELEMENTS

Element designators to allow you to associate initializers
with specific elements. To specify a certain element to
initialize, place its index in square brackets
[constant_expression]

int a[6]= {1, 2, 0, 1, 2, 0}
This array definition initializes the elements a[0] and a[3]
with the value 1, and the elements a[1] and a[4] with the
value 2. All other elements of the array will be given the
initial value 0.

int a[6] = { 1, 2, [3] = 1, 2 };

EXAMPLE
int three= 2;
int a[4] = { 1, [three]=1 };
for (int i= 0; i < 4; i++)

printf("Element [%d]= %d\n", i+1, a[i]);

test.c:45:20: error: expression is not an integer constant expression
int a[4] = { 1, [three]=1 };

^~~~~
1 error generated.

const int three= 2;
int a[4] = { 1, [three]=1 };
for (int i= 0; i < 4; i++)

printf("Element [%d]= %d\n", i+1, a[i]);

Element [1]= 1
Element [2]= 0
Element [3]= 1
Element [4]= 0

EXAMPLE
#include <stdio.h>

void fun(int a[3]) {
printf("%lu\n", sizeof(a));
for (int i = 0; i < 3; ++i)

a[i] = i;
}

int main(){
int a[3];
printf("%lu\n", sizeof(a));
fun(a);

}
MacBook-Francesco:ProgrammI francescosantini$ gcc -o main main.c
main.c:4:29: warning: sizeof on array function parameter will
return size of

'int *' instead of 'int [3]' [-Wsizeof-array-argument]
printf("2 %lu\n", sizeof(a));

^
main.c:3:14: note: declared here
void fun(int a[3]) {

^
1 warning generated.
MacBook-Francesco:ProgrammI francescosantini$./main
12
8

STRINGS

STRINGS

A string is a continuous sequence of characters
terminated by '\0', the null character. The length of a
string is considered to be the number of characters
excluding the terminating null character.

Strings are stored in arrays whose elements have the
type char

You can initialize arrays of char using string literals. For
example, the following two array definitions are
equivalent:

char str1[30] = "Let's go"; // String length: 8; array length: 30.
char str1[30] = { 'L', 'e', 't', '\'', 's',' ', 'g', 'o', '\0' };

An array holding a string must always be at least one element longer than the
string length to accommodate the terminating null character.

EXAMPLE

#include <stdio.h>
int main(){

char string[5]= "Jim Morrison";
printf("%s\n", string);

}

MacBook-Francesco:ProgrammI francescosantini$ gcc -o main
main.c
main.c:4:19: warning: initializer-string for char array is too
long
char string[5]= "Jim Morrison";

^~~~~~~~~~~~~~
1 warning generated.
MacBook-Francesco:ProgrammI francescosantini$./main
Jim M?0]?

EXAMPLE

#include <stdio.h>
int main(){

char string[14]= {'J', 'i', 'm', ' ', 'M', '\0', 'o', 'r', 'r', 'i', 's', 'o', 'n', '\0'};
printf("%s\n", string);

}

MacBook-Francesco:ProgrammI francescosantini$ gcc -o main main.c
MacBook-Francesco:ProgrammI francescosantini$./main
Jim M

MORE ON STRINGS AND LENGTH

If you define a character array without an explicit length
and initialize it with a string literal, the array created is
one element longer than the string length.

char str2[] = " to London!"; // String length: 11
// Array length: 12.

MULTIDIMENSIONAL
ARRAYS

MULTIDIMENSIONAL ARRAYS

A multidimensional array in C is merely an array whose
elements are themselves arrays. The elements of an n-
dimensional array are (n–1)-dimensional arrays.

For example, each element of a two-dimensional array is a
one-dimensional array (an array).

A multidimensional array declaration has a pair of brackets for
each dimension:
üchar screen[10][40][80]; // A three-dimensional array.
ü10 elements screen[0] to screen[9]. Each of these elements is a

two-dimensional array, consisting in turn of 40 one-dimensional
arrays of 80 characters each.

ü 32,000 elements.
The standard recommends the implementations to accept at
least 256 (ISO 14882, B.2), but they may support less or more

MATRICES

Two-dimensional arrays are also called matrices.
üFrequently used, they merit a closer look.
The matrix mat in the following definition has three rows
and five columns (helpful to think in rows and cols):
üfloat mat[3][5];
mat[0], mat[1], and mat[2] are the rows of the matrix mat.
Each of these rows is an array of five float elements.
ü15 float elements

for (int row = 0; row < 3; ++row)
for (int col = 0; col < 5; ++col)

mat[row][col] = row + (float) col/10;

INITIALIZING MULTI-DIM ARRAYS

You can initialize multidimensional arrays using an
initialization list according to the rules described before

int a3d[2][2][3] = { { { 1, 0, 0 }, { 4, 0, 0 } }, { { 7, 8, 0 }, { 0, 0, 0 } } };

int a3d[][2][3] = { { { 1 }, { 4 } }, { { 7, 8 } } };

You do not need to specify that the
first dimension has the size 2, as the
outermost initialization list contains
two initializers.

MORE ON INITIALIZATION

You can also omit some of the braces. If a given pair of
braces contains more initializers than the number of
elements in the corresponding array dimension, then the
excess initializers are associated with the next array
element in the storage sequence:

You can also use element designators

int a3d[2][2][3] = { { 1, 0, 0, 4 }, { 7, 8 } };
int a3d[2][2][3] = { 1, 0, 0, 4, 0, 0, 7, 8 };

int a3d[2][2][3] = { 1, [0][1][0]=4, [1][0][0]=7, 8 };

SU LIBRO

Sezioni 6.1-6.5, 6.11
Stringhe: Capitolo 8, Capitolo 9

