
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

STATEMENTS

STATEMENTS

A statement specifies one or more actions to be
performed, such as assigning a value to a variable,
passing control to a function, or jumping to another
statement. The sum total of all a program’s statements
determines what the program does.

Jumps and loops are statements that control the flow of
the program. Except when those control statements
result in jumps, statements are executed sequentially;
that is, in the order in which they appear in the program.

A statement is an expression followed by a semicolon:

[expression] ;

EXAMPLES

a + 3 is an expression
a + 3; is a command

If (a + 3;) {
\\ Do something

}

int a= 3;
a= a + 2

IMPERATIVE PROGRAMMING

In computer science, imperative programming is a
programming paradigm that uses statements that
change a program's state

Procedural programming is a programming paradigm,
derived from structured programming, based upon the
concept of the procedure call. Procedures, also known
as routines, subroutines, or functions
C is imperative and procedural

BLOCK STATEMENT

A compound statement, called a block for short, groups a
number of statements and declarations together between
braces to form a single statement:

{ [list of declarations and statements] }
Unlike simple statements, block statements are not
terminated by a semicolon ;.
When are they used? A block is used wherever the
syntax calls for a single statement, but the program’s
purpose requires several statements.

{
int a= 5, b= 4, c= 0;
c= a + b;

}

EXAMPLE

int a= -4;
if (a < 0)

printf(“%d is less than 0”, a);
a= -a;
printf(”a now is %d”, a);

int a= 4;
if (a < 0)

printf(“%d is less than 0”, a);
a= -a;
printf(”a now is %d”, a);

-4 is less than 0
a now is 4

a now is -4

int a= 4;
if (a < 0) {

printf(“%d” is less than 0”, a);
a= -a;
printf(”a now is %d”, a);

}

EXAMPLE AND SCOPE

Names declared within a block have block scope; in other
words, they are visible only from their declaration to the end of
the block.
Within that scope, such a declaration can also hide an object
of the same name that was declared outside the block

{ double result = 0.0, x = 0.0;
long status = 0;
int limit;

++x; // Statements
if (status == 0)
{ // New block

int i = 0;
{ int k = 3; } // Another block

}
}

OTHER PARADIGMS

In computer science, declarative programming is a
programming paradigm that expresses the logic of a
computation without describing its control flow
ü to minimize or eliminate side effects by describing what the

program must accomplish, rather than how to accomplish it

mother_child(trude, sally).

father_child(tom, sally).
father_child(tom, erica).
father_child(mike, tom).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).

?- sibling(sally, erica).
Yes

DEFINITION STATEMENTS

EXAMPLES

Used to define variables
Definition of variables = creation in memory

They need to have different names if the scope is the
same

They cannot be used as expressions

int main() {
int a= 4;

}

int main() {
int a= 4;
float a= 5;

}

int main() {
int a= int b= 3;

}

LOOPS

LOOPS

Use a loop to execute a group of statements, called the
loop body, more than once. In C, you can introduce a
loop by one of three iteration statements:

1. while,
2. do ... while,
3. for.

The number of iterations through the loop body is
controlled by a condition, the controlling expression.
This is an expression of a scalar type; that is, an
arithmetic expression or a pointer.
The loop condition is true if the value of the controlling
expression is not equal to 0; otherwise, it is considered
false.

WHILE STATEMENTS

A while statement executes a statement repeatedly as
long as the controlling expression is true:
while (expression) statement

The while statement is a top-driven loop: first the loop
condition (i.e., the controlling expression) is evaluated.
If it yields true, the loop body is executed, and then the
controlling expression is evaluated again.
If the condition is false, program execution continues
with the statement following the loop body.
Syntactically, the loop body consists of one statement. If
several statements are required, they are grouped in a
block.

EXAMPLE #include <stdio.h>

int main () {

int a = 10;

while(a < 20) {
printf("value of a: %d\n", a);
a++;

}

return 0;
}

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

while (test expression) {
commands in the body;

}
Statement just below while;

FOR STATEMENTS

Like the while statement, the for statement is a top-driven
loop, but with more loop logic contained within the statement
itself:

for ([expression1]; [expression2]; [expression3]) statement
üexpression1: Initialization

Evaluated only once, before the first evaluation of the controlling
expression, to perform any necessary initialization.

üexpression2: Controlling expression
Tested before each iteration. Loop execution ends when this
expression evaluates to false.

üexpression3 : Adjustment
An adjustment, such as the incrementation of a counter, performed
after each loop iteration, and before expression2 is tested again.

EXAMPLE

int a= 0;
int i;

for (i = 0; i < 4; ++i) {

a = a+2;
printf(“%d”, a);

}

2

1 2

3

41

2

3

for (initializationStatement; testExpression; updateStatement)
{

// statements in the body
}

4 6 8

i = 0
i = 1
i = 2
i = 3
i = 4

SAME BEHAVIOUR

int a= 0;
int i;

for (i = 1; i <= 4; ++i) {
a = a+2;
printf(“%d”, a);

}

i = 1
i = 2
i = 3
i = 4
i = 5

2 4 6 8

FOR AND WHILE

Any of the three expressions in the head of the for loop
can be omitted. This means that its shortest possible
form is: for (; ;)

A missing controlling expression is considered to be
always true, and so defines an infinite loop.
for (; expression;) equivalent to a while (expression)

Every for statement can also be rewritten as a while
statement, and vice versa.

int a=0, i=0;
while (i < 4)
{

a= a + 2;
++i;

}

DECLARATION IN PLACE OF EXPR1

Since ANSI C99, a declaration can also be used in place
of expression1. In this case, the scope of the variable
declared is limited to the for loop. For example:

The variable i declared in this for loop, no longer exists
after the end of the for loop.

for (int i = 0; i < 4; ++i) {
a = a + 2;

}

DO … WHILE STATEMENTS

The do ... while statement is a bottom-driven loop:
do statement while (expression);

The loop body statement is executed once before the
controlling expression is evaluated for the first time.
Unlike the while and for statements, do ... while ensures
that at least one iteration of the loop body is performed.

If the controlling expression yields true, then another
iteration follows. If false, the loop is finished.

EXAMPLE #include <stdio.h>
int main()
{

double number, sum = 0;

// loop body is executed at least once
do
{

printf("Enter a number: ");
scanf("%lf", &number);
sum += number;

}
while(number != 0.0);

printf("Sum = %.2lf",sum);

return 0;
}

do {
Body of the loop;

} while (test expression)
Statement just below Loop;

Enter a number: 1.5
Enter a number: 2.4
Enter a number: -3.4
Enter a number: 4.2
Enter a number: 0
Sum = 4.70

SELECTION STATEMENTS

SELECTION STATEMENTS

A selection statement can direct the flow of program
execution along different paths depending on a given
condition. There are two selection statements in C:

1. If,
2. switch.

IF STATEMENT

An if statement has the following form:
if (expression) statement1 [else statement2]

The else clause is optional.

The expression is evaluated first, to determine which of
the two statements is executed. This expression must
have a scalar type.

If its value is true -that is, not equal to 0- then statement1
is executed. Otherwise, statement2, if present, is
executed.

FLOW
if (test Expression)
{

// Body of If
}
Statement just below if;

if (testExpression) {
// Body of If

}
else {

// Body of Else
}
Statement just below if..else

NESTED IF

If several if statements are nested, then an else clause
always belongs to the last if (on the same block nesting
level) that does not yet have an else clause:

if (n > 0)
if (n % 2 == 0)

puts("n is positive and even");
else // This is the alternative

puts("n is positive and odd"); // to the last if

NESTED IF (2)

An else clause can be assigned to a different if by
enclosing the last if statement that should not have an
else clause in a block:

if (n > 0)
{

if (n % 2 == 0)
puts("n is positive and even");

}
else // This is the alternative

puts("n is negative or zero"); // to the first if

NESTED IF (3)
To select one of more than two alternative statements, if
statements can be cascaded in an else if chain. Each
new if statement is simply nested in the else clause of
the preceding if statement:

double spec = 10.0, measured = 10.7, diff;
diff = measured - spec;

if (diff >= 0.0 && diff < 0.5)
printf(”Rounding down: %.2f\n", diff);

else if (diff >= 0.5 && diff < 1)
printf(”Rounding down: %.2f\n", diff);

else
printf(”Difference greater than 1!\n");

As soon as one of these expression yields true, the
corresponding statement is executed. The rest is discarded
If none of the if conditions is true, then the last if statement’s
else clause is executed, if present.

SWITCH

A switch statement causes the flow of program execution to
jump to one of several statements according to the value of an
integer expression:

switch (expression) statement
expression has an integer type, and statement is the switch
body, which contains case labels and at most one default
label.
The expression is evaluated once and compared with
constant expressions in the case labels.
If the value of the expression matches one of the case
constants, the program flow jumps to the statement following
that case label.
If none of the case constants matches, the program continues
at the default label, if there is one.

EXAMPLE

switch (menu()) // Jump depending on the result of menu().
{

case 'A': action1(); // Carry out action 1
break; // Don't do any other "actions."

case 'B': action2(); // Carry out action 2
break; // Don't do the default "action."

default: putchar('\a'); // If no recognized command
}

INTERVALS switch (value) {
case 1 ... 8:

printf("Hello, 1 to 8\n");
break;

default:
printf("Hello, default\n");
break;

}

GCC extension

switch(value)
{

case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:

printf("Hello, 1 to 8\n");
break;

default:
printf("Hello, default\n");
break;

}

ONE MORE EXAMPLE

switch (value) {
case 1:

/* do 1 */
break;

case 2:
/* do 2 */
break;

default:
if (value >= 3 && value <= 8)

printf("Hello, 3 to 8\n");
}

However, if you need to work with many intervals, use IF

ONE MORE EXAMPLE

#include <stdio.h>

main()
{

int Grade = 'A';

switch(Grade)
{

case 'A' : printf("Excellent\n");
case 'B' : printf("Good\n");
case 'C' : printf("OK\n");
case 'D' : printf("Mmmmm....\n");
case 'F' : printf("You must do better than this\n");
default : printf("What is your grade anyway?\n");

}
}

Excellent
Good
OK
Mmmmm....
You must do better than this
What is your grade anyway?

UNCONDITIONAL
JUMPS

UCONDITIONAL JUMP STATEMENTS

Jump statements interrupt the sequential execution of
statements, so that execution continues at a different
point in the program.

A jump destroys automatic variables if the jump
destination is outside their scope.
There are four statements that cause unconditional
jumps in C:
übreak,
ücontinue,
ügoto, and
üreturn.

BREAK STATEMENT

The break statement can occur only in the body of a
loop or a switch statement, and causes a jump to the
first statement after the loop or switch statement in which
it is immediately contained:

break;
Thus the break statement can be used to end the
execution of a loop statement at any position in the loop
body.

CONTINUE

The continue statement can be used only within the body
of a loop, and causes the program flow to skip over the
rest of the current iteration of the loop:

continue;

In a while or do ... while loop, the program jumps to the
next evaluation of the loop’s controlling expression.

In a for loop, the program jumps to the next evaluation of
the third expression in the for statement, containing the
operations that are performed after every loop iteration.

EXAMPLE

EXAMPLE
include <stdio.h>
int main()
{

int i;
double number, sum = 0.0;

for(i=1; i <= 10; ++i)
{

printf("Enter a n%d: ",i);
scanf("%lf",&number);

// If user enters negative number, loop is terminated
if(number < 0.0)
{

break;
}

sum += number;
}

printf("Sum = %.2lf",sum);

return 0;
}

Enter a n1: 2.4
Enter a n2: 4.5
Enter a n3: 3.4
Enter a n4: -3
Sum = 10.30

EXAMPLE
include <stdio.h>
int main()
{

int i;
double number, sum = 0.0;

for(i=1; i <= 10; ++i)
{

printf("Enter a n%d: ",i);
scanf("%lf",&number);

// If user enters negative number, loop is continued
if(number < 0.0)
{

continue;
}

sum += number;
}

printf("Sum = %.2lf",sum);

return 0;
}

Enter a n1: 1.1
Enter a n2: 2.2
Enter a n3: 5.5
Enter a n4: 4.4
Enter a n5: -3.4
Enter a n6: -45.5
Enter a n7: 34.5
Enter a n8: -4.2
Enter a n9: -1000
Enter a n10: 12

Sum = 59.70

GOTO

The goto statement causes an unconditional jump to
another statement in the same function. The destination
of the jump is specified by the name of a label:

goto label_name;
A label is a name followed by a colon:

label_name: statement
Labels have a name space of their own, which means
they can have the same names as variables or types
without causing conflicts.
Labels may be placed before any statement, and a
statement can have several labels. Labels serve only as
destinations of goto statements, and have no effect at all
if the labeled statement is reached in the normal course
of sequential execution.

EXAMPLE

void calculate(int a)
{

if (a < 1 || a > 5)
goto here;

printf(“a between 1 and 5!\n”)

return;

here: printf(“a < 1 or a > 5!\n”);
return;

}

GOTO CAVEAT

Because code that makes heavy use of goto statements
is hard to read, you should use them only when they
offer a clear benefit, such as a quick exit from deeply
nested loops.

Any C program that uses goto statements can also be
written without them!

SPAGHETTI CODE

Spaghetti code is a pejorative phrase for source code
that has a complex and tangled control structure,
especially one using many GOTO statements,
exceptions, threads, or other "unstructured" branching
constructs.

As
se

m
bl

y
la

ng
ua

ge
, F

or
tra

n,
 B

AS
IC

TYPEDEF

MAKE IT SIMPLE!

The easy way to use types with complex names is to
declare simple synonyms for them.

In a declaration that starts with the keyword typedef,
each declarator defines an identifier as a synonym for
the specified type.
The identifier is then called a typedef name for that type.

Except for the keyword typedef, the syntax is exactly the
same as for a declaration of an object or function of the
specified type.

EXAMPLES

In the scope of these declarations,
üUINT is synonymous with unsigned int, and
üState is synonymous with enum state

The variable ui has the type unsigned int, and enum
state is a pointer to unsigned int.
üUINT ui = 10;
üState s= DEAD;

typedef unsigned int UINT;
typedef enum state {DEAD,ALIVE} State;

SU LIBRO

Scope o campo di azione Sezione 5.13
Sezioni 3.4-3.10, Sezioni 4.1-4.8, Sezione 15.9 (da poi
scordare immediatamente)

Sezione 10.6 (typedef)

