
PROGRAMMAZIONE
PROCEDURALE

A.A. 2022/2023

EXPRESSIONS AND
OPERATORS

EXPRESSIONS

An expression consists of a sequence of constants
(literals), identifiers, and operators that the program
evaluates by performing the operations indicated.

The expression’s purpose in the program may be to
obtain the resulting value, or to produce side effects of
the evaluation, or both.

A single constant, a string literal, or the identifier of an
object or function is in itself an expression.

SIDE EFFECTS

An expression is said to have a side effect if it modifies
some state outside its local environment, that is to say
has an observable interaction with the outside world
besides returning a value

if (a == 5) {
printf(“Hello World!\n”);

}

if (a = 5) {
printf(“Hello World!\n”);

}

Returns a value Returns a value AND has a
side effect on a

PS: WRONG, not the right way to
test conditions

TYPE OF AN EXPRESSION

Every expression has a type. An expression’s type is the
type of the value that results when the expression is
evaluated. If the expression yields no value, it has the
type void. If a has type int

FUNDAMENTAL PRINCIPLES

A few fundamental principles that will help you
understand how C expressions are evaluated. The
üprecedence and
üassociativity
üsequence points and
ülvalues and rvalues

LVALUES

LVALUES

An lvalue is an expression that designates an object.
The term object refers to a location in memory whose
contents can represent values.
The simplest example is the name of a variable.
The initial “l” in the term originally meant “left”: because
an lvalue designates an object, it can appear on the left
side of an assignment operator (but also on the right
of it), as in

leftExpression = rightExpression
Expressions that represent a value without designating
an object are called, by analogy, rvalues.
An rvalue is an expression that can appear on the
right side of an assignment operator, but not the left.

EXAMPLES

7

a

a+1

‘c’

a+b

rvalue

lvalue

rvalue

rvalue

rvalue

7= a

a= 7

a + 1= 8

‘c’= a

a+b= 11

a= 7

a= a +1

a= ‘c’

a= a+b

LVALUES CAN BE ALSO ON THE
RIGHT OF =

a= 7 b= a

1. When a variable is on the left of =, we modify its value
with the value of the expression on the right of =

2. When a variable is on the right of =, we take its value
stored in memory

VARIABLES

Variables are lvalues: they are containers of values
Anything whose value can be changed in memory

int a= 7;
int b= 256;

1110 0000

0000 0000

0000 0000

0000 0000

0000 0000
0

0000 0000

1000 0000

0000 0000

0000 0000

2700

a

b

2704

CONSTANTS AND LVALUES

An object may be declared as constant. If this is the
case, you can’t use it on the left side of an assignment,
even though it is an lvalue, as the following example
illustrates:

int a = 1;
const int b = 2;
b = 20; // Error: b is declared as const int.

LEFT VALUES AND ASSIGNMENTS

The left operand of an assignment, but also a
modifiable lvalue
A modifiable lvalue is an lvalue that is not declared as a
const-qualified type

Use constants when you want to be sure a value of a
variable will not be changed during the execution of a
program
You have to give a value to it as soon as it is defined,
since it is not modifiable after.

const double pi= 3.14; const double pi;
pi= 3.14;

OPERATORS PRECEDENCE

OPERATOR PRECEDENCE
An expression may contain several operators. In this
case, the precedence of the operators determines which
part of the expression is treated as the operand of each
operator.

For example, in keeping with the customary rules of
arithmetic, the operators *, /, and % have higher
precedence in an expression than the operators + and -.

For example, the following expression: a – b * c
is equivalent to

a - (b * c).

If you intend the operands to be grouped differently, you
must use parentheses, thus: (a - b) * c

OPERATOR ASSOCIATIVITY

If two operators in an expression have the same
precedence, then their associativity determines whether
they are grouped with operands in order from left to right,
or from right to left.

For example, arithmetic operators are associated with
operands from left to right, and assignment operators
from right to left:

a / b / c
ü(a / b) / c
a = b = c
üa = (b = c) int a= 5;

int b= 7;
Int c= 9;

int a= 9;
int b= 9;
Int c= 9;

PRECEDENCE
AND
ASSOCIATIVITY
TABLE

COMMENTS TO TABLE

A few of the operator tokens appear twice in the table.
üThe increment and decrement operators, ++ and --, have a

higher precedence when used as postfix operators (as in the
expression x++) than the same tokens when used as prefix
operators (as in ++x).

Furthermore, the tokens +, -, *, and & represent both
unary operators -that is, operators that work on a single
operand- and binary operators, or operators that connect
two operands.

ARITHMETIC OPERATORS

ARITHMETIC OPERATORS (2)

The operands of the arithmetic operators are subject to
the following rules:
üOnly the % operator requires integer operands.
The operands of all other operators may have any
arithmetic type.

ARITHMETIC CONVERSIONS

The operands are subject to the usual arithmetic. The result of
division with two integer operands is also an integer! Example
with
üshort n = -5

COMMENTS

If both operands in a multiplication or a division have the
same sign, the result is positive; otherwise, it is negative.

However, the result of a modulo operation always has
the same sign as the left operand.

ASSIGNMENT OPERATORS
In an assignment operation, the left operand must be a
modifiable lvalue; in other words, it must be an
expression that designates an object whose value can
be changed.

In a simple assignment (that is, one performed using the
operator =), the assignment operation stores the value of
the right operand in this object.

There are also compound assignments, which combine
an arithmetic or a bitwise operation in the same step with
the assignment.

COMPOUND ASSIGNMENTS

A compound assignment is performed by any of the
following operators:

ü*= /= %= += -= (arithmetic operation and assignment)

ü<<= >>= &= ^= |= (bitwise operation and assignment)

Simply, in evaluating a compound assignment
expression, the program combines the two operands
with the specified operation and assigns the result to the
left operand.

INCREMENT AND DECREMENT OPS.

Each of the tokens ++ and -- represents both a postfix
and a prefix operator.

COMPARATIVE OPERATORS

The comparative operators, also called the relational
operators and the equality operators, compare two
operands and yield a value of type int. The value is 1 if
the specified relation holds, and 0 if it does not.

EXAMPLES

int a= 5
int b= 6
int c= 0

c = a < b;
c = a == b;
c = b >= a

c is equal to 1
c is equal to 0
c is equal to 1

COMPARATIVE OPS. AND PREC

The comparative operators have lower precedence than
the arithmetic operators, but higher precedence than the
logical operators.
üa < b && b < c + 1
ü(a < b) && (b < (c + 1))
Furthermore, the equality operators, == and !=, have
lower precedence than the other comparative operators.
üa < b != b < c
ü(a < b) != (b < c)

LOGICAL OPERATORS

You can connect expressions using logical operators to
form compound conditions: boolean operations AND,
OR, and NOT.

Like comparative expressions, logical expressions have
the type int. The result has the value 1 if the logical
expression is true, and the value 0 if it is false.

LOGICAL OPERATORS (2)

Any operand with a value of 0 is interpreted as false; any
value other than 0 is treated as true.

(a< -0.2) || (a> 0.2)
a< -0.2 || a> 0.2
!(a>= -0.2 && a<= 0.2)

The unary operator ! has a higher precedence.

all these conditions are equivalent

ORDER OF EVALUATION

The operators && and || have an important peculiarity:
their operands are evaluated in order from left to right,
and if the value of the left operand is sufficient to
determine the result of the operation, then the right
operand is not evaluated at all.
üThe operator && evaluates the right operand only if the left

operand yields a nonzero value.
üThe operator || evaluates the right operand only if the left

operand yields 0.

SHORT CIRCUIT

int a= 1;
int b= 0;
int c;

c= a || ++b;

int a= 1;
int b= 0;
int c;

c= b && ++a;

b is not incremented a is not incremented

BITWISE OPERATORS

The bitwise operators allow you to manipulate individual
bits in a byte or in a larger data unit

EXAMPLE

a &= 0xFF; // Equivalent a = a & 0xFF; // Clears all except the lowest eight bit

IN THE PROCESSOR

In memory values are represented in little endian
In the processor, the same values are translated to big
endian

So, all the operations in the processor are computed in
big endian, and when the result is stored back into
memory, they are saved in little endian.

SHIFT OPERATORS

The shift operators transpose the bit pattern of the left
operand by the number of bit positions indicated by the
right operand.

The operands of the shift operators must be integers.
Before the actual bit-shift, the integer promotions are
performed on both operands. The value of the right
operand must not be negative, and must be less than
the width of the left operand after integer promotion.

EXAMPLE

unsigned long n = 0xB, // Bit pattern: 0 ... 0 0 0 1 0 1 1
result = 0;

result = n << 2; // 0 ... 0 1 0 1 1 0 0
result = n >> 2; // 0 ... 0 0 0 0 0 1 0

A left shift through y bit positions is equivalent to
multiplying the left operand by 2y

Right shift: x/2y

OTHER OPERATORS

There are six other operators in C that do not fall into any
of the categories described in this round of slides.

CONDITIONAL OPERATOR

The conditional operator is sometimes called the ternary or
trinary operator, because it is the only one that has three
operands:

condition ? expression 1 : expression 2
The operation first evaluates the condition. Then, depending
on the result, it evaluates one or the other of the two
alternative expressions.
There is a sequence point after the condition has been
evaluated.
If the result is not equal to 0 (in other words, if the condition is
true), then only the second operand, expression 1, is
evaluated, and the entire operation yields the value of
expression 1. If on the other hand condition does yield 0 (i.e.,
false), then only the third operand, expression 2, is evaluated,
and the entire operation yields the value of expression 2.

EXAMPLE

int a= 6
int b= 12;
int c;

c= b > a ? 100: 150;

int a= 6
int b= 12;
int c;

c= a == b ? 100 : 150;

c becomes 100 c becomes 150

TYPE OF CONDITIONAL STAT.

The first operand of the conditional operator, condition,
must have an arithmetic type

Both of the alternative expressions have arithmetic
types, in which case the result of the complete operation
has the type that results from performing the usual
arithmetic conversions on these operands.

int a= 6
int b= 12;
int c;

c= (b > a)? 100 : 150LL;

The whole expression has type long long

COMMA OPERATOR

The comma operator is a binary operator:
expression 1 , expression 2

The comma operator ensures sequential processing: first
the left operand is evaluated, then the right operand. The
result of the complete expression has the type and value
of the right operand. The left operand is only evaluated
for its side effects; its value is discarded.

EXAMPLE

int a= 6
int b= 12;
int c;

c= (a++, a + 7);

a becomes 7
c becomes 14

The value of the whole expression is 14

SEQUENCE POINTS AND SIDE
EFFECTS

SIDE EFFECTS, SEQUENCE POINTS

A function or expression is said to have a side effect if,
in addition to returning a value, it also modifies some
state or has an observable interaction with calling
functions or the outside world.

A sequence point defines any point in a computer
program's execution at which it is guaranteed that
üall side effects of previous evaluations will have been

performed, and
üno side effects from subsequent evaluations have yet been

performed.
A sequence point is a point in program execution at
which all side effects are evaluated before going on to
the next step.

BE CAREFUL

The modification of the left operand is a side effect of an
assignment expression.
üa = b = 5
The value of the entire assignment expression is the
same as the value assigned to the left operand, and the
assignment expression has the type of the left operand

However, unlike its left operand, the assignment
expression itself is not an lvalue.

EXAMPLE

int a= 6
int b= 12;
int c;

c= (b = a);

This expression has a value of 6
And as side effect, changes the

value of b in memoryThis expression has a value of 6
And as side effect, changes the

value of c in memory

EXAMPLE

int a= 6
int b= 12;
int c;

(c= b) = a;

This expression has a value of 12
And as side effect, changes the

value of c in memory

However, the compiler
returns an error because c
= b is an rvalue and not an
lvalue: we cannot assign
the value of a to it

HOW MANY SIDE EFFECTS?

int a= 3;
int b= 4;

a= b++;

Expression a= b++ has
two side effects: one on b and one on a

REMINDER

As a programmer, you must therefore remember not to
modify the same variable more than once between two
consecutive sequence points. An example:

Because the assignment and increment operations in the
last statement may take place in either order, the
resulting value of i is undefined.

i = 1; // OK.
i = i++; // Wrong: two modifications of i; behavior is undefined.

int i = i++; // OK, whatever it means, because int i = something
// is seen as the creation of i and an then its
// initialization. The first “=“ is not seen as above

SEQUENCE POINTS

The most important sequence points occur at the following
positions:
üAt the end of a command (;)
üAfter all the arguments in a function call have been evaluated, and

before control passes to the statements in the function
üAt the end of an expression which is not part of a larger expression.

For example, each of the three controlling expressions in a for
statement, the condition of an if or while statement, the expression
in a return statement, and initializers (after eval of 5 in int a =5;).

üAfter the evaluation of the first operand of each of the following
operators:

• && (logical AND)
• || (logical OR)
• ?: (the conditional operator)
• , (the comma operator)

EXAMPLE

Thus the expression
++i < 100 ? f(i++) : (i = 0)

is permissible, as there is a sequence point between the
first modification of i and whichever of the other two
modifications is performed.

Also a++ && a++ is ok

a++ + b++ is ok because in this expression there is one
side effect on a and one side effect on b, hence on two
different variables

EXERCISE

int main()
{

int i = 0;
int k = i++, j= i++;
printf("%d %d %d\n", k, j, i) ;

int l= 0;
int m= ++l, n= ++l;
printf("%d %d %d\n", m, n, l) ;

}
0 1 2
1 2 2

int main()
{

int i = 0;
int k = i++, j= i++;
printf("%d %d %d\n", k, j, i) ;

int l= 0;
int m= ++l, n= ++l;
printf("%d %d %d\n", m, n, l) ;

int q;
q= ++q;
printf("%d\n", q);

}

example.c:26:8: warning: multiple unsequenced modifications to 'q' [-Wunsequenced]
q= ++q;
~ ^

1 warning generated.

