PROGRAMMAZIONE
PROCEDURALE

SHELL

SHELL

© =y francescosantini — -bash — 79x18

MacBook-Francesco:~ francescosantini$ |

SHELL

@ A program that interprets commands

@ Allows a user to execute commands by typing them
manually at a terminal, or automatically in programs
called shell scripts.

@ A shell is not an operating system. It is a way to interface
with the operating system and run commands.

BASH

@ BASH = Bourne Again SHell

@ Bash is a shell written as a free replacement to the
standard Bourne Shell (/bin/sh) originally written by
Steve Bourne for UNIX systems.

@ It has all of the features of the original Bourne Shell, plus
additions that make it easier to program with and use
from the command line.

@ Since it is Free Software, it has been adopted as the
default shell on most Linux systems.

MacBook-Francesco:~ francescosantini$ echo $SHELL

/bin/bash
MacBook-Francesco:~ francescosantini$

BASH AND DOS COMMAND PROMPT

@ Case sensitivity: In Linux/UNIX, commands and
filenames are case sensitive, meaning that typing “EXIT”
instead of the proper “exit” is a mistake.

@ Filenames: The DOS world uses the “eight dot three”
filename convention, meaning that all files followed a
format that allowed up to 8 characters in the filename,
followed by a period (“dot”), followed by an option
extension, up to 3 characters long (e.qg.
FILENAME.TXT). In UNIX/Linux, there is no such thing
as a file extension. Periods can be placed at any part of
the filename, and “extensions” may be interpreted
differently by all programs, or not at all.

SPECIAL CHARACTERS

Character

Description

\

Escape character. If you want to reference a special character, you must “escape” it
with a backslash first.

Example: touch /tmp/filename*

Directory separator, used to separate a string of directory names.

Example: /usr/src/linux

Current directory. Can also “hide” files when it is the first character in a filename.

Parent directory

User's home directory

Represents 0 or more characters in a filename, or by itself, all files in a directory.

Example: pic*2002 can represent the files pic2002, picJanuary2002,

picFeb292002, etc.

)

Represents a single character in a filename.

Example: hello?.txt canrepresent hellol.txt,helloz.txt, butnot

hello22.txt

[]

Can be used to represent a range of values, e.g. [0-9], [A-Z], etc.

Example: hello[0-2].txt represents the names hello0.txt,

hellol.txt,and hello2.txt

SPECIAL CHARACTERS

“Pipe”. Redirect the output of one command into another command.

Example: 1ls | more

Redirect output of a command into a new file. If the file already exists, over-write it.

Example: 1s > myfiles.txt

>>

Redirect the output of a command onto the end of an existing file.

Example: echo “Mary 555-1234" >> phonenumbers.txt

Redirect a file as input to a program.

Example: more < phonenumbers.txt

e

Command separator. Allows you to execute multiple commands on a single line.

Example: c¢d /var/log ; less messages

&&

Command separator as above, but only runs the second command if the first one
finished without errors.

Example: cd /var/logs && less messages

Execute a command in the background, and immediately get your shell back.

Example: find / -name core > /tmp/corefiles.txt &

EXECUTING COMMANDS

@ The Command PATH: Most common commands are
located in your shell's “PATH”, meaning that you can just
type the name of the program to execute it.

v Example: Typing “ Is” will execute the “ Is” command.

@ Your shell's “PATH” variable includes the most common
program locations, such as /bin, /usr/bin, /usr/X11R6/bin,

and others.

@ To execute commands that are not in your current PATH,
you have to give the complete location of the command.

v'Examples: /home/esercizi/esercizio1
Jesercizio1 (Execute a program in the current directory)

CHANGING PATH OF EXECUTABLES

MacBook-Francesco:~ francescosantini$ echo $PATH
/opt/local/bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/

sbin:/opt/X11/bin:/usr/local/git/bin:/usr/texbin

MacBook-Francesco:~ francescosantini$
PATH=$PATH:~/Desktop/Programml/

MacBook-Francesco:~ francescosantini$ echo $PATH
/opt/local/bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
./lopt/X11/bin:/usr/local/git/bin:/usr/texbin:/Users/francescosantini/De

sktop/Programml/

You can run a program with a.out instead of ./a.out

CHANGING PATH (PERMANENT)

@ The command before does not work anymore if you
close and restart the shell

@ To make it permanent:

v"Modify the profile of your bash
» Edit file: ~/.bash_profile

v'Add :~/Desktop/Programml/ at the end of the string

COMMAND SYNTAX

@ Command Syntax: Commands can be run by
themselves, or you can pass in additional arguments to
make them do different things. Typical command syntax
can look something like this:

@ command [-argument] [--argument] [file]

@ Examples:

vls List files in current directory
Vs -l Lists files in “long” format
v'cat filename Show contents of a file

v'cat -n filename Show contents of a file, with line numbers

MacBook-Francesco:~ francescosantini$ cat -n .bash_profile
1 PATH=$PATH:~/Desktop/Programml/

HELP!

@ Help on most Linux commands is typically 1) built right
into the commands themselves, 2) available through
online help programs (“man pages” and “info pages”).

@ Using a Command's Built-In Help: Many commands
have simple “help” screens that can be invoked with
special command flags. These flags usually look like “-h”
or “--help”.

v'Example: gcc --help

HELP!

@ The best source of information for most commands can
be found in the manual pages, known as “man pages” for
short. To read a command's man page, type “man
command”. Examples

v'man Is Get help on the “Is” command.
man man A manual about how to use the manual!

@ One you are in the manual, to search for a particular
word within a man page, type “/word”.

@ To quit from a man page, just type the “Q” key.
@ Move up-down with arrows.
@ Type “h” for help INSIDE man.

MAN FOR STDLIBRARY

@ It works also for functions in standard library

MacBook-Francesco:~ francescosantini$ man calloc

. O francescosantini — less « man calloc — 91x27

MALLOC(3) BSD Library Functions Manual MALLOC(3)

NAME
calloc, free, malloc, realloc, reallocf, valloc -- memory allocation

SYNOPSIS
#include <stdlib.h>

void *
calloc(size t count, size t size);

void
free(void *ptr);

void *
malloc(size t size);

void *
realloc(void *ptr, size t size);

void *
reallocf(void *ptr, size t size);

void *
valloc(size t size);

NAVIGATING THE LINUX
FILESYSTEM

ROOT DIRECTORY

@ The Linux filesystem is a tree-like hierarchy hierarchy of
directories and files.

@ At the base of the filesystem is the “/” directory, otherwise
known as the “root” (not to be confused with the root
user).

@ Unlike DOS or Windows filesystems that have multiple
‘roots”, one for each disk drive, the Linux filesystem
mounts all disks somewhere underneath the / filesystem.

MAIN DIRECTORIES

Directory Description

The nameless base of the filesystem. All other directories, files, drives, and
devices are attached to this root. Commonly (but incorrectly) referred to as
the “slash” or “/” directory. The “/” is just a directory separator, not a
directory itself.

/bin Essential command binaries (programs) are stored here (bash, 1s, mount,
tar,etc.)

/boot Static files of the boot loader.

/dev Device files. In Linux, hardware devices are acceessd just like other files, and
they are kept under this directory.

/etc Host-specific system configuration files.

/home Location of users' personal home directories (e.g. /home/susan).

/1ib Essential shared libraries and kernel modules.

/proc Process information pseudo-filesystem. An interface to kernel data structures.

/root The root (superuser) home directory.

/sbin Essential system binaries (fdisk, £sck, init,etc).

MAIN

DIRECTORIES

/tmp Temporary files. All users have permission to place temporary files here.

/usr The base directory for most shareable, read-only data (programs, libraries,
documentation, and much more).

/usr/bin Most user programs are kept here (cc, £ind, du, etc.).

/usr/include [Header files for compiling C programs.

/usr/1lib Libraries for most binary programs.

/usr/local “Locally” installed files. This directory only really matters in environments
where files are stored on the network. Locally-installed files go in
/usr/local/bin, /usr/local/lib, etc.). Also often used for
software packages installed from source, or software not officially shipped
with the distribution.

/usr/sbin Non-vital system binaries (1pd, useradd, etc.)

/usr/share Architecture-independent data (icons, backgrounds, documentation, terminfo,
man pages, etc.).

/usr/src Program source code. E.g. The Linux Kernel, source RPMs, etc.

/usr/X11R6 |The X Window System.

/var Variable data: mail and printer spools, log files, lock files, etc.

COMMANDS FOR NAVIGATING

Linux Command DOS Command Description
pwd cd “Print Working Directory”. Shows the current
location in the directory tree.
cd cd, chdir “Change Directory”. When typed all by itself, it

returns you to your home directory.

cd directory

cd directory

Change into the specified directory name.
Example: cd /usr/src/linux

cd ~ “~” 1s an alias for your home directory. It can be
used as a shortcut to your “home”, or other
directories relative to your home.

cd .. cd.. Move up one directory. For example, if you are in
/home/vic and you type “cd ..”, you will end
up in /home.

cd - Return to previous directory. An easy way to get

back to your previous location!

COMMANDS FOR NAVIGATING

ls

dir /w

List all files in the current directory, in column
format.

ls

directory

dir directory

List the files in the specified directory.
Example: 1s /var/log

ls

-1

dir

List files in “long” format, one file per line. This
also shows you additional info about the file, such
as ownership, permissions, date, and size.

ls

dir /a

List all files, including “hidden” files. Hidden files
are those files that begin with a “”’, e.g. The

.bash history file in your home directory.

ls

-1d

directory

A “long” list of “directory”, but instead of showing
the directory contents, show the directory's detailed
information. For example, compare the output of
the following two commands:

ls -1 /usr/bin
ls -1d /usr/bin

1ls

/usr/bin/d*

dir d*.*

List all files whose names begin with the letter “d”
in the /usr/bin directory.

.BASH_HISTORY

Jtst

./test

./test

gcc -std=c99 -0 test test.c

./test

gcc -std=c99 -0 test test.c

gcc -std=c99 -0 test test.c

./test

scp -r ~/Desktop/html/* francesco.santini@ssh.dmi. ~/html/
scp -r ~/Desktop/html/* francesco.santini@ssh.dmi. ~/html/
scp -r ~/Desktop/html/* francesco.santini@ssh.dmi. ~/html/
scp -r ~/Desktop/html/* francesco.santini@ssh.dmi. ~/html/
cd Desktop/ProgrammI/

ls

gcc -std=c99 test

gcc -std=c99 test

Cclear

gcc -std=c99 test

gcc -std=c99 test

gcc -std=c99 test

./test

gcc -std=c99 test

gcc -std=c99 test

gcc -std=c99 test

gcc -std=c99 test

gcc -std=c99 test

PIPING AND REDIRECTION

PIPING

@ The pipe character, “|”, is used to chain two or more
commands together.

@ The output of the first command is “piped” into the next
program, and if there is a second pipe, the output is sent
to the third program, etc. For example:

v'Is -la /usr/bin | less

@ |n this example, we run the command “Is -la /usr/bin”,
which gives us a long listing of all of the files in /usr/bin.
Because the output of this command is typically very
long, we pipe the output to a program called “less”, which
displays the output for us one screen at a time.

REDIRECTING OUTPUT TO FILES

@ There are times when it is useful to save the output of a
command to a file, instead of displaying it to the screen.

@ For example, if we want to create a file that lists all of the
MP3 files in a directory, we can do something like this,
using the “>" redirection character:

vIs -| Thome/vic/MP3/*.mp3 > mp3files.txt

@ A similar command can be written so that instead of

creating a new file called mp3files.txt, we can append to
the end of the original file:

v'Is -| /Thomel/vic/extraMP3s/*.mp3 >> mp3files.txt

OTHER COMMANDS

OTHER COMMANDS

Linux DOS Description
Command Command

file Find out what kind of file it is.
For example, “file /bin/1s” tells us that it is a Linux
executable file.

cat type Display the contents of a text file on the screen. For
example: cat mp3files.txt would display the file we
created in the previous section.

head Display the first few lines of a text file.
Example: head /etc/services

tail Display the last few lines of a text file.
Example: tail /etc/services

tail -f Display the last few lines of a text file, and then output
appended data as the file grows (very useful for following
log files!).
Example: tail -f /var/log/messages

cp copy Copies a file from one location to another.

Example: cp mp3files.txt /tmp
(copies the mp3files.txt file to the /tmp directory)

OTHER COMMANDS

mv rename, Moves a file to a new location, or renames it.
ren, move For example: mv mp3files.txt /tmp
(copy the file to /tmp, and delete it from the original
location)
rm del Delete a file. Example: rm /tmp/mp3files.txt
mkdir md Make Directory. Example: mkdir /tmp/myfiles/
rmdir rd, rmdir |Remove Directory. Example: rmdir /tmp/myfiles/

MacBook-Francesco:~ francescosantini$ rm *.o

FIND THINGS

Linux Description
Command

which Shows the full path of shell commands found in your path. For example, if
you want to know exactly where the “grep” command is located on the
filesystem, you can type “which grep”. The output should be something
like: /bin/grep

whereis Locates the program, source code, and manual page for a command (if all
information is available). For example, to find out where “1s” and its man
page are, type: “whereis 1s” The output will look something like:
ls: /bin/ls /usr/share/man/manl/ls.l.gz

locate A quick way to search for files anywhere on the filesystem. For example, you
can find all files and directories that contain the name “mozilla” by typing:
locate mozilla

find A very powerful command, but sometimes tricky to use. It can be used to

search for files matching certain patterns, as well as many other types of
searches. A simple example is:

find . -name *mp3

This example starts searching in the current directory “.” and all sub-
directories, looking for files with “mp3” at the end of their names.

INFORMATIONAL COMMANDS

Linux Command Explanation

ps Lists currently running process (programs).

w Show who is logged on and what they are doing.

id Print your user-id and group id's

df Report filesystem disk space usage (“Disk Free” is how I remember it)

du Disk Usage in a particular directory. “du -s” provides a summary
for the current directory.

top Displays CPU processes in a full-screen GUI. A great way to see the
activity on your computer in real-time. Type “Q” to quit.

free Displays amount of free and used memory in the system.

cat /proc/cpuinfo

Displays information about your CPU.

cat /proc/meminfo

Display lots of information about current memory usage.

uname -a

Prints system information to the screen (kernel version, machine type,
etc.)

MORE UTILITIES

Linux Command Description

clear Clear the screen

echo Display text on the screen. Mostly useful when writing shell scripts. For
example: echo “Hello World”

more Display a file, or program output one page at a time. Examples:
more mp3files.txt
ls -la | more

less An improved replacement for the “more” command. Allows you to scroll
backwards as well as forwards.

grep Search for a pattern in a file or program output. For example, to find out

which TCP network port is used by the “nfs” service, you can do this:

grep “nfs” /etc/services

This looks for any line that contains the string “nfs” in the file “/etc/services”
and displays only those lines.

GO FASTER

Shortcut

Description

Up/Down Arrow Keys

Scroll through your most recent commands. You can
scroll back to an old command, hit Exter, and execute the

command without having to re-type it.

“history” command

Show your complete command history.

Tas Completion

If you type a partial command or filename that the shell
recognizes, you can have it automatically completed for
you if you press the Tas key. Try typing the first few

characters of your favourite Linux command, then hit Tas
a couple of times to see what happens.

Complete recent commands with

(13 "’

Try this: Type “!” followed by the first couple of letters
of a recent command and press Exter! For example, type:
find /usr/bin -type f -name m*

...and now type:

1£1

CHMOD

Is -l

/ /

-rwxXr-xr-x 1 Jjoe acctg 23068 Feb 26 2004 archive.sh
-rw-rw-r-- 1 joe acctg 12878 Jul 24 21:58 orgchart.gif
-rw-rw-r-- 1 Jjoe acctg 2645 Jun 30 08:48 personnel.txt
-rw-r--r-- 1 Jjoe acctg 168 Jul 17 11:51 publicity.html
drwxrwxr-x 2 joe acctg 1024 Mar 18 16:27 sales
-rw-r—--—-—-—-— 1 Jjoe acctg 512 Sep 1 07:00 topsecret.inf

-rwxXr-xr-x 1 Jjoe acctg 2645 Aug 4 11:03 wordmatic

The first character in this column tells what kind of file this is. The dash
represents a normal file; the d represents a directory.
The remaining characters describe the file’s permissions

The size of the file, in bytes. For directories, this is the size of the
directory, not the total of the directory’s contents!

PERMISSIONS

- rWX r-X r-x joe acctg archive.sh

- rw- rw- r-- joe acctg orgchart.gif

- rw- rw- r-- joe acctg personnel.txt

-rw- r-- r-- joe acctg publicity.ntml

d rwx rwx r-x joe acctg sales

-rw- r-- - joe acctg topsecret.inf

- rwWX r-x r-x joe acctg wordomatic
user

group

others

CHANGING PERMISSIONS

u = user
Before: -rwx r-x r-x archive.sh g = group
Command: chmod o=r archive.sh o = others
After: -rw Xr-x r-- archive.sh a = all
r = read
Before: -W-r----- topsecret.inf W = write
Command: chmod g= topsecret.inf X = execute
After: -rw- --- --- topsecret.inf
Before: -rW- r-- r-- publicity.htm
Command: chmod og=rw publicity.htm
After: -r'W- rw- rw- publicity.htm

SHELL PROGRAMMING
(INTRO)

EXAMPLE

#!/bin/bash
echo Hello World

INTRO

@ You can put commands in a file and execute them in
sequence.

#!/bin/bash

Rotate procmail log files

cd /homes/arensb/Mail

rm procmail.log.6 # This is redundant
mv procmail.log.5 procmail.log.6
mv procmail.log.4 procmail.log.5
mv procmail.log.3 procmail.log.4
mv procmail.log.2 procmail.log.3
myv procmail.log.1 procmail.log.2
mv procmail.log.0 procmail.log.1
mv procmail.log procmail.log.0

THINGS TO NOTICE

@ The first line of any script must begin with #!, followed by
the name of the interpreter.

@ Comments begin with a hash (#) and continue to the end
of the line

@ A script, like any file that can be run as a command,
needs to be executable: save this script (text file) as
rotatelog and run

v'"chmod u=rwx rotatelog
v'./ rotatelog

