
PROGRAMMAZIONE
PROCEDURALE

SHELL

SHELL

SHELL

A program that interprets commands

Allows a user to execute commands by typing them
manually at a terminal, or automatically in programs
called shell scripts.

A shell is not an operating system. It is a way to interface
with the operating system and run commands.

BASH

BASH = Bourne Again SHell

Bash is a shell written as a free replacement to the
standard Bourne Shell (/bin/sh) originally written by
Steve Bourne for UNIX systems.
It has all of the features of the original Bourne Shell, plus
additions that make it easier to program with and use
from the command line.

Since it is Free Software, it has been adopted as the
default shell on most Linux systems.

MacBook-Francesco:~ francescosantini$ echo $SHELL
/bin/bash
MacBook-Francesco:~ francescosantini$

BASH AND DOS COMMAND PROMPT

Case sensitivity: In Linux/UNIX, commands and
filenames are case sensitive, meaning that typing “EXIT”
instead of the proper “exit” is a mistake.

Filenames: The DOS world uses the “eight dot three”
filename convention, meaning that all files followed a
format that allowed up to 8 characters in the filename,
followed by a period (“dot”), followed by an option
extension, up to 3 characters long (e.g.
FILENAME.TXT). In UNIX/Linux, there is no such thing
as a file extension. Periods can be placed at any part of
the filename, and “extensions” may be interpreted
differently by all programs, or not at all.

SPECIAL CHARACTERS

SPECIAL CHARACTERS

EXECUTING COMMANDS

The Command PATH: Most common commands are
located in your shell's “PATH”, meaning that you can just
type the name of the program to execute it.
üExample: Typing “ ls” will execute the “ ls” command.
Your shell's “PATH” variable includes the most common
program locations, such as /bin, /usr/bin, /usr/X11R6/bin,
and others.

To execute commands that are not in your current PATH,
you have to give the complete location of the command.
üExamples: /home/esercizi/esercizio1

./esercizio1 (Execute a program in the current directory)

CHANGING PATH OF EXECUTABLES

MacBook-Francesco:~ francescosantini$ echo $PATH
/opt/local/bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/
sbin:/opt/X11/bin:/usr/local/git/bin:/usr/texbin

MacBook-Francesco:~ francescosantini$
PATH=$PATH:~/Desktop/ProgrammI/
MacBook-Francesco:~ francescosantini$ echo $PATH
/opt/local/bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
:/opt/X11/bin:/usr/local/git/bin:/usr/texbin:/Users/francescosantini/De
sktop/ProgrammI/

You can run a program with a.out instead of ./a.out

CHANGING PATH (PERMANENT)

The command before does not work anymore if you
close and restart the shell

To make it permanent:
üModify the profile of your bash

• Edit file: ~/.bash_profile

üAdd :~/Desktop/ProgrammI/ at the end of the string

COMMAND SYNTAX

Command Syntax: Commands can be run by
themselves, or you can pass in additional arguments to
make them do different things. Typical command syntax
can look something like this:

command [-argument] [--argument] [file]
Examples:
üls List files in current directory
üls -l Lists files in “long” format
ücat filename Show contents of a file
ücat -n filename Show contents of a file, with line numbers

MacBook-Francesco:~ francescosantini$ cat -n .bash_profile
1 PATH=$PATH:~/Desktop/ProgrammI/

HELP!

Help on most Linux commands is typically 1) built right
into the commands themselves, 2) available through
online help programs (“man pages” and “info pages”).

Using a Command's Built-In Help: Many commands
have simple “help” screens that can be invoked with
special command flags. These flags usually look like “-h”
or “--help”.
üExample: gcc --help

HELP!

The best source of information for most commands can
be found in the manual pages, known as “man pages” for
short. To read a command's man page, type “man
command”. Examples
üman ls Get help on the “ls” command.

man man A manual about how to use the manual!
One you are in the manual, to search for a particular
word within a man page, type “/word”.

To quit from a man page, just type the “Q” key.

Move up-down with arrows.

Type “h” for help INSIDE man.

MAN FOR STDLIBRARY
It works also for functions in standard library

MacBook-Francesco:~ francescosantini$ man calloc

NAVIGATING THE LINUX
FILESYSTEM

ROOT DIRECTORY

The Linux filesystem is a tree-like hierarchy hierarchy of
directories and files.

At the base of the filesystem is the “/” directory, otherwise
known as the “root” (not to be confused with the root
user).
Unlike DOS or Windows filesystems that have multiple
“roots”, one for each disk drive, the Linux filesystem
mounts all disks somewhere underneath the / filesystem.

MAIN DIRECTORIES

MAIN DIRECTORIES

COMMANDS FOR NAVIGATING

COMMANDS FOR NAVIGATING

.BASH_HISTORY

less ~/.bash_history

PIPING AND REDIRECTION

PIPING

The pipe character, “|”, is used to chain two or more
commands together.

The output of the first command is “piped” into the next
program, and if there is a second pipe, the output is sent
to the third program, etc. For example:
üls -la /usr/bin | less
In this example, we run the command “ls -la /usr/bin”,
which gives us a long listing of all of the files in /usr/bin.
Because the output of this command is typically very
long, we pipe the output to a program called “less”, which
displays the output for us one screen at a time.

REDIRECTING OUTPUT TO FILES

There are times when it is useful to save the output of a
command to a file, instead of displaying it to the screen.

For example, if we want to create a file that lists all of the
MP3 files in a directory, we can do something like this,
using the “>” redirection character:
üls -l /home/vic/MP3/*.mp3 > mp3files.txt

A similar command can be written so that instead of
creating a new file called mp3files.txt, we can append to
the end of the original file:
üls -l /home/vic/extraMP3s/*.mp3 >> mp3files.txt

OTHER COMMANDS

OTHER COMMANDS

OTHER COMMANDS

MacBook-Francesco:~ francescosantini$ rm *.o

FIND THINGS

INFORMATIONAL COMMANDS

MORE UTILITIES

GO FASTER

CHMOD

The first character in this column tells what kind of file this is. The dash
represents a normal file; the d represents a directory.
The remaining characters describe the file’s permissions

ls -l

The size of the file, in bytes. For directories, this is the size of the
directory, not the total of the directory’s contents!

PERMISSIONS

- rwx r-x r-x joe acctg archive.sh
- rw- rw- r-- joe acctg orgchart.gif
- rw- rw- r-- joe acctg personnel.txt
- rw- r-- r-- joe acctg publicity.html
d rwx rwx r-x joe acctg sales
- rw- r-- --- joe acctg topsecret.inf
- rwx r-x r-x joe acctg wordomatic

user

group

others

CHANGING PERMISSIONS

Before: -rwx r-x r-x archive.sh
Command: chmod o=r archive.sh
After: -rw xr-x r-- archive.sh

u = user
g = group
o = others
a = all

r = read
w = write
x = execute

Before: -rw-r----- topsecret.inf
Command: chmod g= topsecret.inf
After: -rw- --- --- topsecret.inf

Before: -rw- r-- r-- publicity.html
Command: chmod og=rw publicity.html
After: -rw- rw- rw- publicity.html

SHELL PROGRAMMING
(INTRO)

EXAMPLE

#!/bin/bash
echo Hello World

INTRO

You can put commands in a file and execute them in
sequence.

#!/bin/bash
Rotate procmail log files
cd /homes/arensb/Mail
rm procmail.log.6 # This is redundant
mv procmail.log.5 procmail.log.6
mv procmail.log.4 procmail.log.5
mv procmail.log.3 procmail.log.4
mv procmail.log.2 procmail.log.3
mv procmail.log.1 procmail.log.2
mv procmail.log.0 procmail.log.1
mv procmail.log procmail.log.0

THINGS TO NOTICE

The first line of any script must begin with #!, followed by
the name of the interpreter.

Comments begin with a hash (#) and continue to the end
of the line

A script, like any file that can be run as a command,
needs to be executable: save this script (text file) as
rotatelog and run
üchmod u=rwx rotatelog
ü./ rotatelog

