
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

MODULARIZATION

MODULAR PROGRAMMING

Modularization is a method to organize large programs in
smaller parts, i.e. the modules. Every module has a well
defined interface toward client modules that specify how
"services" provided by this module are made available.

#include <stdio.h>

void myPrintHello(void) {
printf("Hello!\n");

}

int main() {
myPrintHello();
return(0);

}

mainfile.c

gcc -o mainfile mainfile.c

EXAMPLE

#include “hellolib.h”

int main() {
// call a function in another file
myPrintHello();

return(0);
}

mainfile.c

#include <stdio.h>
#include “hellolib.h”

void myPrintHello(void) {

printf("Hello!\n");

return;
}

hellolib.c

void myPrintHello();

hellolib.h

gcc -o mainfile mainfile.c hellolib.c

COMPILER AND LINKER

file1.c

file2.c

file1.o

file2.o

gcc -o file_ex file1.c file2.c

file_ex

MODULAR PROGRAMMING

Modularization has several benefits, especially on large
and complex programs:
ümodules can be re-used in several projects;
üchanging the implementation details of a modules does not

require to modify the clients using them as far as the
interface does not change;

üfaster re-compilation, as only the modules that have been
modified are actually re-compiled;

üself-documenting, as the interface specifies all that we need
to know to use the module;

üeasier debugging, as modules dependencies are clearly
specified and every module can be tested separately;

HOW THE C COMPILER WORKS

The compiler operates on a translation unit consisting of
üa source file and
üall the header files referenced by #include directives.
If the compiler finds no errors in the translation unit, it
generates an object file containing the corresponding
machine code; usually identified by the filename suffix .o
or .obj
Object files are also called modules. A library, such as
the C standard library, contains compiled, rapidly
accessible modules of the standard functions.
The compiler translates each translation unit of a C
program—that is, each source file with any header files it
includes—into a separate object file.

EXAMPLE

#include “hellolib.h”

int main() {
// call a function in another file
myPrintHello();

return(0);
}

mainfile.c

#include <stdio.h>
#include “hellolib.h”

void myPrintHello(void) {

printf("Hello!\n");

return;
}

hellolib.c

void myPrintHello();

hellolib.h

Two translation units

HOW THE LINKER WORKS

The compiler then invokes the linker, which combines
the object files, and any library functions used, in an
executable file.

The executable file also contains any information that the
target operating system needs to load and start it.

HI, I’M THE LINKER

Target program

mainfile.c + hello.h

hello.c + hello.h

EXAMPLE

#include “hellolib.h”

int main() {
// call a function in another file
myPrintHello();

return(0);
}

mainfile.c

#include <stdio.h>
#include “hellolib.h”

void myPrintHello(void) {

printf("Hello!\n");

return;
}

hellolib.c

void myPrintHello(void);

hellolib.h

gcc –c mainfile.c gcc –c hellolib.c
Unit 1 Unit 2

mainfile.o hellolib.o

gcc –o main mainfile.o hellolib.o

STEPS

Preprocessor Compiler

Assembler

mainfile.c mainfile.i

mainfile.s mainfile.o Linker

hello.o
fmainfile.o

mainexecutable

COMPILING SEPARATELY

Note that
ügcc -o mainfile mainfile.c hellolib.c
Is different from compiling
ügcc –c mainfile.c
ügcc –c hellolib.c
In this second case you are compiling the two files
separately: you do not need hellolib.c to do

ügcc –c mainfile.c
And viceversa

You can start writing one before the other one

COMPILER AND LINKER

gcc -c file1.c

gcc -c file2.c

file1.c

file2.c

file1.o

file2.o

gcc -o file_ex file1.o file2.o

file_ex

MODULAR PROGRAMMING

When a program consists of several source files, you
need to declare the same functions and global variables,
and define the same macros and constants, in many of
the files.

The header (.h) contains only macro defintion, types
definition, and function declarations that client
program are allowed to see and to use.

All these things, which a programmer wants to “offer” to
other files, need to be included in the .h
Every other private item internal to the module must stay
inside the code file. We will now describe in detail the
header and the code file.

EXAMPLE

#include “hello.h”

int main() {
// call a function in another file
myPrintHello();

return(0);
}

mainfile.c

#include <stdio.h>
#include “hello.h”

void myPrintHello(void) {

printf("Hello %f!\n”, p);

return;
}

hello.c

void myPrintHello();

enum color {black, white};

const double p= 3.14;

hello.h

gcc -o mainfile mainfile.c hello.c

IMPORTANT

In hellolib.c INCLUDE hello.h
Including its own header, the compiler grabs all the
constants, types and variables it requires.

Another useful effect of including the header is that
prototypes are checked against the actual functions, so
that for example if you forgot some argument in the
prototype, or if you changed the code missing to update
the header, then the compiler will detect the mismatch
with a proper error message.

LIBRARY

A library works exactly in this way
double sum (double, double);
double min (double, double);
double mul (double, double);
double div (double, double);

const double p= 3.14;

arithLib.h

#include “arithLib.h”

double sum (double p1, double p2) {

return (p1+ p2);
}

// ….

arithLib.c

#include “arithLib.h”

int main() {
double a= 0.0, b= 0.0;
scanf(“%f”, &a);
scanf(“%f,” &b);
int result = sum(a, b);

// Other statements
}

mainfile.c

STORAGE SPECIFIERS

STORAGE CLASS SPECIFIERS

A storage class specifier in a declaration modifies the
linkage of the identifier declared, and the storage
duration of the corresponding objects.
üWe have seen storage duration in previous slides.
Storage specifier: auto, register, static, extern.

A frequent source of confusion in regard to C is the fact
that linkage, which is a property of identifiers, and
storage duration, which is a property of objects, are
both influenced in declarations by the same set of
keywords—the storage class specifiers.

Remember: objects have storage duration, not linkage;
and identifiers have linkage, not storage duration.

STORAGE CLASS

No more than one storage class specifier may appear in
a declaration.
üNo -> static extern int a;

Function identifiers may be accompanied only by the
storage class specifier extern or static.

Function parameters may take only the storage class
specifier register.
Variable identifiers may have auto, register, static,
extern.

LINKAGE

The linkage of an identifier defines if that identifier can be
used in other translation units or not

A sort of scope among different files

A function identifier can have
üInternal or external linkage
A variable identifier can have
üInternal, external, or no linkage

STATIC

Static: a function identifier declared with the specifier
static has internal linkage.

Such an identifier cannot be used in another
translation unit to access the function.
An object identifier declared with static has either no 1)
linkage or 2) internal linkage, depending on whether the
object’s definition is 1) inside a function or 2) outside all
functions.

Objects declared with static always have static storage
duration. Thus the specifier static allows you to define
local objects—that is, objects with block scope—that
have static storage duration.

EXTERN

Extern: function and object identifiers declared with the
extern specifier have external linkage:
üYou can use them anywhere in the entire program.

The compiler treats function declarations without a
storage class specifier as if they included the specifier
extern. They have external linkage.

Similarly, any variable identifier that you declare outside
all functions and without a storage class specifier have
external linkage. Without extern, the identifiers of global
variables have external linkage as well.

NO LINKAGE

Variable identifiers that are local to functions, without
extern specifier, that is no specifier or static, have no
linkage

Also parameters of functions have no linkage: they are
local to their function

static int c;

int fun (int a, int b) {
int res= a + b;
extern int c
static int d= res + c;
return res;

}

a, b, res,d have no linkage
c has the linkage of the name it refers to, in this case, internal linkage

EXAMPLE (LINKAGE)

int func1(void);
int a;
extern int b;
static int c;

static void func2(int d) {
extern int a;
int b = 2;
static int e;
extern int c;
/* ... */

}

void fun3 (void) {
/* commands */

}

func1 external
a external
b external
c internal

func2 internal, d no linkage
external, this a is the same as above
no linkage
no linkage
c is the same as the c above: internal

external

DECLARATION AND DEFINITION
OF VARIABLES

DECLARATION OF FUNCTIONS

A function declaration is a definition if it contains the
function block.

int iMax(int a, int b) // This is the function's definition. a and
// b are defined

{
return (a >= b ? a : b);

}

DECLARATION OF VARIABLES

An object declaration is a definition if it allocates
storage for the object.
With extern specifier, a variable is declared
Declarations that include initializers are always
definitions.
Furthermore, all declarations within function blocks are
definitions unless they contain the storage class specifier
extern. extern int a = 10;

extern double b;

void func(int a) {
extern char c;
static short d;
float e;

}

// Definition of a.
// Declaration of b, which needs to be
// defined elsewhere in the program.

// Definition of a
// Declaration of c, not a definition.
// Definition of d.
// Definition of e.

BACK TO LINKAGE WITH
EXAMPLES

EXAMPLE 1

static int count=5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

count (defined) has internal
linkage in main.c: visible only
in main.c

count (declared) has external
linkage in write.c

write_extern (declared) has
external linkage in main.c: is
a declaration of function. Its
definition is elsewhere

write_extern (defined) has
external linkage in main.c: it is a
definition of function: it is visible
in other translation units

EXAMPLE 1

static int count=5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

gcc -o main write.c main.c

Undefined symbols for architecture x86_64:
"_count", referenced from:

_write_extern in write-e81d6a.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

EXAMPLE 2

int count= 5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

static void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

count (defined) has external
linkage in main.c: visible also
in other translation units

count (declared) has external
linkage in write.c

write_extern (declared) has
external linkage in main.c: is
a declaration of function. Its
definition is elsewhere

write_extern (defined) has
internal linkage in write.c: it is
not visible elsewhere

EXAMPLE 2

int count= 5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

static void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

gcc -o main write.c main.c

MacBook-Francesco:ProgrammI francescosantini$ gcc -o main main.c write.c
Undefined symbols for architecture x86_64:

"_write_extern", referenced from:
_main in main-a3af3a.o

ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

EXAMPLE 3

int count=5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

extern void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

gcc –c main.c

OK!

With or without it is the same
gcc –c write.c
gcc –o main main.o write.o

EXAMPLE 4

int count=5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

gcc –o main main.c

Undefined symbols for architecture x86_64:
"_write_extern", referenced from:

_main in main-95ef15.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

EXAMPLE 5

int count=5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

gcc –o write write.c

Undefined symbols for architecture x86_64:
"_count", referenced from:

_write_extern in write-713128.o
"_main", referenced from:

implicit entry/start for main executable
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

TENTATIVE DEFINITION

If you declare an object outside of all functions, without
an initializer and without the storage class specifier
extern, the declaration is a tentative definition.

A tentative definition of an identifier remains a simple
declaration if the translation unit contains another
definition for the same identifier.

If not, then the compiler behaves as if the tentative
definition had included an initializer with the value zero,
making it a definition.

EXAMPLE OF TENTATIVE
DEFINITION

#include<stdio.h>

int count;
int count= 4;

int main (void) {
printf("count is %i\n", count);

}

main.c
#include<stdio.h>

int count= 3;
int count= 4;

int main (void) {
printf("count is %i\n", count);

}

main.c

gcc main.c

OK!: count is 4

gcc main.c

MacBook-Francesco:ProgrammI francescosantini$ gcc write.c
write.c:5:5: error: redefinition of 'count'
int count= 4;

^
write.c:4:5: note: previous definition is here
int count= 3;

^
1 error generated.

EXAMPLE

int count=5;
void write_extern();

int main() {
write_extern();

}

main.c

#include<stdio.h>

extern int count;

void write_extern(void)
{

printf("count is %i\n", count);
}

write.c

gcc -o main write.c main.c

OK!

TO SUM UP

LINKAGE

An identifier with external linkage represents the same
function or object throughout the program. The compiler
presents such identifiers to the linker, which resolves
them with other occurrences in other translation units
and libraries.
An identifier with internal linkage represents the same
object or function within a given translation unit. The
identifier is not presented to the linker. As a result, you
cannot use the identifier in another translation unit to
refer to the same object or function.
No linkage
üFunction parameters
üObject identifiers that are declared within a function and

without the storage class specifier extern

EXAMPLE (DEFINITION OR
DECLARATION)

int func1(void);
int a= 3;
int b;
extern int b = 1;
static int c;

static void func2(int d) {
extern int a;
int b = 2;
static int e;

/* ... */
}

declaration
definition
attempt of definition / declaration
definition
definition

func2 definition, d definition
declaration
definition
definition

Since b is external by default, if it is defined in a
different translation unit, then this is a declaration,
otherwise it is a definition.

DECLARATION OR DEFINITION?

1 a definito
1 b dichiarato
2 c definito
4 e tentativo di definizione -> definizione
4 f tentativo di definizione -> dichiarazione
7 fun2 definita
7 g e h definite
8 i definita
9 l e m definite
10 e dichiarato (definito alla linea 4)

LINKAGE

1 a external
1 b external
2 c internal
4 e external
4 f external
7 fun2 external
7 g e h no linkage
8 i no linkage
9 l e m no linkage
10 e ha il linkage di e a linea 4

2 a definita (linkage esterno)
3 b dichiarata (linkage esterno)
4 compare dichiarata (linkage esterno)
5 area dichiarata (linkage interno)
I parametri nelle dichiarazioni sono dichiarati
7 my_func definita (linkage esterno)
7 c definita (no linkage)
8 e definita (no linkage)
E le altre?

SU LIBRO E RIFERIMENTI

Sezione 1.9.2
Sezione 5.2

Sezione 15.4

Dichiarazione e definizione
ühttps://www.cprogramming.com/declare_vs_define.html
ühttps://stackoverflow.com/questions/1410563/what-is-the-

difference-between-a-definition-and-a-declaration
Su linkage
ühttps://www.geeksforgeeks.org/internal-linkage-external-

linkage-c/
ühttps://aticleworld.com/linkage-in-c/

https://www.cprogramming.com/declare_vs_define.html
https://stackoverflow.com/questions/1410563/what-is-the-difference-between-a-definition-and-a-declaration
https://www.geeksforgeeks.org/internal-linkage-external-linkage-c/
https://aticleworld.com/linkage-in-c/

