
PROGRAMMAZIONE
PROCEDURALE

A.A. 2023/2024

STRUCTURES

STRUCTS

Arrays allow to define type of variables that can hold
several data items of the same kind. Similarly structure
is another user defined data type available in C that
allows to combine data items of different kinds.

Structures are used to represent a record. Suppose you
want to keep track of your books in a library. You might
want to track the following attributes about each book −
üTitle
üAuthor
üSubject
üBook ID
To access the fields of a structure, use “.”

struct [tag_name] { member_declaration_list };

DEFINITION OF STRUCTURES

To define a structure, you must use the struct statement.
The struct statement defines a new data type.

struct [tag] {

member definition;
member definition;

member definition;
};

struct Song {
char title[64];
char artist[32];
char composer[32];
short duration;
struct Date published;

};

NAME SPACES

The tags of structure types are a distinct name space:
the compiler distinguishes them from variables or
functions whose names are the same as a structure tag.

Likewise, the names of structure members form a
separate name space for each structure type.
Uppercase helps you to understand when it is a struct.

MEMBERS

The members of a structure may have any desired
complete type, including previously defined structure
types. They must not be variable-length arrays.

A structure type cannot contain itself as a member, as its
definition is not complete until the closing brace (}).

struct Song {
char title[64];
char artist[32];
char composer[32];
short duration;
struct Date published;

};

struct Date {
short int day;
short int month;
short int year;

};

EXAMPLE

struct Song {
char title[64];
char artist[32];
char composer[32];
short duration;
struct Song similar;

};

EXAMPLE
#include <stdio.h>
#include <string.h>

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

};

int main() {

struct Books Book1; /* Define Book1 of type Book */
struct Books Book2; /* Define Book2 of type Book */

/* book 1 specification */
strcpy(Book1.title, "C Programming");
strcpy(Book1.author, "Nuha Ali");
strcpy(Book1.subject, "C Programming Tutorial");
Book1.book_id = 6495407;
/* print Book1 info */
printf("Book 1 title : %s\n", Book1.title);
printf("Book 1 author : %s\n", Book1.author);
printf("Book 1 subject : %s\n", Book1.subject);
printf("Book 1 book_id : %d\n", Book1.book_id);

return 0;
}

SELF REFERENTIAL STRUCTURES

However, structure types can and often do contain
pointers to their own type.

Such self-referential structures are used in implementing
linked lists, for example.

struct Cell { struct Song song; // This record's data.
struct Cell *pNext; // A pointer to the next record.

};

STRUCTURE OBJECTS AND
TYPEDEF NAMES

Within the scope of a structure type definition, you can
declare objects of that type:
üstruct Song song1, song2, *pSong = &song1;
The keyword struct must be included whenever you use
the structure type.

You can also use typedef to define a one-word name for
a structure type:

typedef struct Song Song_t; // Song_t is now a synonym for
// struct Song.

Song_t song1, song2, *pSong = &song1; // Two struct Song objects and a
// struct Song pointer.

EXAMPLE
typedef struct S {

int x;
} T;

struct S {
int x;

};

typedef struct S T;

struct S var1;

T var2;

OR

FUNCTIONS AND STRUCTS
#include <stdio.h>
#include <string.h>

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

};

/* function declaration */
void printBook(struct Books book);

int main() {

struct Books Book1; /* Declare Book1 of type Book */

/* book 1 specification */
strcpy(Book1.title, "C Programming");
strcpy(Book1.author, "Nuha Ali");
strcpy(Book1.subject, "C Programming Tutorial");
Book1.book_id = 6495407;

/* print Book1 info */
printBook(Book1);

return 0;
}

void printBook(struct Books book) {

printf("Book title : %s\n", book.title);
printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book_id : %d\n", book.book_id);

}

scanf(“%s”, &book1.title)
scanf(“%d”, &book1.book_id)

POINTERS AND STRUCTS

You can define pointers to structures in the same way as
you define pointer to any other variable

int main() {
struct Books *struct_pointer;

struct_pointer = &Book1;

// commands
}

struct Books Book1;

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

};

ACCESSING STRUCTURE MEMBERS

Two operators allow you to access the members of a
structure object: the dot operator (.) and the arrow
operator (->). Both of them are binary operators whose
right operand is the name of a member.

-> is a shortcut instead of
ü(*pointer_to_structure).field

EXAMPLE

int main() {
struct Books *struct_pointer;

(*struct_pointer).book_id= 1 // Primo esempio per accedere
struct_pointer->book_id = 1 // Secondo esempio

}

struct Books Book1;
struct_pointer = &Book1;

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

};

COPY STRUCTURES

You can use an assignment to copy the entire contents
of a structure object to another object of the same type:
üBooks book1, book2; book2 = book1;

After this assignment, each member of book2 has the
same value as the corresponding member of book1.

INITIALIZATION LIST

To initialize a structure object explicitly when you define
it, you must use an initialization list: this is a comma-
separated list of initializers, or initial values for the
individual structure members, enclosed in braces.
üThe initializers are associated with the members in the order

of their declarations
üEach initializer must have a type that matches (or can be

implicitly converted into) the type of the corresponding
member

EXAMPLE
struct Date {

short int day;
short int month;
short int year;

};

struct Song { char title[64];
char artist[32];
char composer[32];
short duration;
struct Date published;

};

int main () {

struct Song mySong = { "What It Is",
"Aubrey Haynie”,
"Mark Knopfler",
297,
{ 26, 9, 2000 }

};

// commands
}

INITIALIZING SPECIFIC MEMBERS

You can explicitly associate an initializer with a certain
member.

To do so, you must prefix a member designator with an
equal sign to the initializer. The general form of a
designator for the structure member member is:
ü.member // Member designator

127 is the initialization of the first field after “composer”,
i.e., “duration”.

Song_t aSong = { .title = "I've Just Seen a Face”,
.composer = "John Lennon; Paul McCartney",
127 };

ARRAYS OF STRUCT

struct Song { char title[64];
char artist[32];
char composer[32];
short duration;
struct Date published;

};

int main () {

struct Song array_of_songs[100];

// commands
}

SIZEOF OF A STRUCT

#include <stdio.h>
struct Song {

char title[64];
char artist[32];
char composer[32];
short duration;

};

int main () {

struct Song songVar;

printf("La dimensione di una struttura Song in bytes e': %ld", sizeof(songVar));

} MacBook-Francesco:ProgrammI francescosantini$
./esempio
La dimensione di una struttura Song in bytes e': 130

UNIONS

WHAT UNIONS ARE

Unlike structure members, which all have distinct
locations in the structure, the members of a union all
share the same location in memory:

All members of a union start at the same address.

Thus you can define a union with many members, but
only one member can contain a value at any given
time.

Unions are an easy way for programmers to use a
location in memory in different ways.

DEFINITION

The definition of a union is formally the same as that of a
structure, except for the keyword union in place of struct:
üunion [tag_name] { member_declaration_list };

An object of this type can store an integer, a floating-
point number, or a short string.
üunion Data { int i; double x; char str[16]; };

A union is big as its largest member.
üUsing our example, sizeof(union Data) yields the value 16.

DIFFERENCE IN MEMORY WRT
STRUCTS

union Data { int i; double x; char str[16]; };

struct Data { int i; double x; char str[16]; };

EXAMPLE

var.x = 3.21;
var.x += 0.5;
strcpy(var.str, "Jim");
myData[0].i = 50;

union Data { int i; double x; char str[16]; };

INITIALIZING UNIONS

Like structures, union objects are initialized by an
initialization list. For a union, though, the list can only
contain one initializer.

If the initializer has no member designator, then it is
associated with the first member of the union.

union Data var1 = { 77 },
var2 = { .str = "Mary" },
var3 = var1,
myData[100] = { {.x= 0.5}, { 1 }, var2 };

EXAMPLE

#include <stdio.h>
#include <string.h>

union Data {
int i;
float f;
char str[20];

};

int main() {

union Data data;

printf("Memory size occupied by data : %d\n", sizeof(data));

return 0;
}

Memory size occupied by data :
20

EXAMPLE
#include <stdio.h>
#include <string.h>

union Data {
int i;
float f;
char str[20];

};

int main() {

union Data data;

data.i = 10;
printf("data.i : %d\n", data.i);

data.f = 220.5;
printf("data.f : %f\n", data.f);

strcpy(data.str, "C Programming");
printf("data.str : %s\n", data.str);

return 0;
}

data.i : 10
data.f : 220.500000
data.str : C Programming

EXAMPLE
#include <stdio.h>
#include <string.h>

union Data {
int i;
float f;
char str[20];

};

int main() {

union Data data;

data.i = 10;
data.f = 220.5;
strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);
printf("data.f : %f\n", data.f);
printf("data.str : %s\n", data.str);

return 0;
}

data.i : 1917853763
data.f : 4122360580327794860452759994368.000000
data.str : C Programming

SU LIBRO

Sezione 10.1-10.8

