
Exploiting the algebraic properties of the permutation
space in Evolutionary Computation

Valentino Santucci

University for Foreigners of Perugia, Italy

Keynote Talk @ ECPERM Workshop - GECCO 2020 - 8th July 2020

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 1 / 34

Outline

Permutations in EC

Permutations in Group Theory

Algebraic properties of combinatorial spaces

An algebraic framework for EC

Algebraic EAs and operators

Practical applications

Conclusions and open questions

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 2 / 34

Why permutations in EC?

Represent solutions of important COPs

Ex: π =

〈
12345678
47231586

〉

Orderings of items: π(i) is the item in position i
Ex: item 4 is in position 1, item 7 is in position 2, ...
Useful in the Permutation Flowshop Scheduling Problem (PFSP)

Rankings on items: π(i) is the position of the item i
Ex: item 1 is in position 4, item 2 is in position 7, ...
Useful in the Linear Ordering Problem (LOP)

Bijective functions: the item π(i) is assigned to the item i
Ex: item 4 is assigned to item 1, item 7 is assigned to item 2, ...
Useful in the Quadratic Assignment Problem (QAP)

Routing among items: item π(i) is connected to item π(i + 1)
Ex: item 4 is connected to item 7, item 7 is connected to item 2, ...
Useful in the Traveling Salesman Problem (TSP)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 3 / 34

Why permutations in EC?

Represent solutions of important COPs

Ex: π =

〈
12345678
47231586

〉
Orderings of items: π(i) is the item in position i
Ex: item 4 is in position 1, item 7 is in position 2, ...
Useful in the Permutation Flowshop Scheduling Problem (PFSP)

Rankings on items: π(i) is the position of the item i
Ex: item 1 is in position 4, item 2 is in position 7, ...
Useful in the Linear Ordering Problem (LOP)

Bijective functions: the item π(i) is assigned to the item i
Ex: item 4 is assigned to item 1, item 7 is assigned to item 2, ...
Useful in the Quadratic Assignment Problem (QAP)

Routing among items: item π(i) is connected to item π(i + 1)
Ex: item 4 is connected to item 7, item 7 is connected to item 2, ...
Useful in the Traveling Salesman Problem (TSP)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 3 / 34

Why permutations in EC?

Represent solutions of important COPs

Ex: π =

〈
12345678
47231586

〉
Orderings of items: π(i) is the item in position i
Ex: item 4 is in position 1, item 7 is in position 2, ...
Useful in the Permutation Flowshop Scheduling Problem (PFSP)

Rankings on items: π(i) is the position of the item i
Ex: item 1 is in position 4, item 2 is in position 7, ...
Useful in the Linear Ordering Problem (LOP)

Bijective functions: the item π(i) is assigned to the item i
Ex: item 4 is assigned to item 1, item 7 is assigned to item 2, ...
Useful in the Quadratic Assignment Problem (QAP)

Routing among items: item π(i) is connected to item π(i + 1)
Ex: item 4 is connected to item 7, item 7 is connected to item 2, ...
Useful in the Traveling Salesman Problem (TSP)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 3 / 34

Why permutations in EC?

Represent solutions of important COPs

Ex: π =

〈
12345678
47231586

〉
Orderings of items: π(i) is the item in position i
Ex: item 4 is in position 1, item 7 is in position 2, ...
Useful in the Permutation Flowshop Scheduling Problem (PFSP)

Rankings on items: π(i) is the position of the item i
Ex: item 1 is in position 4, item 2 is in position 7, ...
Useful in the Linear Ordering Problem (LOP)

Bijective functions: the item π(i) is assigned to the item i
Ex: item 4 is assigned to item 1, item 7 is assigned to item 2, ...
Useful in the Quadratic Assignment Problem (QAP)

Routing among items: item π(i) is connected to item π(i + 1)
Ex: item 4 is connected to item 7, item 7 is connected to item 2, ...
Useful in the Traveling Salesman Problem (TSP)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 3 / 34

Why permutations in EC?

Represent solutions of important COPs

Ex: π =

〈
12345678
47231586

〉
Orderings of items: π(i) is the item in position i
Ex: item 4 is in position 1, item 7 is in position 2, ...
Useful in the Permutation Flowshop Scheduling Problem (PFSP)

Rankings on items: π(i) is the position of the item i
Ex: item 1 is in position 4, item 2 is in position 7, ...
Useful in the Linear Ordering Problem (LOP)

Bijective functions: the item π(i) is assigned to the item i
Ex: item 4 is assigned to item 1, item 7 is assigned to item 2, ...
Useful in the Quadratic Assignment Problem (QAP)

Routing among items: item π(i) is connected to item π(i + 1)
Ex: item 4 is connected to item 7, item 7 is connected to item 2, ...
Useful in the Traveling Salesman Problem (TSP)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 3 / 34

Neighborhoods in the permutation space

They allow to build-up local search based meta-heuristics

ASW: swaps between adjacent items
Ex: 〈53241〉 and 〈53421〉 are neighbors
It modifies the relative order of only two items

EXC: swaps between generic items
Ex: 〈53241〉 and 〈13245〉 are neighbors
It modifies the absolute positions of only two items

INS: insertions or shifts of an item
Ex: 〈53241〉 and 〈52431〉 are neighbors
It modifies the relative order of a bunch of items but with respect to only
one item

REV: reversals of a chunk of items
Ex: 〈53241〉 and 〈54231〉 are neighbors
It modifies only two connections

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 4 / 34

Neighborhoods in the permutation space

They allow to build-up local search based meta-heuristics

ASW: swaps between adjacent items
Ex: 〈53241〉 and 〈53421〉 are neighbors
It modifies the relative order of only two items

EXC: swaps between generic items
Ex: 〈53241〉 and 〈13245〉 are neighbors
It modifies the absolute positions of only two items

INS: insertions or shifts of an item
Ex: 〈53241〉 and 〈52431〉 are neighbors
It modifies the relative order of a bunch of items but with respect to only
one item

REV: reversals of a chunk of items
Ex: 〈53241〉 and 〈54231〉 are neighbors
It modifies only two connections

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 4 / 34

Neighborhoods in the permutation space

They allow to build-up local search based meta-heuristics

ASW: swaps between adjacent items
Ex: 〈53241〉 and 〈53421〉 are neighbors
It modifies the relative order of only two items

EXC: swaps between generic items
Ex: 〈53241〉 and 〈13245〉 are neighbors
It modifies the absolute positions of only two items

INS: insertions or shifts of an item
Ex: 〈53241〉 and 〈52431〉 are neighbors
It modifies the relative order of a bunch of items but with respect to only
one item

REV: reversals of a chunk of items
Ex: 〈53241〉 and 〈54231〉 are neighbors
It modifies only two connections

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 4 / 34

Neighborhoods in the permutation space

They allow to build-up local search based meta-heuristics

ASW: swaps between adjacent items
Ex: 〈53241〉 and 〈53421〉 are neighbors
It modifies the relative order of only two items

EXC: swaps between generic items
Ex: 〈53241〉 and 〈13245〉 are neighbors
It modifies the absolute positions of only two items

INS: insertions or shifts of an item
Ex: 〈53241〉 and 〈52431〉 are neighbors
It modifies the relative order of a bunch of items but with respect to only
one item

REV: reversals of a chunk of items
Ex: 〈53241〉 and 〈54231〉 are neighbors
It modifies only two connections

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 4 / 34

Neighborhoods in the permutation space

They allow to build-up local search based meta-heuristics

ASW: swaps between adjacent items
Ex: 〈53241〉 and 〈53421〉 are neighbors
It modifies the relative order of only two items

EXC: swaps between generic items
Ex: 〈53241〉 and 〈13245〉 are neighbors
It modifies the absolute positions of only two items

INS: insertions or shifts of an item
Ex: 〈53241〉 and 〈52431〉 are neighbors
It modifies the relative order of a bunch of items but with respect to only
one item

REV: reversals of a chunk of items
Ex: 〈53241〉 and 〈54231〉 are neighbors
It modifies only two connections
Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 4 / 34

Permutation space under the ASW neighborhood

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 5 / 34

Group Theory: permutations form a group

Composition of permutations
τ = π ◦ ρ is defined as τ(i) = π(ρ(i)) for i = 1, . . . , n

Ex:

〈
1234
4213

〉
◦
〈

1234
2143

〉
=

〈
1234
2431

〉

Identity permutation e = 〈12 . . . n〉 is the neutral element

Inverse permutation: there exists a unique π−1 s.t. π ◦ π−1 = e

Ex: π =

〈
1234
4213

〉
→

〈
4213
1234

〉
→

〈
1234
3241

〉
→

〈
1234
3241

〉
= π−1

The Symmetric group of n items is denoted by Sn

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 6 / 34

Group Theory: permutations form a group

Composition of permutations
τ = π ◦ ρ is defined as τ(i) = π(ρ(i)) for i = 1, . . . , n

Ex:

〈
1234
4213

〉
◦
〈

1234
2143

〉
=

〈
1234
2431

〉

Identity permutation e = 〈12 . . . n〉 is the neutral element

Inverse permutation: there exists a unique π−1 s.t. π ◦ π−1 = e

Ex: π =

〈
1234
4213

〉
→

〈
4213
1234

〉
→

〈
1234
3241

〉
→

〈
1234
3241

〉
= π−1

The Symmetric group of n items is denoted by Sn

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 6 / 34

Group Theory: permutations form a group

Composition of permutations
τ = π ◦ ρ is defined as τ(i) = π(ρ(i)) for i = 1, . . . , n

Ex:

〈
1234
4213

〉
◦
〈

1234
2143

〉
=

〈
1234
2431

〉

Identity permutation e = 〈12 . . . n〉 is the neutral element

Inverse permutation: there exists a unique π−1 s.t. π ◦ π−1 = e

Ex: π =

〈
1234
4213

〉
→

〈
4213
1234

〉
→

〈
1234
3241

〉
→

〈
1234
3241

〉
= π−1

The Symmetric group of n items is denoted by Sn

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 6 / 34

Group Theory: permutations form a group

Composition of permutations
τ = π ◦ ρ is defined as τ(i) = π(ρ(i)) for i = 1, . . . , n

Ex:

〈
1234
4213

〉
◦
〈

1234
2143

〉
=

〈
1234
2431

〉

Identity permutation e = 〈12 . . . n〉 is the neutral element

Inverse permutation: there exists a unique π−1 s.t. π ◦ π−1 = e

Ex: π =

〈
1234
4213

〉
→

〈
4213
1234

〉
→

〈
1234
3241

〉
→

〈
1234
3241

〉
= π−1

The Symmetric group of n items is denoted by Sn

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 6 / 34

How neighborhoods and algebra relate to each other?

Under ASW, all the neighbors of 〈2413〉 are:

〈4213〉
〈2143〉
〈2431〉

They can be algebraically obtained by:

〈2413〉 ◦ 〈2134〉 = 〈4213〉
〈2413〉 ◦ 〈1324〉 = 〈2143〉
〈2413〉 ◦ 〈1243〉 = 〈2431〉

Let σ1 = 〈2134〉, σ2 = 〈1324〉, σ3 = 〈1243〉 and ASW = {σ1, σ2, σ3} then:

ASW ⊂ Sn
ASW generates all the permutations in Sn
any permutation can be factorized as a product of generators in ASW
Sn is a finitely generated group

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 7 / 34

How neighborhoods and algebra relate to each other?

Under ASW, all the neighbors of 〈2413〉 are:

〈4213〉
〈2143〉
〈2431〉

They can be algebraically obtained by:

〈2413〉 ◦ 〈2134〉 = 〈4213〉
〈2413〉 ◦ 〈1324〉 = 〈2143〉
〈2413〉 ◦ 〈1243〉 = 〈2431〉

Let σ1 = 〈2134〉, σ2 = 〈1324〉, σ3 = 〈1243〉 and ASW = {σ1, σ2, σ3} then:

ASW ⊂ Sn
ASW generates all the permutations in Sn
any permutation can be factorized as a product of generators in ASW
Sn is a finitely generated group

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 7 / 34

How neighborhoods and algebra relate to each other?

Under ASW, all the neighbors of 〈2413〉 are:

〈4213〉
〈2143〉
〈2431〉

They can be algebraically obtained by:

〈2413〉 ◦ 〈2134〉 = 〈4213〉
〈2413〉 ◦ 〈1324〉 = 〈2143〉
〈2413〉 ◦ 〈1243〉 = 〈2431〉

Let σ1 = 〈2134〉, σ2 = 〈1324〉, σ3 = 〈1243〉 and ASW = {σ1, σ2, σ3} then:

ASW ⊂ Sn
ASW generates all the permutations in Sn
any permutation can be factorized as a product of generators in ASW
Sn is a finitely generated group

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 7 / 34

Cayley graph for the ASW generating set

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 8 / 34

All the generating sets

ASW = {σi : 1 ≤ i < n}, where σi is the identity permutation with the items
i and i + 1 exchanged.
Ex: 〈13245〉 swaps 2nd and 3rd items
Distance induced: Kendall’s-τ distance

EXC = {εij : 1 ≤ i < j ≤ n}, where εij is the identity permutation with the
items i and j exchanged.
Ex: 〈14325〉 swaps 2nd and 4th items
Distance induced: Cayley distance

INS = {ιij : 1 ≤ i , j ≤ n}, where ιij is the identity permutation where the
item i is shifted to position j .
Ex: 〈14235〉 shifts 4th item to 2nd position
Distance induced: Ulam distance

REV = {ρij : 1 ≤ i < j ≤ n}, where ρij is the identity permutation where the
chunk between positions i and j is reversed.
Ex: 〈14325〉 reverses the chunk from 2nd to 4th positions
Distance induced: reversals’ distance

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 9 / 34

All the generating sets

ASW = {σi : 1 ≤ i < n}, where σi is the identity permutation with the items
i and i + 1 exchanged.
Ex: 〈13245〉 swaps 2nd and 3rd items
Distance induced: Kendall’s-τ distance

EXC = {εij : 1 ≤ i < j ≤ n}, where εij is the identity permutation with the
items i and j exchanged.
Ex: 〈14325〉 swaps 2nd and 4th items
Distance induced: Cayley distance

INS = {ιij : 1 ≤ i , j ≤ n}, where ιij is the identity permutation where the
item i is shifted to position j .
Ex: 〈14235〉 shifts 4th item to 2nd position
Distance induced: Ulam distance

REV = {ρij : 1 ≤ i < j ≤ n}, where ρij is the identity permutation where the
chunk between positions i and j is reversed.
Ex: 〈14325〉 reverses the chunk from 2nd to 4th positions
Distance induced: reversals’ distance

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 9 / 34

All the generating sets

ASW = {σi : 1 ≤ i < n}, where σi is the identity permutation with the items
i and i + 1 exchanged.
Ex: 〈13245〉 swaps 2nd and 3rd items
Distance induced: Kendall’s-τ distance

EXC = {εij : 1 ≤ i < j ≤ n}, where εij is the identity permutation with the
items i and j exchanged.
Ex: 〈14325〉 swaps 2nd and 4th items
Distance induced: Cayley distance

INS = {ιij : 1 ≤ i , j ≤ n}, where ιij is the identity permutation where the
item i is shifted to position j .
Ex: 〈14235〉 shifts 4th item to 2nd position
Distance induced: Ulam distance

REV = {ρij : 1 ≤ i < j ≤ n}, where ρij is the identity permutation where the
chunk between positions i and j is reversed.
Ex: 〈14325〉 reverses the chunk from 2nd to 4th positions
Distance induced: reversals’ distance

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 9 / 34

All the generating sets

ASW = {σi : 1 ≤ i < n}, where σi is the identity permutation with the items
i and i + 1 exchanged.
Ex: 〈13245〉 swaps 2nd and 3rd items
Distance induced: Kendall’s-τ distance

EXC = {εij : 1 ≤ i < j ≤ n}, where εij is the identity permutation with the
items i and j exchanged.
Ex: 〈14325〉 swaps 2nd and 4th items
Distance induced: Cayley distance

INS = {ιij : 1 ≤ i , j ≤ n}, where ιij is the identity permutation where the
item i is shifted to position j .
Ex: 〈14235〉 shifts 4th item to 2nd position
Distance induced: Ulam distance

REV = {ρij : 1 ≤ i < j ≤ n}, where ρij is the identity permutation where the
chunk between positions i and j is reversed.
Ex: 〈14325〉 reverses the chunk from 2nd to 4th positions
Distance induced: reversals’ distance
Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 9 / 34

Relations among the generating sets

ASW is a proper subset of EXC, INS, REV

INS ∩ EXC = ASW

INS ∩ REV = ASW

EXC ∩ REV = ASW ∪ {εij ∈ EXC : |i − j | = 2}
INS = INSbw ∪ INSfw
INSbw ∩ INSfw = ASW

Useful for:

Designing Variable Neighborhood Search algorithms
Designing perturbation step in Iterative Local Search algorithms
A priori smoothness estimation in Fitness Landscape Analysis

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 10 / 34

Relations among the generating sets

ASW is a proper subset of EXC, INS, REV

INS ∩ EXC = ASW

INS ∩ REV = ASW

EXC ∩ REV = ASW ∪ {εij ∈ EXC : |i − j | = 2}
INS = INSbw ∪ INSfw
INSbw ∩ INSfw = ASW

Useful for:

Designing Variable Neighborhood Search algorithms
Designing perturbation step in Iterative Local Search algorithms
A priori smoothness estimation in Fitness Landscape Analysis

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 10 / 34

Properties of the generating sets

Cardinality = number of neighbors

Diameter of the Cayley graph (search space)

Number of longest permutations (whose shortest-path distance
from the identity equals the diameter)

Abstract convexity: any permutation resides in a shortest path
between the identity and a longest permutation?

Lattice structure: meet and join are well defined?

GSet Card. Diameter #Longest Perm. Abst.Convex Lattice

ASW n − 1
(n
2

)
1 Yes Yes

EXC
(n
2

)
n − 1 (n − 1)! Yes No

INS (n − 1)2 n − 1 1 No No
REV

(n
2

)
≤ n − 1 ? ? ?

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 11 / 34

Visual intuitions about space structures

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 12 / 34

From simple search moves to composite search moves

Simple search move = a single generator =
= a special permutation

Composite search move = a sequence of simple
search moves = a sequence of generators =
= a generic permutation
(since a generating set generates the group)

Difference permutation = composition of the generators in a shortest path

Minimal factorization of the difference permutation contains generators in a
shortest path

Distance = length of a shortest path = length of a minimal factorization of the
difference permutation

Single representation for solutions and differences

Strong analogy with points and vectors in the Euclidean space

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 13 / 34

From simple search moves to composite search moves

Simple search move = a single generator =
= a special permutation

Composite search move = a sequence of simple
search moves = a sequence of generators =
= a generic permutation
(since a generating set generates the group)

Difference permutation = composition of the generators in a shortest path

Minimal factorization of the difference permutation contains generators in a
shortest path

Distance = length of a shortest path = length of a minimal factorization of the
difference permutation

Single representation for solutions and differences

Strong analogy with points and vectors in the Euclidean space

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 13 / 34

From simple search moves to composite search moves

Simple search move = a single generator =
= a special permutation

Composite search move = a sequence of simple
search moves = a sequence of generators =
= a generic permutation
(since a generating set generates the group)

Difference permutation = composition of the generators in a shortest path

Minimal factorization of the difference permutation contains generators in a
shortest path

Distance = length of a shortest path = length of a minimal factorization of the
difference permutation

Single representation for solutions and differences

Strong analogy with points and vectors in the Euclidean space

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 13 / 34

From simple search moves to composite search moves

Simple search move = a single generator =
= a special permutation

Composite search move = a sequence of simple
search moves = a sequence of generators =
= a generic permutation
(since a generating set generates the group)

Difference permutation = composition of the generators in a shortest path

Minimal factorization of the difference permutation contains generators in a
shortest path

Distance = length of a shortest path = length of a minimal factorization of the
difference permutation

Single representation for solutions and differences

Strong analogy with points and vectors in the Euclidean space
Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 13 / 34

Equations of Motion in Continuous EAs
Can be consistently redefined for discrete spaces?

Differential Evolution (DE)

u ← x0 + F · (x1 − x2)

where: u, x0, x1, x2 ∈ Rn, while F ∈ R+

Particle Swarm Optimization (PSO)

v ← w · v + c1r1 · (p − x) + c2r2 · (g − x)

x ← x + v

where: x , v ,p, g ∈ Rn, while w , c1, c2, r1, r2 ∈ R+

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 14 / 34

Continuous DE vs Algebraic DE
Differential mutation in action

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 15 / 34

Continuous DE vs Algebraic DE
Differential mutation in action

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 15 / 34

Continuous DE vs Algebraic DE
Differential mutation in action

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 15 / 34

Continuous DE vs Algebraic DE
Differential mutation in action

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 15 / 34

Continuous DE vs Algebraic DE
Differential mutation in action

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 15 / 34

Algebraic Differential Evolution for Permutations

Classical continuous DE

The key operation of DE is the differential mutation which generates a
mutant u ∈ Rn according to

u ← x0 + F · (x1 − x2)

where x0, x1, x2 ∈ Rn are three distinct population individuals and F > 0
is the scale factor parameter of DE.

Algebraic DE for Permutations (ADEP)

The key operation of ADEP is the differential mutation which generates a
mutant υ ∈ Sn according to

υ ← π0 ⊕ F � (π1 	 π2)

where π0, π1, π2 ∈ Sn are three distinct population individuals and F > 0
is the scale factor paramter of ADEP.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 16 / 34

Algebraic Framework for Permutations
Discrete operators for equations of motion in EAs

Let:

ASWn = {σ1, . . . , σn−1} be the ”adjacent swap” generators of Sn
π, ρ ∈ Sn
〈σi1 , . . . , σik , . . . , σil 〉 be a minimal factorization of π whose length is l

a ∈ [0, 1]

Discrete operators are defined as follows:

π ⊕ ρ := π ◦ ρ
π 	 ρ := ρ−1 ◦ π
a� π := σi1 ◦ · · · ◦ σik , with k = da · le

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 17 / 34

Discrete sum and difference

Algebraically, they do not rely on the chosen generating set

They are deterministic

They are consistent to each other:

π = ρ⊕ (π 	 ρ) = ρ ◦ (ρ−1 ◦ π) = π

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 18 / 34

Discrete scalar multiplication

Minimal factorization is not unique

Choose one at random =⇒ stochastic operator

A stochastic factorization algorithm is required for every generating set

COMMON FACTORIZATION SCHEME
Identify a measurable property of a permutation such that:

the identity permutation has maximum/minimum value;
the value of such property can be increased/decreased by only using
simple moves corresponding to the chosen generating set.

Then:

sort the input permutation by only using the chosen moves/generators;
keep track of the sequence of selected generators;
reverse such sequence and invert every generator;

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 19 / 34

Discrete scalar multiplication

Minimal factorization is not unique

Choose one at random =⇒ stochastic operator

A stochastic factorization algorithm is required for every generating set

COMMON FACTORIZATION SCHEME
Identify a measurable property of a permutation such that:

the identity permutation has maximum/minimum value;
the value of such property can be increased/decreased by only using
simple moves corresponding to the chosen generating set.

Then:

sort the input permutation by only using the chosen moves/generators;
keep track of the sequence of selected generators;
reverse such sequence and invert every generator;

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 19 / 34

Discrete scalar multiplication

Minimal factorization is not unique

Choose one at random =⇒ stochastic operator

A stochastic factorization algorithm is required for every generating set

COMMON FACTORIZATION SCHEME
Identify a measurable property of a permutation such that:

the identity permutation has maximum/minimum value;
the value of such property can be increased/decreased by only using
simple moves corresponding to the chosen generating set.

Then:

sort the input permutation by only using the chosen moves/generators;
keep track of the sequence of selected generators;
reverse such sequence and invert every generator;

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 19 / 34

Discrete scalar multiplication

Minimal factorization is not unique

Choose one at random =⇒ stochastic operator

A stochastic factorization algorithm is required for every generating set

COMMON FACTORIZATION SCHEME
Identify a measurable property of a permutation such that:

the identity permutation has maximum/minimum value;
the value of such property can be increased/decreased by only using
simple moves corresponding to the chosen generating set.

Then:

sort the input permutation by only using the chosen moves/generators;
keep track of the sequence of selected generators;
reverse such sequence and invert every generator;

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 19 / 34

Discrete scalar multiplication

Minimal factorization is not unique

Choose one at random =⇒ stochastic operator

A stochastic factorization algorithm is required for every generating set

COMMON FACTORIZATION SCHEME
Identify a measurable property of a permutation such that:

the identity permutation has maximum/minimum value;
the value of such property can be increased/decreased by only using
simple moves corresponding to the chosen generating set.

Then:

sort the input permutation by only using the chosen moves/generators;
keep track of the sequence of selected generators;
reverse such sequence and invert every generator;

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 19 / 34

Discrete scalar multiplication

Minimal factorization is not unique

Choose one at random =⇒ stochastic operator

A stochastic factorization algorithm is required for every generating set

COMMON FACTORIZATION SCHEME
Identify a measurable property of a permutation such that:

the identity permutation has maximum/minimum value;
the value of such property can be increased/decreased by only using
simple moves corresponding to the chosen generating set.

Then:

sort the input permutation by only using the chosen moves/generators;
keep track of the sequence of selected generators;
reverse such sequence and invert every generator;

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 19 / 34

Stochastic factorization algorithms

(ASW) RandBS: randomized variant of bubble-sort
Monotonically reduces the inversion count of a permutation by only
applying adjacent swaps.
Complexity: Θ(n2), Optimal: yes

(EXC) RandSS: randomized variant of selection-sort
Monotonically increases the number of cycles of a permutation by only
applying exchanges.
Complexity: Θ(n), Optimal: yes

(INS) RandIS: randomized variant of insertion-sort
Monotonically increases the length of a longest increasing subsequence
by only applying insertions.
Complexity: Θ(n2), Optimal: yes

(REV) RandRS: randomized variant of the Kececioglu-Sankoff algorithm
Reduces the number of breakpoints by only applying reversals.
Complexity: Θ(n2), Optimal: no

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 20 / 34

Stochastic factorization algorithms

(ASW) RandBS: randomized variant of bubble-sort
Monotonically reduces the inversion count of a permutation by only
applying adjacent swaps.
Complexity: Θ(n2), Optimal: yes

(EXC) RandSS: randomized variant of selection-sort
Monotonically increases the number of cycles of a permutation by only
applying exchanges.
Complexity: Θ(n), Optimal: yes

(INS) RandIS: randomized variant of insertion-sort
Monotonically increases the length of a longest increasing subsequence
by only applying insertions.
Complexity: Θ(n2), Optimal: yes

(REV) RandRS: randomized variant of the Kececioglu-Sankoff algorithm
Reduces the number of breakpoints by only applying reversals.
Complexity: Θ(n2), Optimal: no

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 20 / 34

Stochastic factorization algorithms

(ASW) RandBS: randomized variant of bubble-sort
Monotonically reduces the inversion count of a permutation by only
applying adjacent swaps.
Complexity: Θ(n2), Optimal: yes

(EXC) RandSS: randomized variant of selection-sort
Monotonically increases the number of cycles of a permutation by only
applying exchanges.
Complexity: Θ(n), Optimal: yes

(INS) RandIS: randomized variant of insertion-sort
Monotonically increases the length of a longest increasing subsequence
by only applying insertions.
Complexity: Θ(n2), Optimal: yes

(REV) RandRS: randomized variant of the Kececioglu-Sankoff algorithm
Reduces the number of breakpoints by only applying reversals.
Complexity: Θ(n2), Optimal: no

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 20 / 34

Stochastic factorization algorithms

(ASW) RandBS: randomized variant of bubble-sort
Monotonically reduces the inversion count of a permutation by only
applying adjacent swaps.
Complexity: Θ(n2), Optimal: yes

(EXC) RandSS: randomized variant of selection-sort
Monotonically increases the number of cycles of a permutation by only
applying exchanges.
Complexity: Θ(n), Optimal: yes

(INS) RandIS: randomized variant of insertion-sort
Monotonically increases the length of a longest increasing subsequence
by only applying insertions.
Complexity: Θ(n2), Optimal: yes

(REV) RandRS: randomized variant of the Kececioglu-Sankoff algorithm
Reduces the number of breakpoints by only applying reversals.
Complexity: Θ(n2), Optimal: no

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 20 / 34

How much random we are?

All the stochastic factorization algorithms perform a random walk in
the sub-graph formed by the union of all the shortest paths from the
identity to the permutation to factorize.

Cannot increase entropy (over the set of minimal factorizations)
without increasing computational complexity.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 21 / 34

Multiplication by any positive scalar?

Let π, ρ ∈ Sn and a ≥ 0

Let |π| be the length of a minimal factorization of π

Let ρ v π iff a minimal factorization of ρ is a prefix of a minimal
factorization of π

ρ = a� π has to satisfy:

(C1) |ρ| = da · |π|e
(C2) if a ∈ [0, 1] then ρ v π
(C3) if a ≥ 1 then π v ρ

Previous definition (a ∈ [0, 1]) satisfies (C1) and (C2)

In line with the geometric interpretation of the Euclidean space
(use L2 norm and linear dependency among vectors)

Computation when a ≥ 1: take a shortest path of the inputted permutation
and extend it in such way that the extended path is a shortest path in its
own, thus the endpoint permutation is the result.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 22 / 34

Multiplication by any positive scalar?

Let π, ρ ∈ Sn and a ≥ 0

Let |π| be the length of a minimal factorization of π

Let ρ v π iff a minimal factorization of ρ is a prefix of a minimal
factorization of π

ρ = a� π has to satisfy:

(C1) |ρ| = da · |π|e
(C2) if a ∈ [0, 1] then ρ v π
(C3) if a ≥ 1 then π v ρ

Previous definition (a ∈ [0, 1]) satisfies (C1) and (C2)

In line with the geometric interpretation of the Euclidean space
(use L2 norm and linear dependency among vectors)

Computation when a ≥ 1: take a shortest path of the inputted permutation
and extend it in such way that the extended path is a shortest path in its
own, thus the endpoint permutation is the result.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 22 / 34

Multiplication by any positive scalar?

Let π, ρ ∈ Sn and a ≥ 0

Let |π| be the length of a minimal factorization of π

Let ρ v π iff a minimal factorization of ρ is a prefix of a minimal
factorization of π

ρ = a� π has to satisfy:

(C1) |ρ| = da · |π|e
(C2) if a ∈ [0, 1] then ρ v π
(C3) if a ≥ 1 then π v ρ

Previous definition (a ∈ [0, 1]) satisfies (C1) and (C2)

In line with the geometric interpretation of the Euclidean space
(use L2 norm and linear dependency among vectors)

Computation when a ≥ 1: take a shortest path of the inputted permutation
and extend it in such way that the extended path is a shortest path in its
own, thus the endpoint permutation is the result.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 22 / 34

Multiplication by any positive scalar?

Let π, ρ ∈ Sn and a ≥ 0

Let |π| be the length of a minimal factorization of π

Let ρ v π iff a minimal factorization of ρ is a prefix of a minimal
factorization of π

ρ = a� π has to satisfy:

(C1) |ρ| = da · |π|e
(C2) if a ∈ [0, 1] then ρ v π
(C3) if a ≥ 1 then π v ρ

Previous definition (a ∈ [0, 1]) satisfies (C1) and (C2)

In line with the geometric interpretation of the Euclidean space
(use L2 norm and linear dependency among vectors)

Computation when a ≥ 1: take a shortest path of the inputted permutation
and extend it in such way that the extended path is a shortest path in its
own, thus the endpoint permutation is the result.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 22 / 34

Multiplication by any positive scalar?

Let π, ρ ∈ Sn and a ≥ 0

Let |π| be the length of a minimal factorization of π

Let ρ v π iff a minimal factorization of ρ is a prefix of a minimal
factorization of π

ρ = a� π has to satisfy:

(C1) |ρ| = da · |π|e
(C2) if a ∈ [0, 1] then ρ v π
(C3) if a ≥ 1 then π v ρ

Previous definition (a ∈ [0, 1]) satisfies (C1) and (C2)

In line with the geometric interpretation of the Euclidean space
(use L2 norm and linear dependency among vectors)

Computation when a ≥ 1: take a shortest path of the inputted permutation
and extend it in such way that the extended path is a shortest path in its
own, thus the endpoint permutation is the result.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 22 / 34

Issues when a > 1

Issue1: |a� π| may be larger than the diameter

Motivation1: Search space is finite

Solution1: Truncate if diameter is exceeded

Issue2: a� π may not exists for any π ∈ Sn when INS is used
(because of the non-convexity)

Motivation2: longest increasing subsequence cannot always be reduced by
shifting away an item

Solution2: reverse, consider the longest decreasing subsequence,
reverse again =⇒ it is like using a surrogate weight which is in
(non-strict) monotonic relation with the INS weight

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 23 / 34

Issues when a > 1

Issue1: |a� π| may be larger than the diameter

Motivation1: Search space is finite

Solution1: Truncate if diameter is exceeded

Issue2: a� π may not exists for any π ∈ Sn when INS is used
(because of the non-convexity)

Motivation2: longest increasing subsequence cannot always be reduced by
shifting away an item

Solution2: reverse, consider the longest decreasing subsequence,
reverse again =⇒ it is like using a surrogate weight which is in
(non-strict) monotonic relation with the INS weight

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 23 / 34

Is it only intuition?

Lot of continuous EAs behaviors can be replicated in permutation space
Is this justified only by intuition?

The algebraic framework works with any finitely generated group:

Bit-strings
Operator: xor

Generators: bit-strings with only one 1-bit
Integer vectors
Operator: +
Generators: vectors with all 0s except one ±1 entry
Enumerable subset of real vectors
whose entries are ”multiples” of a chosen constant ~ > 0
Operator: +
Generators: vectors with all 0s except one ±~ entry
Pushing ~→ 0 tends to replicate the continuous behaviour in
discretized equations of motion

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 24 / 34

Is it only intuition?

Lot of continuous EAs behaviors can be replicated in permutation space
Is this justified only by intuition?

The algebraic framework works with any finitely generated group:

Bit-strings
Operator: xor

Generators: bit-strings with only one 1-bit
Integer vectors
Operator: +
Generators: vectors with all 0s except one ±1 entry
Enumerable subset of real vectors
whose entries are ”multiples” of a chosen constant ~ > 0
Operator: +
Generators: vectors with all 0s except one ±~ entry
Pushing ~→ 0 tends to replicate the continuous behaviour in
discretized equations of motion

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 24 / 34

Is it only intuition?

Lot of continuous EAs behaviors can be replicated in permutation space
Is this justified only by intuition?

The algebraic framework works with any finitely generated group:

Bit-strings
Operator: xor

Generators: bit-strings with only one 1-bit

Integer vectors
Operator: +
Generators: vectors with all 0s except one ±1 entry
Enumerable subset of real vectors
whose entries are ”multiples” of a chosen constant ~ > 0
Operator: +
Generators: vectors with all 0s except one ±~ entry
Pushing ~→ 0 tends to replicate the continuous behaviour in
discretized equations of motion

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 24 / 34

Is it only intuition?

Lot of continuous EAs behaviors can be replicated in permutation space
Is this justified only by intuition?

The algebraic framework works with any finitely generated group:

Bit-strings
Operator: xor

Generators: bit-strings with only one 1-bit
Integer vectors
Operator: +
Generators: vectors with all 0s except one ±1 entry

Enumerable subset of real vectors
whose entries are ”multiples” of a chosen constant ~ > 0
Operator: +
Generators: vectors with all 0s except one ±~ entry
Pushing ~→ 0 tends to replicate the continuous behaviour in
discretized equations of motion

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 24 / 34

Is it only intuition?

Lot of continuous EAs behaviors can be replicated in permutation space
Is this justified only by intuition?

The algebraic framework works with any finitely generated group:

Bit-strings
Operator: xor

Generators: bit-strings with only one 1-bit
Integer vectors
Operator: +
Generators: vectors with all 0s except one ±1 entry
Enumerable subset of real vectors
whose entries are ”multiples” of a chosen constant ~ > 0
Operator: +
Generators: vectors with all 0s except one ±~ entry
Pushing ~→ 0 tends to replicate the continuous behaviour in
discretized equations of motion

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 24 / 34

Properties of ⊕,	,�

Properties which are satisfied:
(X is the discrete set of solutions, e.g. permutations)

(i) ⊕ is associative;
(ii) ⊕ is commutative iff ◦ is commutative;
(iii) e is the neutral element for ⊕;
(iv) x ⊕ x−1 = x−1 ⊕ x = e for each x ∈ X ;
(v) 1� x = x for each x ∈ X ;
(vi) a� (b � x) = (ab)� x for each x ∈ X and a, b ≥ 0;
(vii) 0� x = e for each x ∈ X ;
(viii) x ⊕ (y 	 x) = y for each x , y ∈ X .

Distributive properties are missing

w � ν 6= [(1 + w)� ν]	 ν

where w ≥ 0 and ν ∈ Sn.
Caution on PSO inertial term

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 25 / 34

Inertia-preserving Algebraic PSO

Replace the inertial term θ(I) = w � ν with θ(I∗) = [(1 + w)� ν]	 ν

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 26 / 34

Algebraic Crossover

Continuous arithmetic crossover are convex combinations:

x , y ∈ Rn are the parents
a, b ≥ 0 s.t. a + b = 1 are crossover parameters
z = ax + by is the offspring

Trick: z = ax + by = y + a(x − y) = x + b(y − x)

Discretization (x , y , z ∈ Sn):

z =

{
y ⊕ a� (x 	 y) with prob. 0.5
x ⊕ b � (y 	 x) with prob. 0.5

Both expressions have the same support

The offspring lies in a shortest path between the parents
(it is a geometric crossover according to ”Moraglio et al.”)

If greedy strategies are employed =⇒ Path Relinking

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 27 / 34

Algebraic Crossover

Continuous arithmetic crossover are convex combinations:

x , y ∈ Rn are the parents
a, b ≥ 0 s.t. a + b = 1 are crossover parameters
z = ax + by is the offspring

Trick: z = ax + by = y + a(x − y) = x + b(y − x)

Discretization (x , y , z ∈ Sn):

z =

{
y ⊕ a� (x 	 y) with prob. 0.5
x ⊕ b � (y 	 x) with prob. 0.5

Both expressions have the same support

The offspring lies in a shortest path between the parents
(it is a geometric crossover according to ”Moraglio et al.”)

If greedy strategies are employed =⇒ Path Relinking

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 27 / 34

Algebraic Crossover

Continuous arithmetic crossover are convex combinations:

x , y ∈ Rn are the parents
a, b ≥ 0 s.t. a + b = 1 are crossover parameters
z = ax + by is the offspring

Trick: z = ax + by = y + a(x − y) = x + b(y − x)

Discretization (x , y , z ∈ Sn):

z =

{
y ⊕ a� (x 	 y) with prob. 0.5
x ⊕ b � (y 	 x) with prob. 0.5

Both expressions have the same support

The offspring lies in a shortest path between the parents
(it is a geometric crossover according to ”Moraglio et al.”)

If greedy strategies are employed =⇒ Path Relinking

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 27 / 34

Algebraic Crossover

Continuous arithmetic crossover are convex combinations:

x , y ∈ Rn are the parents
a, b ≥ 0 s.t. a + b = 1 are crossover parameters
z = ax + by is the offspring

Trick: z = ax + by = y + a(x − y) = x + b(y − x)

Discretization (x , y , z ∈ Sn):

z =

{
y ⊕ a� (x 	 y) with prob. 0.5
x ⊕ b � (y 	 x) with prob. 0.5

Both expressions have the same support

The offspring lies in a shortest path between the parents
(it is a geometric crossover according to ”Moraglio et al.”)

If greedy strategies are employed =⇒ Path Relinking

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 27 / 34

Algebraic Crossover

Continuous arithmetic crossover are convex combinations:

x , y ∈ Rn are the parents
a, b ≥ 0 s.t. a + b = 1 are crossover parameters
z = ax + by is the offspring

Trick: z = ax + by = y + a(x − y) = x + b(y − x)

Discretization (x , y , z ∈ Sn):

z =

{
y ⊕ a� (x 	 y) with prob. 0.5
x ⊕ b � (y 	 x) with prob. 0.5

Both expressions have the same support

The offspring lies in a shortest path between the parents
(it is a geometric crossover according to ”Moraglio et al.”)

If greedy strategies are employed =⇒ Path Relinking

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 27 / 34

Algebraic Crossover

Continuous arithmetic crossover are convex combinations:

x , y ∈ Rn are the parents
a, b ≥ 0 s.t. a + b = 1 are crossover parameters
z = ax + by is the offspring

Trick: z = ax + by = y + a(x − y) = x + b(y − x)

Discretization (x , y , z ∈ Sn):

z =

{
y ⊕ a� (x 	 y) with prob. 0.5
x ⊕ b � (y 	 x) with prob. 0.5

Both expressions have the same support

The offspring lies in a shortest path between the parents
(it is a geometric crossover according to ”Moraglio et al.”)

If greedy strategies are employed =⇒ Path Relinking

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 27 / 34

AX for ASW
Radcliffe properties for precedences

[x , y] contains the permutations in all the shortest paths between
x , y ∈ Sn
z ∈ [x , y] is the offspring of the AX

Any permutation is a consistent set of
(n
2

)
pairwise precedences

of items

AX has the Radcliffe properties:

a precedence in z is a precedence in x or y
(AX transmits precedences)
common precedences of x and y are precedences in z
(AX is respectful)
[x , y] contains permutations formed by all the consistent combinations
of the precedences in x and y
(AX is assorting if the scalar parameter is chosen randomly)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 28 / 34

AX for ASW
Radcliffe properties for precedences

[x , y] contains the permutations in all the shortest paths between
x , y ∈ Sn
z ∈ [x , y] is the offspring of the AX

Any permutation is a consistent set of
(n
2

)
pairwise precedences

of items

AX has the Radcliffe properties:

a precedence in z is a precedence in x or y
(AX transmits precedences)
common precedences of x and y are precedences in z
(AX is respectful)
[x , y] contains permutations formed by all the consistent combinations
of the precedences in x and y
(AX is assorting if the scalar parameter is chosen randomly)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 28 / 34

AX for ASW
Radcliffe properties for precedences

[x , y] contains the permutations in all the shortest paths between
x , y ∈ Sn
z ∈ [x , y] is the offspring of the AX

Any permutation is a consistent set of
(n
2

)
pairwise precedences

of items

AX has the Radcliffe properties:

a precedence in z is a precedence in x or y
(AX transmits precedences)
common precedences of x and y are precedences in z
(AX is respectful)
[x , y] contains permutations formed by all the consistent combinations
of the precedences in x and y
(AX is assorting if the scalar parameter is chosen randomly)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 28 / 34

Further possibilities

Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Variable Neighborhoods: use different neighborhoods for the different
individuals in the population (Baioletti et al., 2020b)

Product groups: model structured representations like e.g. DAGs (Baioletti
et al., 2018b)

Group actions: extend the algebraic framework to non-group spaces like
e.g. permutations with repetition (Baioletti et al., 2020a)

Permutation as a set of precedences: iteratively construct a permutation
precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

Cycle structure: interesting for TSP and VRP (future work)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 29 / 34

Further possibilities

Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Variable Neighborhoods: use different neighborhoods for the different
individuals in the population (Baioletti et al., 2020b)

Product groups: model structured representations like e.g. DAGs (Baioletti
et al., 2018b)

Group actions: extend the algebraic framework to non-group spaces like
e.g. permutations with repetition (Baioletti et al., 2020a)

Permutation as a set of precedences: iteratively construct a permutation
precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

Cycle structure: interesting for TSP and VRP (future work)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 29 / 34

Further possibilities

Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Variable Neighborhoods: use different neighborhoods for the different
individuals in the population (Baioletti et al., 2020b)

Product groups: model structured representations like e.g. DAGs (Baioletti
et al., 2018b)

Group actions: extend the algebraic framework to non-group spaces like
e.g. permutations with repetition (Baioletti et al., 2020a)

Permutation as a set of precedences: iteratively construct a permutation
precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

Cycle structure: interesting for TSP and VRP (future work)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 29 / 34

Further possibilities

Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Variable Neighborhoods: use different neighborhoods for the different
individuals in the population (Baioletti et al., 2020b)

Product groups: model structured representations like e.g. DAGs (Baioletti
et al., 2018b)

Group actions: extend the algebraic framework to non-group spaces like
e.g. permutations with repetition (Baioletti et al., 2020a)

Permutation as a set of precedences: iteratively construct a permutation
precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

Cycle structure: interesting for TSP and VRP (future work)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 29 / 34

Further possibilities

Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Variable Neighborhoods: use different neighborhoods for the different
individuals in the population (Baioletti et al., 2020b)

Product groups: model structured representations like e.g. DAGs (Baioletti
et al., 2018b)

Group actions: extend the algebraic framework to non-group spaces like
e.g. permutations with repetition (Baioletti et al., 2020a)

Permutation as a set of precedences: iteratively construct a permutation
precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

Cycle structure: interesting for TSP and VRP (future work)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 29 / 34

Further possibilities

Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Variable Neighborhoods: use different neighborhoods for the different
individuals in the population (Baioletti et al., 2020b)

Product groups: model structured representations like e.g. DAGs (Baioletti
et al., 2018b)

Group actions: extend the algebraic framework to non-group spaces like
e.g. permutations with repetition (Baioletti et al., 2020a)

Permutation as a set of precedences: iteratively construct a permutation
precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

Cycle structure: interesting for TSP and VRP (future work)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 29 / 34

... but is it working?

ADE and APSO significantly outperform the naive DE and PSO equipped with the
popular random-key decoder on a variety of benchmarks (Santucci, Baioletti, &
Milani, 2019; Santucci et al., 2020)

ADE obtained:

state-of-the-art results on the PFSP, LOPCC and MDTWNPP
(Baioletti et al., 2020b; Santucci et al., 2016; Santucci, Baioletti,
Di Bari, et al., 2019)
competitive results on the LOP, TSP and SRLFP (Baioletti et al., 2015;
Baioletti, Milani, Santucci, & Bartoccini, 2019; Di Bari et al., 2020)
peak results among EAs for Bayesian networks learning (Baioletti et al.,
2018b)

Algebraic crossovers are competitive with classical permutation crossover operators
(Baioletti et al., 2018a)

Representation as set of precedences allowed to obtain state-of-the-art results on
the LOP (Santucci & Ceberio, 2020)

Identify preferred pairs of items to exchange in order to exit basins of attraction of
QAP instances (Baioletti, Milani, Santucci, & Tomassini, 2019)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 30 / 34

Conclusions and Open Questions

The rich algebraic structure of permutations can be fruitfully
exploited for:

Study structure and properties of the search space
Designing algorithms and operators in EC
Study the search behaviour of an algorithm

Open questions:

Can algebraic properties be used to derive expected runtime analyses?
Can algebraic properties be used to build a tunable instance generator
for the permutation space?
Is a review article about EC for permutation problems useful to the
community? :-)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 31 / 34

Conclusions and Open Questions

The rich algebraic structure of permutations can be fruitfully
exploited for:

Study structure and properties of the search space
Designing algorithms and operators in EC
Study the search behaviour of an algorithm

Open questions:

Can algebraic properties be used to derive expected runtime analyses?
Can algebraic properties be used to build a tunable instance generator
for the permutation space?
Is a review article about EC for permutation problems useful to the
community? :-)

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 31 / 34

Bibliography I

Baioletti, M., Milani, A., & Santucci, V. (2018a). Algebraic crossover operators for
permutations. In Proc. of IEEE CEC 2018.

Baioletti, M., Milani, A., & Santucci, V. (2015). Linear ordering optimization with a
combinatorial differential evolution. In Proc. of 2015 IEEE SMC 2015.

Baioletti, M., Milani, A., & Santucci, V. (2017). A new precedence-based ant colony
optimization for permutation problems. In Proc. of SEAL 2017.

Baioletti, M., Milani, A., & Santucci, V. (2018b). Learning bayesian networks with
algebraic differential evolution. In Proc. of PPSN 2018.

Baioletti, M., Milani, A., & Santucci, V. (2020a). An algebraic approach for the search
space of permutations with repetition. In Proc. of EVOCOP 2020.

Baioletti, M., Milani, A., & Santucci, V. (2020b). Variable neighborhood algebraic
differential evolution: An application to the linear ordering problem with
cumulative costs. Information Sciences, 507, 37–52.

Baioletti, M., Milani, A., Santucci, V., & Bartoccini, U. (2019). An experimental
comparison of algebraic differential evolution using different generating sets. In
Proc. of the GECCO 2019.

Baioletti, M., Milani, A., Santucci, V., & Tomassini, M. (2019). Search moves in the
local optima networks of permutation spaces: The QAP case. In Proc. of the
GECCO 2019.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 32 / 34

Bibliography II

Di Bari, G., Baioletti, M., & Santucci, V. (2020). An experimental evaluation of the
algebraic differential evolution algorithm on the single row facility layout
problem. In Proc. of the GECCO 2020.

Santucci, V., Baioletti, M., & Milani, A. (2016). Algebraic differential evolution
algorithm for the permutation flowshop scheduling problem with total flowtime
criterion. IEEE Transactions on Evolutionary Computation, 20(5), 682–694.

Santucci, V., Baioletti, M., & Milani, A. (2019). Tackling permutation-based
optimization problems with an algebraic particle swarm optimization algorithm.
Fundamenta Informaticae, 167(1-2), 133–158.

Santucci, V., Baioletti, M., Di Bari, G., & Milani, A. (2019). A binary algebraic
differential evolution for the multidimensional two-way number partitioning
problem. In Proc. of EvoCOP 2019.

Santucci, V., Baioletti, M., & Milani, A. (2020). An algebraic framework for swarm and
evolutionary algorithms in combinatorial optimization. Swarm and Evolutionary
Computation, 55.

Santucci, V., & Ceberio, J. (2020). Using pairwise precedences for solving the linear
ordering problem. Applied Soft Computing, 87.

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 33 / 34

Thanks for the attention!!!

valentino.santucci@unistrapg.it

Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 34 / 34

	References

