Exploiting the algebraic properties of the permutation space in Evolutionary Computation

Valentino Santucci

University for Foreigners of Perugia, Italy

Keynote Talk @ ECPERM Workshop - GECCO 2020 - 8th July 2020

ECPERM Keynote @ GECCO 2020

Outline

- Permutations in EC
- Permutations in Group Theory
- Algebraic properties of combinatorial spaces
- An algebraic framework for EC
- Algebraic EAs and operators
- Practical applications
- Conclusions and open questions

- E

• Represent solutions of important COPs

 $\underline{\mathsf{Ex}}: \ \pi = \left\langle \begin{array}{c} 12345678 \\ 47231586 \end{array} \right\rangle$

Valentino Santucci

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Represent solutions of important COPs
 - $\underline{\mathbf{Ex}}: \ \pi = \left\langle \begin{array}{c} 12345678 \\ 47231586 \end{array} \right\rangle$
- Orderings of items: π(i) is the item in position i
 Ex: item 4 is in position 1, item 7 is in position 2, ...
 Useful in the Permutation Flowshop Scheduling Problem (PFSP)

(4) (日本)

- Represent solutions of important COPs
 - $\underline{\mathbf{Ex}}: \ \pi = \left\langle \begin{array}{c} 12345678 \\ 47231586 \end{array} \right\rangle$
- Orderings of items: π(i) is the item in position i
 Ex: item 4 is in position 1, item 7 is in position 2, ...
 Useful in the Permutation Flowshop Scheduling Problem (PFSP)
- Rankings on items: π(i) is the position of the item i
 Ex: item 1 is in position 4, item 2 is in position 7, ...
 Useful in the *Linear Ordering Problem* (LOP)

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Represent solutions of important COPs
 - $\underline{\mathbf{Ex}}: \ \pi = \left\langle \begin{array}{c} 12345678 \\ 47231586 \end{array} \right\rangle$
- Orderings of items: π(i) is the item in position i
 Ex: item 4 is in position 1, item 7 is in position 2, ...
 Useful in the Permutation Flowshop Scheduling Problem (PFSP)
- Rankings on items: π(i) is the position of the item i
 Ex: item 1 is in position 4, item 2 is in position 7, ...
 Useful in the *Linear Ordering Problem* (LOP)
- Bijective functions: the item π(i) is assigned to the item i <u>Ex</u>: item 4 is assigned to item 1, item 7 is assigned to item 2, ... Useful in the Quadratic Assignment Problem (QAP)

< □ > < 同 > < 回 > < 回 > < 回 >

- Represent solutions of important COPs
 - $\underline{\mathbf{Ex}}: \ \pi = \left\langle \begin{array}{c} 12345678 \\ 47231586 \end{array} \right\rangle$
- Orderings of items: π(i) is the item in position i
 Ex: item 4 is in position 1, item 7 is in position 2, ...
 Useful in the Permutation Flowshop Scheduling Problem (PFSP)
- Rankings on items: π(i) is the position of the item i
 Ex: item 1 is in position 4, item 2 is in position 7, ...
 Useful in the *Linear Ordering Problem* (LOP)
- Bijective functions: the item π(i) is assigned to the item i
 Ex: item 4 is assigned to item 1, item 7 is assigned to item 2, ...
 Useful in the Quadratic Assignment Problem (QAP)
- Routing among items: item $\pi(i)$ is connected to item $\pi(i+1)$ <u>Ex</u>: item 4 is connected to item 7, item 7 is connected to item 2, ... Useful in the *Traveling Salesman Problem* (TSP)

Valentino Santucci

ECPERM Keynote @ GECCO 2020

8th July 2020 3 / 34

• They allow to build-up local search based meta-heuristics

< (17) > < (27 >)

- They allow to build-up *local search* based meta-heuristics
- ASW: swaps between adjacent items <u>Ex</u>: (53241) and (53421) are neighbors It modifies the relative order of only two items

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items <u>Ex</u>: (53241) and (53421) are neighbors It modifies the relative order of only two items
- EXC: swaps between generic items <u>Ex:</u> (53241) and (13245) are neighbors It modifies the absolute positions of only two items

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items <u>Ex</u>: (53241) and (53421) are neighbors It modifies the relative order of only two items
- EXC: swaps between generic items <u>Ex</u>: (53241) and (13245) are neighbors It modifies the absolute positions of only two items
- INS: insertions or shifts of an item
 <u>Ex</u>: (53241) and (52431) are neighbors
 It modifies the relative order of a bunch of items but with respect to only
 one item

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items <u>Ex</u>: (53241) and (53421) are neighbors It modifies the relative order of only two items
- EXC: swaps between generic items <u>Ex:</u> (53241) and (13245) are neighbors It modifies the absolute positions of only two items
- INS: insertions or shifts of an item
 <u>Ex</u>: (53241) and (52431) are neighbors
 It modifies the relative order of a bunch of items but with respect to only
 one item
- **REV**: reversals of a chunk of items <u>Ex</u>: (53241) and (54231) are neighbors It modifies only two connections

Valentino Santucci

ECPERM Keynote @ GECCO 2020

Permutation space under the ASW neighborhood

Valentino Santucci

ECPERM Keynote @ GECCO 2020

8th July 2020 5 / 34

• Composition of permutations

 $au=\pi\circ
ho$ is defined as $au(i)=\pi(
ho(i))$ for $i=1,\ldots,n$

$$\underline{\mathsf{Ex}}: \left\langle \begin{array}{c} 1234\\ 4213 \end{array} \right\rangle \circ \left\langle \begin{array}{c} 1234\\ 2143 \end{array} \right\rangle = \left\langle \begin{array}{c} 1234\\ 2431 \end{array} \right\rangle$$

イロト イポト イヨト イヨト

- Composition of permutations
 - $au=\pi\circ
 ho$ is defined as $au(i)=\pi(
 ho(i))$ for $i=1,\ldots,n$

$$\underline{\mathsf{Ex}}: \left\langle \begin{array}{c} 1234\\ 4213 \end{array} \right\rangle \circ \left\langle \begin{array}{c} 1234\\ 2143 \end{array} \right\rangle = \left\langle \begin{array}{c} 1234\\ 2431 \end{array} \right\rangle$$

• Identity permutation $e = \langle 12 \dots n \rangle$ is the neutral element

イロト イポト イヨト イヨト

- **Composition** of permutations $\tau = \pi \circ \rho$ is defined as $\tau(i) = \pi(\rho(i))$ for i = 1, ..., n<u>Ex</u>: $\left\langle \begin{array}{c} 1234 \\ 4213 \end{array} \right\rangle \circ \left\langle \begin{array}{c} 1234 \\ 2143 \end{array} \right\rangle = \left\langle \begin{array}{c} 1234 \\ 2431 \end{array} \right\rangle$
- Identity permutation $e = \langle 12 \dots n \rangle$ is the neutral element
- Inverse permutation: there exists a unique π^{-1} s.t. $\pi \circ \pi^{-1} = e$

$$\underline{\mathsf{Ex}}: \ \pi = \left\langle \begin{array}{c} 1234\\ 4213 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} 4213\\ 1234 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} 1234\\ 3241 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} 1234\\ 3241 \end{array} \right\rangle = \pi^{-1}$$

イロト イポト イヨト イヨト 二日

- **Composition** of permutations $\tau = \pi \circ \rho$ is defined as $\tau(i) = \pi(\rho(i))$ for i = 1, ..., n<u>Ex</u>: $\left\langle \begin{array}{c} 1234 \\ 4213 \end{array} \right\rangle \circ \left\langle \begin{array}{c} 1234 \\ 2143 \end{array} \right\rangle = \left\langle \begin{array}{c} 1234 \\ 2431 \end{array} \right\rangle$
- Identity permutation $e = \langle 12 \dots n \rangle$ is the neutral element
- Inverse permutation: there exists a unique π^{-1} s.t. $\pi \circ \pi^{-1} = e$

$$\underline{\mathsf{Ex}}: \ \pi = \left\langle \begin{array}{c} 1234\\ 4213 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} 4213\\ 1234 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} 1234\\ 3241 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} 1234\\ 3241 \end{array} \right\rangle = \pi^{-1}$$

• The **Symmetric group** of *n* items is denoted by S_n

イロト 不得 トイヨト イヨト 二日

How neighborhoods and algebra relate to each other?

- Under **ASW**, all the neighbors of $\langle 2413 \rangle$ are:
 - <**42**13>
 - (2143)
 - (2431)

(日) (四) (日) (日) (日)

How neighborhoods and algebra relate to each other?

- Under **ASW**, all the neighbors of $\langle 2413 \rangle$ are:
 - <<mark>42</mark>13>
 - (2**14**3)
 - (24<mark>31</mark>)
- They can be algebraically obtained by:
 - $\langle 2413 \rangle \circ \langle 2134 \rangle = \langle 4213 \rangle$
 - $\langle 2413 \rangle \circ \langle 1324 \rangle = \langle 2143 \rangle$
 - $\langle 2413 \rangle \circ \langle 1243 \rangle = \langle 2431 \rangle$

< □ > < □ > < □ > < □ > < □ > < □ >

How neighborhoods and algebra relate to each other?

- $\bullet~$ Under ASW, all the neighbors of $\langle 2413 \rangle$ are:
 - <<mark>42</mark>13>
 - (2**14**3)
 - (24<mark>31</mark>)
- They can be algebraically obtained by:
 - $\langle 2413 \rangle \circ \langle 2134 \rangle = \langle 4213 \rangle$
 - $\langle 2413 \rangle \circ \langle 1324 \rangle = \langle 2143 \rangle$
 - $\langle 2413 \rangle \circ \langle 1243 \rangle = \langle 2431 \rangle$

• Let $\sigma_1 = \langle 2134 \rangle$, $\sigma_2 = \langle 1324 \rangle$, $\sigma_3 = \langle 1243 \rangle$ and ASW = $\{\sigma_1, \sigma_2, \sigma_3\}$ then:

- ASW $\subset \mathcal{S}_n$
- ASW generates all the permutations in \mathcal{S}_n
- any permutation can be factorized as a product of generators in ASW
- S_n is a finitely generated group

イロト 不得 トイヨト イヨト 二日

Cayley graph for the ASW generating set

8/34

Valentino Santucci

ASW = {σ_i : 1 ≤ i < n}, where σ_i is the identity permutation with the items i and i + 1 exchanged.
 <u>Ex</u>: (13245) swaps 2nd and 3rd items
 Distance induced: Kendall's-τ distance

(日) (四) (日) (日) (日)

- ASW = {σ_i : 1 ≤ i < n}, where σ_i is the identity permutation with the items i and i + 1 exchanged.
 <u>Ex</u>: (13245) swaps 2nd and 3rd items
 Distance induced: Kendall's-τ distance
- EXC = {ε_{ij} : 1 ≤ i < j ≤ n}, where ε_{ij} is the identity permutation with the items i and j exchanged.
 Ex: (14325) swaps 2nd and 4th items Distance induced: Cayley distance

< □ > < □ > < □ > < □ > < □ > < □ >

- ASW = {σ_i : 1 ≤ i < n}, where σ_i is the identity permutation with the items i and i + 1 exchanged.
 <u>Ex</u>: (13245) swaps 2nd and 3rd items
 Distance induced: Kendall's-τ distance
- EXC = {ε_{ij} : 1 ≤ i < j ≤ n}, where ε_{ij} is the identity permutation with the items i and j exchanged.
 Ex: (14325) swaps 2nd and 4th items Distance induced: Cayley distance
- INS = {ι_{ij} : 1 ≤ i, j ≤ n}, where ι_{ij} is the identity permutation where the item i is shifted to position j.
 <u>Ex</u>: (14235) shifts 4th item to 2nd position Distance induced: Ulam distance

- ASW = {σ_i : 1 ≤ i < n}, where σ_i is the identity permutation with the items i and i + 1 exchanged.
 <u>Ex</u>: (13245) swaps 2nd and 3rd items
 Distance induced: Kendall's-τ distance
- EXC = {ε_{ij} : 1 ≤ i < j ≤ n}, where ε_{ij} is the identity permutation with the items i and j exchanged.
 Ex: (14325) swaps 2nd and 4th items Distance induced: Cayley distance
- INS = {ι_{ij} : 1 ≤ i, j ≤ n}, where ι_{ij} is the identity permutation where the item i is shifted to position j.
 <u>Ex</u>: (14235) shifts 4th item to 2nd position Distance induced: Ulam distance
- REV = { $\rho_{ij}: 1 \le i < j \le n$ }, where ρ_{ij} is the identity permutation where the chunk between positions *i* and *j* is reversed. <u>Ex</u>: $\langle 14325 \rangle$ reverses the chunk from 2nd to 4th positions Distance induced: **reversals' distance** Valentino Santucci ECPERM Keynote @ GECCO 2020 8th July 2020 9/34

Relations among the generating sets

- ASW is a proper subset of EXC, INS, REV
- INS \cap EXC = ASW
- INS \cap REV = ASW
- EXC \cap REV = ASW $\cup \{\epsilon_{ij} \in$ EXC : $|i j| = 2\}$
- $INS = INS_{bw} \cup INS_{fw}$
- $INS_{bw} \cap INS_{fw} = ASW$

Relations among the generating sets

- ASW is a proper subset of EXC, INS, REV
- INS \cap EXC = ASW
- INS \cap REV = ASW
- EXC \cap REV = ASW $\cup \{\epsilon_{ij} \in$ EXC : $|i j| = 2\}$
- $INS = INS_{bw} \cup INS_{fw}$
- $INS_{bw} \cap INS_{fw} = ASW$
- Useful for:
 - Designing Variable Neighborhood Search algorithms
 - Designing perturbation step in Iterative Local Search algorithms
 - A priori smoothness estimation in Fitness Landscape Analysis

<日

<</p>

Properties of the generating sets

- Cardinality = number of neighbors
- Diameter of the Cayley graph (search space)
- Number of longest permutations (whose shortest-path distance from the identity equals the diameter)
- **Abstract convexity**: any permutation resides in a shortest path between the identity and a longest permutation?
- Lattice structure: meet and join are well defined?

GSet	Card.	Diameter	#Longest Perm.	Abst.Convex	Lattice
ASW	n-1	$\binom{n}{2}$	1	Yes	Yes
EXC	$\binom{n}{2}$	n-1	(n - 1)!	Yes	No
INS	$(n-1)^2$	n-1	1	No	No
REV	$\binom{n}{2}$	$\leq n-1$?	?	?
					≣। ≡ • ० ०

ECPERM Keynote @ GECCO 2020

8th July 2020

11/34

Visual intuitions about space structures

Valentino Santucci

ECPERM Keynote @ GECCO 2020

8th July 2020 12 / 34

→ ∃ →

- Simple search move = a single generator = = a special permutation
- Composite search move = a sequence of simple search moves = a sequence of generators = = a generic permutation

(since a generating set generates the group)

• Difference permutation = composition of the generators in a shortest path

- Simple search move = a single generator = = a special permutation
- Composite search move = a sequence of simple search moves = a sequence of generators = = a generic permutation (since a generating set generates the group)

- Difference permutation = composition of the generators in a shortest path
- Minimal factorization of the difference permutation contains generators in a shortest path

- Simple search move = a single generator = = a special permutation
- Composite search move = a sequence of simple search moves = a sequence of generators = = a generic permutation (since a generating set generates the group)

- Difference permutation = composition of the generators in a shortest path
- Minimal factorization of the difference permutation contains generators in a shortest path
- **Distance** = length of a shortest path = length of a minimal factorization of the difference permutation

- Simple search move = a single generator = = a special permutation
- Composite search move = a sequence of simple search moves = a sequence of generators = = a generic permutation (since a generating set generates the group)

- Difference permutation = composition of the generators in a shortest path
- Minimal factorization of the difference permutation contains generators in a shortest path
- **Distance** = length of a shortest path = length of a minimal factorization of the difference permutation
- Single representation for solutions and differences
- Strong analogy with points and vectors in the Euclidean space

Valentino Santucci

ECPERM Keynote @ GECCO 2020

Equations of Motion in Continuous EAs

Can be consistently redefined for discrete spaces?

Differential Evolution (DE)

$$u \leftarrow x_0 + F \cdot (x_1 - x_2)$$

where: $u, x_0, x_1, x_2 \in \mathbb{R}^n$, while $F \in \mathbb{R}^+$

Particle Swarm Optimization (PSO)

$$v \leftarrow w \cdot v + c_1 r_1 \cdot (p - x) + c_2 r_2 \cdot (g - x)$$

$$\pmb{x} \leftarrow \pmb{x} + \pmb{v}$$

where: $\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{p}, \boldsymbol{g} \in \mathbb{R}^n$, while $w, c_1, c_2, r_1, r_2 \in \mathbb{R}^+$

A B K A B K

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE vs Algebraic DE

Differential mutation in action

Algebraic Differential Evolution for Permutations

Classical continuous DE

The key operation of DE is the differential mutation which generates a mutant $u \in \mathbb{R}^n$ according to

$$u \leftarrow x_0 + F \cdot (x_1 - x_2)$$

where $x_0, x_1, x_2 \in \mathbb{R}^n$ are three distinct population individuals and F > 0 is the *scale factor parameter* of DE.

Algebraic DE for Permutations (ADEP)

The key operation of ADEP is the differential mutation which generates a mutant $v \in S_n$ according to

$\upsilon \leftarrow \pi_0 \oplus F \odot (\pi_1 \ominus \pi_2)$

where $\pi_0, \pi_1, \pi_2 \in S_n$ are three distinct population individuals and F > 0 is the *scale factor paramter* of ADEP.

8th July 2020 16 / 34

(I) < (II) <

Algebraic Framework for Permutations

Discrete operators for equations of motion in EAs

Let:

- ASW_n = {σ₁,...,σ_{n-1}} be the "adjacent swap" generators of S_n
 π, ρ ∈ S_n
- $\langle \sigma_{i_1}, \ldots, \sigma_{i_k}, \ldots, \sigma_{i_l} \rangle$ be a minimal factorization of π whose length is l• $a \in [0, 1]$

Discrete operators are defined as follows:

•
$$\pi \oplus \rho := \pi \circ \rho$$

•
$$\pi \ominus \rho := \rho^{-1} \circ \pi$$

• $a \odot \pi := \sigma_{i_1} \circ \cdots \circ \sigma_{i_k}$, with $k = \lceil a \cdot l \rceil$

イロト 不得下 イヨト イヨト 二日

Discrete sum and difference

• Algebraically, they do not rely on the chosen generating set

• They are deterministic

• They are consistent to each other:

$$\pi =
ho \oplus (\pi \ominus
ho) =
ho \circ (
ho^{-1} \circ \pi) = \pi$$

• • = • • = •

• Minimal factorization is **not unique**

(日) (四) (日) (日) (日)

- Minimal factorization is not unique
- Choose one at random \implies stochastic operator

(日) (四) (日) (日) (日)

- Minimal factorization is not unique
- Choose one at random \implies stochastic operator
- A stochastic factorization algorithm is required for every generating set

- **→** ∃ →

- Minimal factorization is not unique
- Choose one at random \implies stochastic operator
- A stochastic factorization algorithm is required for every generating set
- COMMON FACTORIZATION SCHEME

Identify a measurable property of a permutation such that:

Then:

- Minimal factorization is **not unique**
- Choose one at random \implies stochastic operator
- A stochastic factorization algorithm is required for every generating set
- COMMON FACTORIZATION SCHEME

Identify a measurable property of a permutation such that:

- the identity permutation has maximum/minimum value;
- the value of such property can be increased/decreased by only using simple moves corresponding to the chosen generating set.

Then:

- Minimal factorization is **not unique**
- Choose one at random \implies stochastic operator
- A stochastic factorization algorithm is required for every generating set
- COMMON FACTORIZATION SCHEME

Identify a measurable property of a permutation such that:

- the identity permutation has maximum/minimum value;
- the value of such property can be increased/decreased by only using simple moves corresponding to the chosen generating set.

Then:

- sort the input permutation by only using the chosen moves/generators;
- keep track of the sequence of selected generators;
- reverse such sequence and invert every generator;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps. Complexity: Θ(n²), Optimal: yes

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps. Complexity: Θ(n²), Optimal: yes
- (EXC) RandSS: randomized variant of selection-sort Monotonically increases the number of cycles of a permutation by only applying exchanges. Complexity: Θ(n), Optimal: yes

• • = • • =

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps.
 Complexity: Θ(n²), Optimal: yes
- (EXC) RandSS: randomized variant of selection-sort Monotonically increases the number of cycles of a permutation by only applying exchanges. Complexity: Θ(n), Optimal: yes
- (INS) RandIS: randomized variant of insertion-sort Monotonically increases the length of a longest increasing subsequence by only applying insertions. Complexity: Θ(n²), Optimal: yes

< 回 > < 回 > < 回 >

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps.
 Complexity: Θ(n²), Optimal: yes
- (EXC) RandSS: randomized variant of selection-sort Monotonically increases the number of cycles of a permutation by only applying exchanges. Complexity: Θ(n), Optimal: yes
- (INS) RandIS: randomized variant of insertion-sort Monotonically increases the length of a longest increasing subsequence by only applying insertions. Complexity: Θ(n²), Optimal: yes
- (REV) RandRS: randomized variant of the Kececioglu-Sankoff algorithm Reduces the number of breakpoints by only applying reversals. Complexity: Θ(n²), Optimal: no

How much random we are?

- All the stochastic factorization algorithms perform a **random walk in the sub-graph** formed by the union of all the shortest paths from the identity to the permutation to factorize.
- **Cannot increase entropy** (over the set of minimal factorizations) without increasing computational complexity.

- Let $\pi, \rho \in \mathcal{S}_n$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π

・ 何 ト ・ ヨ ト ・ ヨ ト

- Let $\pi, \rho \in \mathcal{S}_n$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho = a \odot \pi$ has to satisfy:

$$\begin{array}{ll} (\mathsf{C1}) & |\rho| = \lceil a \cdot |\pi| \rceil \\ (\mathsf{C2}) & \text{if } a \in [0,1] \text{ then } \rho \sqsubseteq \pi \\ (\mathsf{C3}) & \text{if } a \ge 1 \text{ then } \pi \sqsubseteq \rho \end{array}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Let $\pi, \rho \in \mathcal{S}_n$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho = a \odot \pi$ has to satisfy:

$$\begin{array}{ll} (\text{C1}) & |\rho| = \lceil a \cdot |\pi| \rceil \\ (\text{C2}) & \text{if } a \in [0,1] \text{ then } \rho \sqsubseteq \pi \\ (\text{C3}) & \text{if } a \ge 1 \text{ then } \pi \sqsubseteq \rho \end{array}$$

• Previous definition $(a \in [0, 1])$ satisfies (C1) and (C2)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Let $\pi, \rho \in \mathcal{S}_n$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho = a \odot \pi$ has to satisfy:

$$\begin{array}{ll} (\text{C1}) & |\rho| = \lceil a \cdot |\pi| \rceil \\ (\text{C2}) & \text{if } a \in [0,1] \text{ then } \rho \sqsubseteq \pi \\ (\text{C3}) & \text{if } a \ge 1 \text{ then } \pi \sqsubseteq \rho \end{array}$$

- Previous definition $(a \in [0,1])$ satisfies (C1) and (C2)
- In line with the geometric interpretation of the Euclidean space (use L2 norm and linear dependency among vectors)

8th July 2020 22 / 34

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Let $\pi, \rho \in \mathcal{S}_n$ and $a \ge 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho = a \odot \pi$ has to satisfy:

$$\begin{array}{ll} (\text{C1}) & |\rho| = \lceil a \cdot |\pi| \rceil \\ (\text{C2}) & \text{if } a \in [0,1] \text{ then } \rho \sqsubseteq \pi \\ (\text{C3}) & \text{if } a \ge 1 \text{ then } \pi \sqsubseteq \rho \end{array}$$

- Previous definition $(a \in [0,1])$ satisfies (C1) and (C2)
- In line with the geometric interpretation of the Euclidean space (use L2 norm and linear dependency among vectors)
- Computation when a ≥ 1: take a shortest path of the inputted permutation and extend it in such way that the extended path is a shortest path in its own, thus the endpoint permutation is the result.

Valentino Santucci

ECPERM Keynote @ GECCO 2020

8th July 2020 22 / 34

Issues when a > 1

- Issue1: $|a \odot \pi|$ may be larger than the diameter
- Motivation1: Search space is finite
- Solution1: Truncate if diameter is exceeded

(日) (四) (日) (日) (日)

Issues when a > 1

- **Issue1**: $|a \odot \pi|$ may be larger than the diameter
- Motivation1: Search space is finite
- Solution1: Truncate if diameter is exceeded
- Issue2: a ⊙ π may not exists for any π ∈ S_n when INS is used (because of the non-convexity)
- Motivation2: *longest increasing subsequence* cannot always be reduced by *shifting away* an item
- Solution2: reverse, consider the longest decreasing subsequence, reverse again \implies it is like using a surrogate weight which is in (non-strict) monotonic relation with the INS weight

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?

(日) (四) (日) (日) (日)

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:

Bit-strings

Operator: xor Generators: bit-strings with only one 1-bit

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:

Bit-strings

Operator: xor Generators: bit-strings with only one 1-bit

Integer vectors

Operator: +

Generators: vectors with all 0s except one ± 1 entry

• • = • • = •

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:

Bit-strings

Operator: xor

Generators: bit-strings with only one 1-bit

Integer vectors

Operator: +

Generators: vectors with all 0s except one $\pm 1 \text{ entry}$

• Enumerable subset of real vectors

whose entries are "multiples" of a chosen constant $\hbar > 0$ Operator: +

Generators: vectors with all 0s except one $\pm\hbar$ entry

Pushing $\hbar \to 0$ tends to replicate the continuous behaviour in discretized equations of motion

Properties of \oplus, \ominus, \odot

Properties which are satisfied:
 (X is the discrete set of solutions, e.g. permutations)

(i)
$$\oplus$$
 is associative;
(ii) \oplus is commutative iff \circ is commutative;
(iii) e is the neutral element for \oplus ;
(iv) $x \oplus x^{-1} = x^{-1} \oplus x = e$ for each $x \in X$;
(v) $1 \odot x = x$ for each $x \in X$;
(vi) $a \odot (b \odot x) = (ab) \odot x$ for each $x \in X$ and $a, b \ge 0$;
(vii) $0 \odot x = e$ for each $x \in X$;
(viii) $x \oplus (y \ominus x) = y$ for each $x, y \in X$.

• Distributive properties are missing

$$w \odot \nu \neq [(1+w) \odot \nu] \ominus \nu$$

where $w \ge 0$ and $\nu \in S_n$. Caution on PSO inertial term

Valentino Santucci

ECPERM Keynote @ GECCO 2020

.

Inertia-preserving Algebraic PSO

• Replace the inertial term $\theta^{(I)} = w \odot \nu$ with $\theta^{(I*)} = [(1+w) \odot \nu] \ominus \nu$

1

Assuming:
$$w = \frac{1}{3}, c_1 = c_2 = 0$$

 $\chi_{t-1} = \langle 12534 \rangle$ $v_t = \langle 35142 \rangle // |v_t| = 6$ $\chi_t = \langle 54132 \rangle$
 $\sigma_2 \rightarrow \sigma_4 \rightarrow \sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_2 \rightarrow \sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_2 \rightarrow \sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow \sigma_2 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow \sigma_2 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow \sigma_2 \rightarrow \sigma_1 \rightarrow \sigma_2 \rightarrow$

ECPERM Keynote @ GECCO 2020

8th July 2020 26 / 34

イロト 不得下 イヨト イヨト 二日

• Continuous arithmetic crossover are convex combinations:

- $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are the **parents**
- $a, b \ge 0$ s.t. a + b = 1 are crossover **parameters**
- z = ax + by is the offspring

(日) (四) (日) (日) (日)

• Continuous arithmetic crossover are convex combinations:

- $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are the **parents**
- $a, b \ge 0$ s.t. a + b = 1 are crossover **parameters**
- z = ax + by is the offspring

• Trick:
$$\mathbf{z} = a\mathbf{x} + b\mathbf{y} = \mathbf{y} + a(\mathbf{x} - \mathbf{y}) = \mathbf{x} + b(\mathbf{y} - \mathbf{x})$$

(日) (四) (日) (日) (日)

• Continuous arithmetic crossover are convex combinations:

•
$$\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$
 are the parents

- $a, b \ge 0$ s.t. a + b = 1 are crossover **parameters**
- z = ax + by is the offspring

• Trick:
$$\mathbf{z} = a\mathbf{x} + b\mathbf{y} = \mathbf{y} + a(\mathbf{x} - \mathbf{y}) = \mathbf{x} + b(\mathbf{y} - \mathbf{x})$$

• Discretization $(x, y, z \in S_n)$:

$$z = \begin{cases} y \oplus a \odot (x \ominus y) & \text{with prob. } 0.5\\ x \oplus b \odot (y \ominus x) & \text{with prob. } 0.5 \end{cases}$$

• • = • • = •

• Continuous arithmetic crossover are convex combinations:

•
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
 are the **parents**

- $a, b \ge 0$ s.t. a + b = 1 are crossover **parameters**
- z = ax + by is the offspring

• Trick:
$$\mathbf{z} = a\mathbf{x} + b\mathbf{y} = \mathbf{y} + a(\mathbf{x} - \mathbf{y}) = \mathbf{x} + b(\mathbf{y} - \mathbf{x})$$

• Discretization
$$(x, y, z \in S_n)$$
:

$$z = \begin{cases} y \oplus a \odot (x \ominus y) & \text{with prob. } 0.5\\ x \oplus b \odot (y \ominus x) & \text{with prob. } 0.5 \end{cases}$$

• Both expressions have the same support

A B b A B b

• Continuous arithmetic crossover are convex combinations:

•
$$x, y \in \mathbb{R}^n$$
 are the parents

- $a, b \ge 0$ s.t. a + b = 1 are crossover **parameters**
- z = ax + by is the offspring

• Trick:
$$\mathbf{z} = a\mathbf{x} + b\mathbf{y} = \mathbf{y} + a(\mathbf{x} - \mathbf{y}) = \mathbf{x} + b(\mathbf{y} - \mathbf{x})$$

• Discretization
$$(x, y, z \in S_n)$$
:

$$z = \begin{cases} y \oplus a \odot (x \ominus y) & \text{with prob. } 0.5\\ x \oplus b \odot (y \ominus x) & \text{with prob. } 0.5 \end{cases}$$

- Both expressions have the same support
- The offspring lies in a shortest path between the parents (it is a *geometric crossover* according to "Moraglio et al.")

• • = • • = •
Algebraic Crossover

• Continuous arithmetic crossover are convex combinations:

•
$$\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$
 are the parents

- $a, b \ge 0$ s.t. a + b = 1 are crossover **parameters**
- z = ax + by is the offspring

• Trick:
$$z = ax + by = y + a(x - y) = x + b(y - x)$$

• Discretization
$$(x, y, z \in S_n)$$
:

$$z = \begin{cases} y \oplus a \odot (x \ominus y) & \text{with prob. } 0.5\\ x \oplus b \odot (y \ominus x) & \text{with prob. } 0.5 \end{cases}$$

- Both expressions have the same support
- The offspring lies in a shortest path between the parents (it is a *geometric crossover* according to "Moraglio et al.")
- If greedy strategies are employed \implies Path Relinking

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

AX for ASW

Radcliffe properties for precedences

- [x, y] contains the permutations in all the shortest paths between $x, y \in \mathcal{S}_n$
- $z \in [x, y]$ is the offspring of the AX

(日) (四) (日) (日) (日)

AX for ASW

Radcliffe properties for precedences

- [x, y] contains the permutations in all the shortest paths between $x, y \in \mathcal{S}_n$
- $z \in [x, y]$ is the offspring of the AX
- Any permutation is a consistent set of $\binom{n}{2}$ pairwise precedences of items

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

AX for ASW

Radcliffe properties for precedences

- [x, y] contains the permutations in all the shortest paths between $x, y \in \mathcal{S}_n$
- $z \in [x, y]$ is the offspring of the AX
- Any permutation is a consistent set of $\binom{n}{2}$ pairwise precedences of items
- AX has the Radcliffe properties:
 - a precedence in z is a precedence in x or y (AX transmits precedences)
 - common precedences of x and y are precedences in z (AX is respectful)
 - [x, y] contains permutations formed by all the consistent combinations of the precedences in x and y

(AX is assorting if the scalar parameter is chosen randomly)

• Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

(日) (四) (日) (日) (日)

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)

(4) (日本)

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- **Product groups**: model structured representations like e.g. DAGs (Baioletti et al., 2018b)

< □ > < □ > < □ > < □ > < □ > < □ >

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- **Product groups**: model structured representations like e.g. DAGs (Baioletti et al., 2018b)
- **Group actions**: extend the algebraic framework to non-group spaces like e.g. permutations with repetition (Baioletti et al., 2020a)

< □ > < 同 > < 回 > < 回 > < 回 >

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- **Product groups**: model structured representations like e.g. DAGs (Baioletti et al., 2018b)
- **Group actions**: extend the algebraic framework to non-group spaces like e.g. permutations with repetition (Baioletti et al., 2020a)
- Permutation as a set of precedences: iteratively construct a permutation precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- **Product groups**: model structured representations like e.g. DAGs (Baioletti et al., 2018b)
- **Group actions**: extend the algebraic framework to non-group spaces like e.g. permutations with repetition (Baioletti et al., 2020a)
- Permutation as a set of precedences: iteratively construct a permutation precedence by precedence (Baioletti et al., 2017; Santucci & Ceberio, 2020)
- Cycle structure: interesting for TSP and VRP (future work)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

... but is it working?

- ADE and APSO significantly outperform the naive DE and PSO equipped with the popular random-key decoder on a variety of benchmarks (Santucci, Baioletti, & Milani, 2019; Santucci et al., 2020)
- ADE obtained:
 - state-of-the-art results on the PFSP, LOPCC and MDTWNPP (Baioletti et al., 2020b; Santucci et al., 2016; Santucci, Baioletti, Di Bari, et al., 2019)
 - competitive results on the LOP, TSP and SRLFP (Baioletti et al., 2015; Baioletti, Milani, Santucci, & Bartoccini, 2019; Di Bari et al., 2020)
 - peak results among EAs for Bayesian networks learning (Baioletti et al., 2018b)
- Algebraic crossovers are competitive with classical permutation crossover operators (Baioletti et al., 2018a)
- Representation as set of precedences allowed to obtain state-of-the-art results on the LOP (Santucci & Ceberio, 2020)
- Identify preferred pairs of items to exchange in order to exit basins of attraction of QAP instances (Baioletti, Milani, Santucci, & Tomassini, 2019)

Valentino Santucci

ECPERM Keynote @ GECCO 2020

Conclusions and Open Questions

- The rich algebraic structure of permutations can be fruitfully exploited for:
 - Study structure and properties of the search space
 - Designing algorithms and operators in EC
 - Study the search behaviour of an algorithm

Conclusions and Open Questions

- The rich algebraic structure of permutations can be fruitfully exploited for:
 - Study structure and properties of the search space
 - Designing algorithms and operators in EC
 - Study the search behaviour of an algorithm

Open questions:

- Can algebraic properties be used to derive expected runtime analyses?
- Can algebraic properties be used to build a tunable instance generator for the permutation space?
- Is a review article about EC for permutation problems useful to the community? :-)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bibliography I

- Baioletti, M., Milani, A., & Santucci, V. (2018a). Algebraic crossover operators for permutations. In Proc. of IEEE CEC 2018.
- Baioletti, M., Milani, A., & Santucci, V. (2015). Linear ordering optimization with a combinatorial differential evolution. In *Proc. of 2015 IEEE SMC 2015*.
- Baioletti, M., Milani, A., & Santucci, V. (2017). A new precedence-based ant colony optimization for permutation problems. In *Proc. of SEAL 2017*.
- Baioletti, M., Milani, A., & Santucci, V. (2018b). Learning bayesian networks with algebraic differential evolution. In Proc. of PPSN 2018.
- Baioletti, M., Milani, A., & Santucci, V. (2020a). An algebraic approach for the search space of permutations with repetition. In *Proc. of EVOCOP 2020.*
- Baioletti, M., Milani, A., & Santucci, V. (2020b). Variable neighborhood algebraic differential evolution: An application to the linear ordering problem with cumulative costs. *Information Sciences*, 507, 37–52.
- Baioletti, M., Milani, A., Santucci, V., & Bartoccini, U. (2019). An experimental comparison of algebraic differential evolution using different generating sets. In *Proc. of the GECCO 2019.*
- Baioletti, M., Milani, A., Santucci, V., & Tomassini, M. (2019). Search moves in the local optima networks of permutation spaces: The QAP case. In *Proc. of the GECCO 2019*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Bibliography II

- Di Bari, G., Baioletti, M., & Santucci, V. (2020). An experimental evaluation of the algebraic differential evolution algorithm on the single row facility layout problem. In *Proc. of the GECCO 2020.*
- Santucci, V., Baioletti, M., & Milani, A. (2016). Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. *IEEE Transactions on Evolutionary Computation*, 20(5), 682–694.
- Santucci, V., Baioletti, M., & Milani, A. (2019). Tackling permutation-based optimization problems with an algebraic particle swarm optimization algorithm. *Fundamenta Informaticae*, 167(1-2), 133–158.
- Santucci, V., Baioletti, M., Di Bari, G., & Milani, A. (2019). A binary algebraic differential evolution for the multidimensional two-way number partitioning problem. In *Proc. of EvoCOP 2019*.
- Santucci, V., Baioletti, M., & Milani, A. (2020). An algebraic framework for swarm and evolutionary algorithms in combinatorial optimization. *Swarm and Evolutionary Computation*, *55*.
- Santucci, V., & Ceberio, J. (2020). Using pairwise precedences for solving the linear ordering problem. *Applied Soft Computing*, 87.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Thanks for the attention!!!

valentino.santucci@unistrapg.it

Valentino Santucci

ECPERM Keynote @ GECCO 2020

8th July 2020 34 / 34