Exploiting the algebraic properties of the permutation space in Evolutionary Computation

Valentino Santucci

University for Foreigners of Perugia, Italy
Keynote Talk @ ECPERM Workshop - GECCO 2020-8th July 2020

Outline

- Permutations in EC
- Permutations in Group Theory
- Algebraic properties of combinatorial spaces
- An algebraic framework for EC
- Algebraic EAs and operators
- Practical applications
- Conclusions and open questions

Why permutations in EC?

- Represent solutions of important COPs Ex: $\pi=\left\langle\begin{array}{l}12345678 \\ 47231586\end{array}\right\rangle$

Why permutations in EC?

- Represent solutions of important COPs

Ex: $\pi=\left\langle\begin{array}{l}12345678 \\ 47231586\end{array}\right\rangle$

- Orderings of items: $\pi(i)$ is the item in position i Ex: item 4 is in position 1, item 7 is in position $2, \ldots$ Useful in the Permutation Flowshop Scheduling Problem (PFSP)

Why permutations in EC?

- Represent solutions of important COPs

Ex: $\pi=\left\langle\begin{array}{l}12345678 \\ 47231586\end{array}\right\rangle$

- Orderings of items: $\pi(i)$ is the item in position i Ex: item 4 is in position 1, item 7 is in position $2, \ldots$ Useful in the Permutation Flowshop Scheduling Problem (PFSP)
- Rankings on items: $\pi(i)$ is the position of the item i Ex: item 1 is in position 4, item 2 is in position $7, \ldots$ Useful in the Linear Ordering Problem (LOP)

Why permutations in EC?

- Represent solutions of important COPs

Ex: $\pi=\left\langle\begin{array}{l}12345678 \\ 47231586\end{array}\right\rangle$

- Orderings of items: $\pi(i)$ is the item in position i Ex: item 4 is in position 1, item 7 is in position $2, \ldots$ Useful in the Permutation Flowshop Scheduling Problem (PFSP)
- Rankings on items: $\pi(i)$ is the position of the item i Ex: item 1 is in position 4, item 2 is in position $7, \ldots$ Useful in the Linear Ordering Problem (LOP)
- Bijective functions: the item $\pi(i)$ is assigned to the item i Ex: item 4 is assigned to item 1 , item 7 is assigned to item $2, \ldots$ Useful in the Quadratic Assignment Problem (QAP)

Why permutations in EC?

- Represent solutions of important COPs

$$
\text { Ex: } \pi=\left\langle\begin{array}{l}
12345678 \\
47231586
\end{array}\right\rangle
$$

- Orderings of items: $\pi(i)$ is the item in position i Ex: item 4 is in position 1, item 7 is in position $2, \ldots$ Useful in the Permutation Flowshop Scheduling Problem (PFSP)
- Rankings on items: $\pi(i)$ is the position of the item i

Ex: item 1 is in position 4, item 2 is in position $7, \ldots$ Useful in the Linear Ordering Problem (LOP)

- Bijective functions: the item $\pi(i)$ is assigned to the item i Ex: item 4 is assigned to item 1, item 7 is assigned to item $2, \ldots$ Useful in the Quadratic Assignment Problem (QAP)
- Routing among items: item $\pi(i)$ is connected to item $\pi(i+1)$ Ex: item 4 is connected to item 7, item 7 is connected to item 2, ... Useful in the Traveling Salesman Problem (TSP)

Neighborhoods in the permutation space

- They allow to build-up local search based meta-heuristics

Neighborhoods in the permutation space

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items Ex: $\langle 53241\rangle$ and $\langle 53421\rangle$ are neighbors It modifies the relative order of only two items

Neighborhoods in the permutation space

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items Ex: $\langle 53241\rangle$ and $\langle 53421\rangle$ are neighbors It modifies the relative order of only two items
- EXC: swaps between generic items

Ex: $\langle 53241\rangle$ and $\langle 13245\rangle$ are neighbors It modifies the absolute positions of only two items

Neighborhoods in the permutation space

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items Ex: $\langle 53241\rangle$ and $\langle 53421\rangle$ are neighbors It modifies the relative order of only two items
- EXC: swaps between generic items Ex: $\langle 53241\rangle$ and $\langle 13245\rangle$ are neighbors It modifies the absolute positions of only two items
- INS: insertions or shifts of an item Ex: $\langle 53241\rangle$ and $\langle 52431\rangle$ are neighbors It modifies the relative order of a bunch of items but with respect to only one item

Neighborhoods in the permutation space

- They allow to build-up local search based meta-heuristics
- ASW: swaps between adjacent items Ex: $\langle 53241\rangle$ and $\langle 53421\rangle$ are neighbors It modifies the relative order of only two items
- EXC: swaps between generic items Ex: $\langle 53241\rangle$ and $\langle 13245\rangle$ are neighbors It modifies the absolute positions of only two items
- INS: insertions or shifts of an item

Ex: $\langle 53241\rangle$ and $\langle 52431\rangle$ are neighbors It modifies the relative order of a bunch of items but with respect to only one item

- REV: reversals of a chunk of items Ex: $\langle 53241\rangle$ and $\langle 54231\rangle$ are neighbors It modifies only two connections

Permutation space under the ASW neighborhood

Group Theory: permutations form a group

- Composition of permutations
$\tau=\pi \circ \rho$ is defined as $\tau(i)=\pi(\rho(i))$ for $i=1, \ldots, n$
Ex: $\left\langle\begin{array}{l}1234 \\ 4213\end{array}\right\rangle \circ\left\langle\begin{array}{l}1234 \\ 2143\end{array}\right\rangle=\left\langle\begin{array}{l}1234 \\ 2431\end{array}\right\rangle$

Group Theory: permutations form a group

- Composition of permutations
$\tau=\pi \circ \rho$ is defined as $\tau(i)=\pi(\rho(i))$ for $i=1, \ldots, n$
Ex: $\left\langle\begin{array}{l}1234 \\ 4213\end{array}\right\rangle \circ\left\langle\begin{array}{l}1234 \\ 2143\end{array}\right\rangle=\left\langle\begin{array}{l}1234 \\ 2431\end{array}\right\rangle$
- Identity permutation $e=\langle 12 \ldots n\rangle$ is the neutral element

Group Theory: permutations form a group

- Composition of permutations
$\tau=\pi \circ \rho$ is defined as $\tau(i)=\pi(\rho(i))$ for $i=1, \ldots, n$
Ex: $\left\langle\begin{array}{l}1234 \\ 4213\end{array}\right\rangle \circ\left\langle\begin{array}{l}1234 \\ 2143\end{array}\right\rangle=\left\langle\begin{array}{l}1234 \\ 2431\end{array}\right\rangle$
- Identity permutation $e=\langle 12 \ldots n\rangle$ is the neutral element
- Inverse permutation: there exists a unique π^{-1} s.t. $\pi \circ \pi^{-1}=e$

Ex: $\pi=\left\langle\begin{array}{l}1234 \\ 4213\end{array}\right\rangle \rightarrow\left\langle\begin{array}{l}4213 \\ 1234\end{array}\right\rangle \rightarrow\left\langle\begin{array}{l}1234 \\ 3241\end{array}\right\rangle \rightarrow\left\langle\begin{array}{l}1234 \\ 3241\end{array}\right\rangle=\pi^{-1}$

Group Theory: permutations form a group

- Composition of permutations
$\tau=\pi \circ \rho$ is defined as $\tau(i)=\pi(\rho(i))$ for $i=1, \ldots, n$
Ex: $\left\langle\begin{array}{l}1234 \\ 4213\end{array}\right\rangle \circ\left\langle\begin{array}{l}1234 \\ 2143\end{array}\right\rangle=\left\langle\begin{array}{l}1234 \\ 2431\end{array}\right\rangle$
- Identity permutation $e=\langle 12 \ldots n\rangle$ is the neutral element
- Inverse permutation: there exists a unique π^{-1} s.t. $\pi \circ \pi^{-1}=e$

Ex: $\pi=\left\langle\begin{array}{l}1234 \\ 4213\end{array}\right\rangle \rightarrow\left\langle\begin{array}{l}4213 \\ 1234\end{array}\right\rangle \rightarrow\left\langle\begin{array}{l}1234 \\ 3241\end{array}\right\rangle \rightarrow\left\langle\begin{array}{l}1234 \\ 3241\end{array}\right\rangle=\pi^{-1}$

- The Symmetric group of n items is denoted by \mathcal{S}_{n}

How neighborhoods and algebra relate to each other?

- Under ASW, all the neighbors of $\langle 2413\rangle$ are:
- $\langle 4213\rangle$
- $\langle 2143\rangle$
- $\langle 2431\rangle$

How neighborhoods and algebra relate to each other?

- Under ASW, all the neighbors of $\langle 2413\rangle$ are:
- $\langle 4213\rangle$
- $\langle 2143\rangle$
- $\langle 2431\rangle$
- They can be algebraically obtained by:
- $\langle 2413\rangle \circ\langle 2134\rangle=\langle 4213\rangle$
- $\langle 2413\rangle \circ\langle 1324\rangle=\langle 2143\rangle$
- $\langle 2413\rangle \circ\langle 1243\rangle=\langle 2431\rangle$

How neighborhoods and algebra relate to each other?

- Under ASW, all the neighbors of $\langle 2413\rangle$ are:
- $\langle 4213\rangle$
- $\langle 2143\rangle$
- $\langle 2431\rangle$
- They can be algebraically obtained by:
- $\langle 2413\rangle \circ\langle 2134\rangle=\langle 4213\rangle$
- $\langle 2413\rangle \circ\langle 1324\rangle=\langle 2143\rangle$
- $\langle 2413\rangle \circ\langle 1243\rangle=\langle 2431\rangle$
- Let $\sigma_{1}=\langle 2134\rangle, \sigma_{2}=\langle 1324\rangle, \sigma_{3}=\langle 1243\rangle$ and $\mathrm{ASW}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ then:
- $A S W \subset \mathcal{S}_{n}$
- ASW generates all the permutations in \mathcal{S}_{n}
- any permutation can be factorized as a product of generators in ASW
- \mathcal{S}_{n} is a finitely generated group

Cayley graph for the ASW generating set

All the generating sets

- $\operatorname{ASW}=\left\{\sigma_{i}: 1 \leq i<n\right\}$, where σ_{i} is the identity permutation with the items i and $i+1$ exchanged.
Ex: $\langle 13245\rangle$ swaps 2 nd and 3rd items Distance induced: Kendall's- τ distance

All the generating sets

- $\operatorname{ASW}=\left\{\sigma_{i}: 1 \leq i<n\right\}$, where σ_{i} is the identity permutation with the items i and $i+1$ exchanged.
Ex: $\langle 13245\rangle$ swaps 2nd and 3rd items
Distance induced: Kendall's- τ distance
- $\operatorname{EXC}=\left\{\epsilon_{i j}: 1 \leq i<j \leq n\right\}$, where $\epsilon_{i j}$ is the identity permutation with the items i and j exchanged.
Ex: $\langle 14325\rangle$ swaps 2nd and 4th items
Distance induced: Cayley distance

All the generating sets

- $\operatorname{ASW}=\left\{\sigma_{i}: 1 \leq i<n\right\}$, where σ_{i} is the identity permutation with the items i and $i+1$ exchanged.
Ex: $\langle 13245\rangle$ swaps 2 nd and 3rd items
Distance induced: Kendall's- τ distance
- $\operatorname{EXC}=\left\{\epsilon_{i j}: 1 \leq i<j \leq n\right\}$, where $\epsilon_{i j}$ is the identity permutation with the items i and j exchanged.
Ex: $\langle 14325\rangle$ swaps 2nd and 4th items
Distance induced: Cayley distance
- INS $=\left\{\iota_{i j}: 1 \leq i, j \leq n\right\}$, where $\iota_{i j}$ is the identity permutation where the item i is shifted to position j.
Ex: $\langle 14235\rangle$ shifts 4 th item to 2 nd position
Distance induced: Ulam distance

All the generating sets

- $\operatorname{ASW}=\left\{\sigma_{i}: 1 \leq i<n\right\}$, where σ_{i} is the identity permutation with the items i and $i+1$ exchanged.
Ex: $\langle 13245\rangle$ swaps 2nd and 3rd items
Distance induced: Kendall's- τ distance
- $\operatorname{EXC}=\left\{\epsilon_{i j}: 1 \leq i<j \leq n\right\}$, where $\epsilon_{i j}$ is the identity permutation with the items i and j exchanged.
Ex: $\langle 14325\rangle$ swaps 2nd and 4th items
Distance induced: Cayley distance
- INS $=\left\{\iota_{i j}: 1 \leq i, j \leq n\right\}$, where $\iota_{i j}$ is the identity permutation where the item i is shifted to position j.
Ex: $\langle 14235\rangle$ shifts 4 th item to 2 nd position
Distance induced: Ulam distance
- $\operatorname{REV}=\left\{\rho_{i j}: 1 \leq i<j \leq n\right\}$, where $\rho_{i j}$ is the identity permutation where the chunk between positions i and j is reversed.
Ex: $\langle 14325\rangle$ reverses the chunk from 2nd to 4th positions
Distance induced: reversals' distance

Relations among the generating sets

- ASW is a proper subset of EXC, INS, REV
- INS $\cap \mathrm{EXC}=\mathrm{ASW}$
- INS \cap REV $=$ ASW
- $\operatorname{EXC} \cap \mathrm{REV}=\mathrm{ASW} \cup\left\{\epsilon_{i j} \in \operatorname{EXC}:|i-j|=2\right\}$
- $\operatorname{INS}=$ INS $_{\mathrm{b}_{\mathrm{w}}} \cup$ INS $_{\mathrm{f}}{ }_{\mathrm{w}}$
- $\mathrm{INS}_{\mathrm{bw}} \cap \mathrm{INS}_{\mathrm{fw}}=\mathrm{ASW}$

Relations among the generating sets

- ASW is a proper subset of EXC, INS, REV
- INS \cap EXC $=$ ASW
- INS \cap REV $=$ ASW
- $\operatorname{EXC} \cap \mathrm{REV}=\mathrm{ASW} \cup\left\{\epsilon_{i j} \in \mathrm{EXC}:|i-j|=2\right\}$
- $\operatorname{INS}=$ INS $_{\mathrm{b}_{\mathrm{w}}} \cup$ INS $_{\mathrm{f} w}$
- $\mathrm{INS}_{\mathrm{bw}} \cap \mathrm{INS}_{\mathrm{fw}}=\mathrm{ASW}$
- Useful for:
- Designing Variable Neighborhood Search algorithms
- Designing perturbation step in Iterative Local Search algorithms
- A priori smoothness estimation in Fitness Landscape Analysis

Properties of the generating sets

- Cardinality $=$ number of neighbors
- Diameter of the Cayley graph (search space)
- Number of longest permutations (whose shortest-path distance from the identity equals the diameter)
- Abstract convexity: any permutation resides in a shortest path between the identity and a longest permutation?
- Lattice structure: meet and join are well defined?

GSet	Card.	Diameter	\#Longest Perm.	Abst.Convex	Lattice
ASW	$n-1$	$\binom{n}{2}$	1	Yes	Yes
EXC	$\binom{n}{2}$	$n-1$	$(n-1)!$	Yes	No
INS	$(n-1)^{2}$	$n-1$	1	No	No
REV	$\binom{n}{2}$	$\leq n-1$	$?$	$?$	$?$

Visual intuitions about space structures

From simple search moves to composite search moves

- Simple search move $=$ a single generator $=$ = a special permutation
- Composite search move $=$ a sequence of simple search moves $=$ a sequence of generators $=$ $=$ a generic permutation (since a generating set generates the group)
- Difference permutation $=$ composition of the generators in a shortest path

From simple search moves to composite search moves

- Simple search move $=$ a single generator $=$ = a special permutation
- Composite search move $=$ a sequence of simple search moves $=$ a sequence of generators $=$ $=$ a generic permutation (since a generating set generates the group)
- Difference permutation $=$ composition of the generators in a shortest path
- Minimal factorization of the difference permutation contains generators in a shortest path

From simple search moves to composite search moves

- Simple search move $=$ a single generator $=$ = a special permutation
- Composite search move $=$ a sequence of simple search moves $=$ a sequence of generators $=$ $=$ a generic permutation (since a generating set generates the group)
- Difference permutation $=$ composition of the generators in a shortest path
- Minimal factorization of the difference permutation contains generators in a shortest path
- Distance $=$ length of a shortest path $=$ length of a minimal factorization of the difference permutation

From simple search moves to composite search moves

- Simple search move $=$ a single generator $=$ = a special permutation
- Composite search move $=$ a sequence of simple search moves $=$ a sequence of generators $=$ $=$ a generic permutation (since a generating set generates the group)
- Difference permutation $=$ composition of the generators in a shortest path
- Minimal factorization of the difference permutation contains generators in a shortest path
- Distance $=$ length of a shortest path $=$ length of a minimal factorization of the difference permutation
- Single representation for solutions and differences
- Strong analogy with points and vectors in the Euclidean space

Equations of Motion in Continuous EAs

Can be consistently redefined for discrete spaces?

Differential Evolution (DE)

$$
u \leftarrow x_{0}+F \cdot\left(x_{1}-x_{2}\right)
$$

where: $\boldsymbol{u}, \boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}} \in \mathbb{R}^{n}$, while $F \in \mathbb{R}^{+}$

Particle Swarm Optimization (PSO)

$$
\begin{gathered}
v \leftarrow w \cdot \boldsymbol{v}+c_{1} r_{1} \cdot(\boldsymbol{p}-\boldsymbol{x})+c_{2} r_{2} \cdot(\boldsymbol{g}-\boldsymbol{x}) \\
\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}
\end{gathered}
$$

where: $\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{p}, \boldsymbol{g} \in \mathbb{R}^{n}$, while $w, c_{1}, c_{2}, r_{1}, r_{2} \in \mathbb{R}^{+}$

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE

$$
u \leftarrow x_{0}+F \cdot\left(x_{1}-x_{2}\right)
$$

Algebraic DE

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE

$$
u \leftarrow x_{0}+F \cdot\left(x_{1}-x_{2}\right)
$$

Algebraic DE

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE

$$
\boldsymbol{u} \leftarrow \boldsymbol{x}_{0}+\boldsymbol{F} \cdot\left(x_{1}-x_{2}\right)
$$

Algebraic DE

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE

$\boldsymbol{u} \leftarrow \boldsymbol{x}_{\mathbf{0}}+\boldsymbol{F} \cdot\left(\boldsymbol{x}_{1}-x_{2}\right) \quad F=2 / 3$

Algebraic DE

Continuous DE vs Algebraic DE

Differential mutation in action

Continuous DE

$\boldsymbol{u} \leftarrow \boldsymbol{x}_{0}+\boldsymbol{F} \cdot\left(x_{1}-x_{2}\right) \quad F=2 / 3$

Algebraic DE

Algebraic Differential Evolution for Permutations

Classical continuous DE

The key operation of DE is the differential mutation which generates a mutant $u \in \mathbb{R}^{n}$ according to

$$
u \leftarrow x_{0}+F \cdot\left(x_{1}-x_{2}\right)
$$

where $x_{0}, x_{1}, x_{2} \in \mathbb{R}^{n}$ are three distinct population individuals and $F>0$ is the scale factor parameter of DE.

Algebraic DE for Permutations (ADEP)

The key operation of ADEP is the differential mutation which generates a mutant $v \in \mathcal{S}_{n}$ according to

$$
v \leftarrow \pi_{0} \oplus F \odot\left(\pi_{1} \ominus \pi_{2}\right)
$$

where $\pi_{0}, \pi_{1}, \pi_{2} \in \mathcal{S}_{n}$ are three distinct population individuals and $F>0$ is the scale factor paramter of ADEP.

Algebraic Framework for Permutations

Discrete operators for equations of motion in EAs

Let:

- $\operatorname{ASW}_{n}=\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$ be the "adjacent swap" generators of \mathcal{S}_{n}
- $\pi, \rho \in \mathcal{S}_{n}$
- $\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}, \ldots, \sigma_{i_{l}}\right\rangle$ be a minimal factorization of π whose length is $/$
- $a \in[0,1]$

Discrete operators are defined as follows:

- $\pi \oplus \rho:=\pi \circ \rho$
- $\pi \ominus \rho:=\rho^{-1} \circ \pi$
- $a \odot \pi:=\sigma_{i_{1}} \circ \cdots \circ \sigma_{i_{k}}$, with $k=\lceil a \cdot l\rceil$

Discrete sum and difference

- Algebraically, they do not rely on the chosen generating set
- They are deterministic
- They are consistent to each other:

$$
\pi=\rho \oplus(\pi \ominus \rho)=\rho \circ\left(\rho^{-1} \circ \pi\right)=\pi
$$

Discrete scalar multiplication

- Minimal factorization is not unique

Discrete scalar multiplication

- Minimal factorization is not unique
- Choose one at random \Longrightarrow stochastic operator

Discrete scalar multiplication

- Minimal factorization is not unique
- Choose one at random \Longrightarrow stochastic operator
- A stochastic factorization algorithm is required for every generating set

Discrete scalar multiplication

- Minimal factorization is not unique
- Choose one at random \Longrightarrow stochastic operator
- A stochastic factorization algorithm is required for every generating set
- COMMON FACTORIZATION SCHEME Identify a measurable property of a permutation such that:

Then:

Discrete scalar multiplication

- Minimal factorization is not unique
- Choose one at random \Longrightarrow stochastic operator
- A stochastic factorization algorithm is required for every generating set
- COMMON FACTORIZATION SCHEME Identify a measurable property of a permutation such that:
- the identity permutation has maximum/minimum value;
- the value of such property can be increased/decreased by only using simple moves corresponding to the chosen generating set.

Then:

Discrete scalar multiplication

- Minimal factorization is not unique
- Choose one at random \Longrightarrow stochastic operator
- A stochastic factorization algorithm is required for every generating set
- COMMON FACTORIZATION SCHEME Identify a measurable property of a permutation such that:
- the identity permutation has maximum/minimum value;
- the value of such property can be increased/decreased by only using simple moves corresponding to the chosen generating set.
Then:
- sort the input permutation by only using the chosen moves/generators;
- keep track of the sequence of selected generators;
- reverse such sequence and invert every generator;

Stochastic factorization algorithms

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps.
Complexity: $\Theta\left(n^{2}\right)$, Optimal: yes

Stochastic factorization algorithms

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps.
Complexity: $\Theta\left(n^{2}\right)$, Optimal: yes
- (EXC) RandSS: randomized variant of selection-sort Monotonically increases the number of cycles of a permutation by only applying exchanges.
Complexity: $\Theta(n)$, Optimal: yes

Stochastic factorization algorithms

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps.
Complexity: $\Theta\left(n^{2}\right)$, Optimal: yes
- (EXC) RandSS: randomized variant of selection-sort Monotonically increases the number of cycles of a permutation by only applying exchanges.
Complexity: $\Theta(n)$, Optimal: yes
- (INS) RandIS: randomized variant of insertion-sort Monotonically increases the length of a longest increasing subsequence by only applying insertions.
Complexity: $\Theta\left(n^{2}\right)$, Optimal: yes

Stochastic factorization algorithms

- (ASW) RandBS: randomized variant of bubble-sort Monotonically reduces the inversion count of a permutation by only applying adjacent swaps.
Complexity: $\Theta\left(n^{2}\right)$, Optimal: yes
- (EXC) RandSS: randomized variant of selection-sort Monotonically increases the number of cycles of a permutation by only applying exchanges.
Complexity: $\Theta(n)$, Optimal: yes
- (INS) RandIS: randomized variant of insertion-sort Monotonically increases the length of a longest increasing subsequence by only applying insertions.
Complexity: $\Theta\left(n^{2}\right)$, Optimal: yes
- (REV) RandRS: randomized variant of the Kececioglu-Sankoff algorithm Reduces the number of breakpoints by only applying reversals. Complexity: $\Theta\left(n^{2}\right)$, Optimal: no

How much random we are?

- All the stochastic factorization algorithms perform a random walk in the sub-graph formed by the union of all the shortest paths from the identity to the permutation to factorize.
- Cannot increase entropy (over the set of minimal factorizations) without increasing computational complexity.

Multiplication by any positive scalar?

- Let $\pi, \rho \in \mathcal{S}_{n}$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π

Multiplication by any positive scalar?

- Let $\pi, \rho \in \mathcal{S}_{n}$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho=a \odot \pi$ has to satisfy:
(C1) $|\rho|=\lceil a \cdot|\pi|\rceil$
(C2) if $a \in[0,1]$ then $\rho \sqsubseteq \pi$
(C3) if $a \geq 1$ then $\pi \sqsubseteq \rho$

Multiplication by any positive scalar?

- Let $\pi, \rho \in \mathcal{S}_{n}$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho=a \odot \pi$ has to satisfy:
(C1) $|\rho|=\lceil a \cdot|\pi|\rceil$
(C2) if $a \in[0,1]$ then $\rho \sqsubseteq \pi$
(C3) if $a \geq 1$ then $\pi \sqsubseteq \rho$
- Previous definition $(a \in[0,1])$ satisfies (C1) and (C2)

Multiplication by any positive scalar?

- Let $\pi, \rho \in \mathcal{S}_{n}$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho=a \odot \pi$ has to satisfy:
(C1) $|\rho|=\lceil a \cdot|\pi|\rceil$
(C2) if $a \in[0,1]$ then $\rho \sqsubseteq \pi$
(C3) if $a \geq 1$ then $\pi \sqsubseteq \rho$
- Previous definition ($a \in[0,1]$) satisfies (C1) and (C2)
- In line with the geometric interpretation of the Euclidean space (use L2 norm and linear dependency among vectors)

Multiplication by any positive scalar?

- Let $\pi, \rho \in \mathcal{S}_{n}$ and $a \geq 0$
- Let $|\pi|$ be the length of a minimal factorization of π
- Let $\rho \sqsubseteq \pi$ iff a minimal factorization of ρ is a prefix of a minimal factorization of π
- $\rho=a \odot \pi$ has to satisfy:
(C1) $|\rho|=\lceil a \cdot|\pi|\rceil$
(C2) if $a \in[0,1]$ then $\rho \sqsubseteq \pi$
(C3) if $a \geq 1$ then $\pi \sqsubseteq \rho$
- Previous definition ($a \in[0,1]$) satisfies (C1) and (C2)
- In line with the geometric interpretation of the Euclidean space (use L2 norm and linear dependency among vectors)
- Computation when $a \geq 1$: take a shortest path of the inputted permutation and extend it in such way that the extended path is a shortest path in its own, thus the endpoint permutation is the result.

Issues when $a>1$

- Issue1: $|a \odot \pi|$ may be larger than the diameter
- Motivation1: Search space is finite
- Solution1: Truncate if diameter is exceeded

Issues when $a>1$

- Issue1: $|a \odot \pi|$ may be larger than the diameter
- Motivation1: Search space is finite
- Solution1: Truncate if diameter is exceeded
- Issue2: a $\odot \pi$ may not exists for any $\pi \in \mathcal{S}_{n}$ when INS is used (because of the non-convexity)
- Motivation2: longest increasing subsequence cannot always be reduced by shifting away an item
- Solution2: reverse, consider the longest decreasing subsequence, reverse again \Longrightarrow it is like using a surrogate weight which is in (non-strict) monotonic relation with the INS weight

Is it only intuition?

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?

Is it only intuition?

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:

Is it only intuition?

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:
- Bit-strings

Operator: xor
Generators: bit-strings with only one 1-bit

Is it only intuition?

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:
- Bit-strings

Operator: xor
Generators: bit-strings with only one 1-bit

- Integer vectors

Operator: +
Generators: vectors with all 0 s except one ± 1 entry

Is it only intuition?

- Lot of continuous EAs behaviors can be replicated in permutation space Is this justified only by intuition?
- The algebraic framework works with any finitely generated group:
- Bit-strings

Operator: xor
Generators: bit-strings with only one 1-bit

- Integer vectors

Operator: +
Generators: vectors with all 0 s except one ± 1 entry

- Enumerable subset of real vectors whose entries are "multiples" of a chosen constant $\hbar>0$
Operator: +
Generators: vectors with all 0s except one $\pm \hbar$ entry
Pushing $\hbar \rightarrow 0$ tends to replicate the continuous behaviour in discretized equations of motion

Properties of \oplus, \ominus, \odot

- Properties which are satisfied:
(X is the discrete set of solutions, e.g. permutations)
(i) \oplus is associative;
(ii) \oplus is commutative iff \circ is commutative;
(iii) e is the neutral element for \oplus;
(iv) $x \oplus x^{-1}=x^{-1} \oplus x=e$ for each $x \in X$;
(v) $1 \odot x=x$ for each $x \in X$;
(vi) $a \odot(b \odot x)=(a b) \odot x$ for each $x \in X$ and $a, b \geq 0$;
(vii) $0 \odot x=e$ for each $x \in X$;
(viii) $x \oplus(y \ominus x)=y$ for each $x, y \in X$.
- Distributive properties are missing

$$
w \odot \nu \neq[(1+w) \odot \nu] \ominus \nu
$$

where $w \geq 0$ and $\nu \in \mathcal{S}_{n}$.
Caution on PSO inertial term

Inertia-preserving Algebraic PSO

- Replace the inertial term $\theta^{(I)}=w \odot \nu$ with $\theta^{(I *)}=[(1+w) \odot \nu] \ominus \nu$

$$
\text { Assuming: } w=\frac{1}{3}, c_{1}=c_{2}=0
$$

Algebraic Crossover

- Continuous arithmetic crossover are convex combinations:
- $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are the parents
- $a, b \geq 0$ s.t. $a+b=1$ are crossover parameters
- $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}$ is the offspring

Algebraic Crossover

- Continuous arithmetic crossover are convex combinations:
- $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are the parents
- $a, b \geq 0$ s.t. $a+b=1$ are crossover parameters
- $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}$ is the offspring
- Trick: $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}=\boldsymbol{y}+a(\boldsymbol{x}-\boldsymbol{y})=\boldsymbol{x}+b(\boldsymbol{y}-\boldsymbol{x})$

Algebraic Crossover

- Continuous arithmetic crossover are convex combinations:
- $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are the parents
- $a, b \geq 0$ s.t. $a+b=1$ are crossover parameters
- $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}$ is the offspring
- Trick: $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}=\boldsymbol{y}+a(\boldsymbol{x}-\boldsymbol{y})=\boldsymbol{x}+b(\boldsymbol{y}-\boldsymbol{x})$
- Discretization $\left(x, y, z \in \mathcal{S}_{n}\right)$:

$$
z=\left\{\begin{array}{l}
y \oplus a \odot(x \ominus y) \quad \text { with prob. } 0.5 \\
x \oplus b \odot(y \ominus x) \quad \text { with prob. } 0.5
\end{array}\right.
$$

Algebraic Crossover

- Continuous arithmetic crossover are convex combinations:
- $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are the parents
- $a, b \geq 0$ s.t. $a+b=1$ are crossover parameters
- $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}$ is the offspring
- Trick: $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}=\boldsymbol{y}+a(\boldsymbol{x}-\boldsymbol{y})=\boldsymbol{x}+b(\boldsymbol{y}-\boldsymbol{x})$
- Discretization $\left(x, y, z \in \mathcal{S}_{n}\right)$:

$$
z= \begin{cases}y \oplus a \odot(x \ominus y) & \text { with prob. } 0.5 \\ x \oplus b \odot(y \ominus x) & \text { with prob. } 0.5\end{cases}
$$

- Both expressions have the same support

Algebraic Crossover

- Continuous arithmetic crossover are convex combinations:
- $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are the parents
- $a, b \geq 0$ s.t. $a+b=1$ are crossover parameters
- $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}$ is the offspring
- Trick: $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}=\boldsymbol{y}+a(\boldsymbol{x}-\boldsymbol{y})=\boldsymbol{x}+b(\boldsymbol{y}-\boldsymbol{x})$
- Discretization $\left(x, y, z \in \mathcal{S}_{n}\right)$:

$$
z=\left\{\begin{array}{l}
y \oplus a \odot(x \ominus y) \quad \text { with prob. } 0.5 \\
x \oplus b \odot(y \ominus x) \quad \text { with prob. } 0.5
\end{array}\right.
$$

- Both expressions have the same support
- The offspring lies in a shortest path between the parents (it is a geometric crossover according to "Moraglio et al.")

Algebraic Crossover

- Continuous arithmetic crossover are convex combinations:
- $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ are the parents
- $a, b \geq 0$ s.t. $a+b=1$ are crossover parameters
- $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}$ is the offspring
- Trick: $\boldsymbol{z}=a \boldsymbol{x}+b \boldsymbol{y}=\boldsymbol{y}+a(\boldsymbol{x}-\boldsymbol{y})=\boldsymbol{x}+b(\boldsymbol{y}-\boldsymbol{x})$
- Discretization $\left(x, y, z \in \mathcal{S}_{n}\right)$:

$$
z=\left\{\begin{array}{l}
y \oplus a \odot(x \ominus y) \quad \text { with prob. } 0.5 \\
x \oplus b \odot(y \ominus x) \quad \text { with prob. } 0.5
\end{array}\right.
$$

- Both expressions have the same support
- The offspring lies in a shortest path between the parents (it is a geometric crossover according to "Moraglio et al.")
- If greedy strategies are employed \Longrightarrow Path Relinking

AX for ASW

Radcliffe properties for precedences

- $[x, y]$ contains the permutations in all the shortest paths between $x, y \in \mathcal{S}_{n}$
- $z \in[x, y]$ is the offspring of the AX

AX for ASW

Radcliffe properties for precedences

- $[x, y]$ contains the permutations in all the shortest paths between $x, y \in \mathcal{S}_{n}$
- $z \in[x, y]$ is the offspring of the $A X$
- Any permutation is a consistent set of $\binom{n}{2}$ pairwise precedences of items

AX for ASW

Radcliffe properties for precedences

- $[x, y]$ contains the permutations in all the shortest paths between $x, y \in \mathcal{S}_{n}$
- $z \in[x, y]$ is the offspring of the AX
- Any permutation is a consistent set of $\binom{n}{2}$ pairwise precedences of items
- $A X$ has the Radcliffe properties:
- a precedence in z is a precedence in x or y
(AX transmits precedences)
- common precedences of x and y are precedences in z ($A X$ is respectful)
- $[x, y]$ contains permutations formed by all the consistent combinations of the precedences in x and y
($\mathbf{A X}$ is assorting if the scalar parameter is chosen randomly)

Further possibilities

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)

Further possibilities

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)

Further possibilities

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- Product groups: model structured representations like e.g. DAGs (Baioletti et al., 2018b)

Further possibilities

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- Product groups: model structured representations like e.g. DAGs (Baioletti et al., 2018b)
- Group actions: extend the algebraic framework to non-group spaces like e.g. permutations with repetition (Baioletti et al., 2020a)

Further possibilities

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- Product groups: model structured representations like e.g. DAGs (Baioletti et al., 2018b)
- Group actions: extend the algebraic framework to non-group spaces like e.g. permutations with repetition (Baioletti et al., 2020a)
- Permutation as a set of precedences: iteratively construct a permutation precedence by precedence (Baioletti et al., 2017; Santucci \& Ceberio, 2020)

Further possibilities

- Lattice structure of ASW: extend AX codomain (Baioletti et al., 2018a)
- Variable Neighborhoods: use different neighborhoods for the different individuals in the population (Baioletti et al., 2020b)
- Product groups: model structured representations like e.g. DAGs (Baioletti et al., 2018b)
- Group actions: extend the algebraic framework to non-group spaces like e.g. permutations with repetition (Baioletti et al., 2020a)
- Permutation as a set of precedences: iteratively construct a permutation precedence by precedence (Baioletti et al., 2017; Santucci \& Ceberio, 2020)
- Cycle structure: interesting for TSP and VRP (future work)

... but is it working?

- ADE and APSO significantly outperform the naive DE and PSO equipped with the popular random-key decoder on a variety of benchmarks (Santucci, Baioletti, \& Milani, 2019; Santucci et al., 2020)
- ADE obtained:
- state-of-the-art results on the PFSP, LOPCC and MDTWNPP (Baioletti et al., 2020b; Santucci et al., 2016; Santucci, Baioletti, Di Bari, et al., 2019)
- competitive results on the LOP, TSP and SRLFP (Baioletti et al., 2015; Baioletti, Milani, Santucci, \& Bartoccini, 2019; Di Bari et al., 2020)
- peak results among EAs for Bayesian networks learning (Baioletti et al., 2018b)
- Algebraic crossovers are competitive with classical permutation crossover operators (Baioletti et al., 2018a)
- Representation as set of precedences allowed to obtain state-of-the-art results on the LOP (Santucci \& Ceberio, 2020)
- Identify preferred pairs of items to exchange in order to exit basins of attraction of QAP instances (Baioletti, Milani, Santucci, \& Tomassini, 2019)

Conclusions and Open Questions

- The rich algebraic structure of permutations can be fruitfully exploited for:
- Study structure and properties of the search space
- Designing algorithms and operators in EC
- Study the search behaviour of an algorithm

Conclusions and Open Questions

- The rich algebraic structure of permutations can be fruitfully exploited for:
- Study structure and properties of the search space
- Designing algorithms and operators in EC
- Study the search behaviour of an algorithm
- Open questions:
- Can algebraic properties be used to derive expected runtime analyses?
- Can algebraic properties be used to build a tunable instance generator for the permutation space?
- Is a review article about EC for permutation problems useful to the community? :-)

Bibliography I

Baioletti, M., Milani, A., \& Santucci, V. (2018a). Algebraic crossover operators for permutations. In Proc. of IEEE CEC 2018.
Baioletti, M., Milani, A., \& Santucci, V. (2015). Linear ordering optimization with a combinatorial differential evolution. In Proc. of 2015 IEEE SMC 2015.
Baioletti, M., Milani, A., \& Santucci, V. (2017). A new precedence-based ant colony optimization for permutation problems. In Proc. of SEAL 2017.
Baioletti, M., Milani, A., \& Santucci, V. (2018b). Learning bayesian networks with algebraic differential evolution. In Proc. of PPSN 2018.
Baioletti, M., Milani, A., \& Santucci, V. (2020a). An algebraic approach for the search space of permutations with repetition. In Proc. of EVOCOP 2020.
Baioletti, M., Milani, A., \& Santucci, V. (2020b). Variable neighborhood algebraic differential evolution: An application to the linear ordering problem with cumulative costs. Information Sciences, 507, 37-52.
Baioletti, M., Milani, A., Santucci, V., \& Bartoccini, U. (2019). An experimental comparison of algebraic differential evolution using different generating sets. In Proc. of the GECCO 2019.
Baioletti, M., Milani, A., Santucci, V., \& Tomassini, M. (2019). Search moves in the local optima networks of permutation spaces: The QAP case. In Proc. of the GECCO 2019.

Bibliography II

Di Bari, G., Baioletti, M., \& Santucci, V. (2020). An experimental evaluation of the algebraic differential evolution algorithm on the single row facility layout problem. In Proc. of the GECCO 2020.
Santucci, V., Baioletti, M., \& Milani, A. (2016). Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. IEEE Transactions on Evolutionary Computation, 20(5), 682-694.
Santucci, V., Baioletti, M., \& Milani, A. (2019). Tackling permutation-based optimization problems with an algebraic particle swarm optimization algorithm. Fundamenta Informaticae, 167(1-2), 133-158.
Santucci, V., Baioletti, M., Di Bari, G., \& Milani, A. (2019). A binary algebraic differential evolution for the multidimensional two-way number partitioning problem. In Proc. of EvoCOP 2019.
Santucci, V., Baioletti, M., \& Milani, A. (2020). An algebraic framework for swarm and evolutionary algorithms in combinatorial optimization. Swarm and Evolutionary Computation, 55.
Santucci, V., \& Ceberio, J. (2020). Using pairwise precedences for solving the linear ordering problem. Applied Soft Computing, 87.

Thanks for the attention!!!

valentino.santucci@unistrapg.it

