On Minimal Weighted Clones
(or On Maximal Valued Constraint Languages)

Páidí Creed
Queen Mary, University of London
Joint work with Standa Živný (Oxford)

17th International Conference on Principles and Practices of Constraint Programming
Outline

1 Motivation

2 Related Work

3 A Galois connection for the VCSP

4 Minimal weighted clones on a Boolean domain

5 Conclusions
Outline

1 Motivation

2 Related Work

3 A Galois connection for the VCSP

4 Minimal weighted clones on a Boolean domain

5 Conclusions
Valued Constraint Satisfaction Problems

Definition

A VCSP is a 4-tuple \(P = (V, D, \Omega, C) \)

- \(V \) is a finite set of *variables*
- \(D \) is a finite *domain*
- \(\Omega \) is a *valuation structure* (typically \(\mathbb{Q}^+ \cup \{\infty\} \))
- \(C \) is a finite set of *valued constraints*. Each *valued constraint* is a pair \((\sigma, \phi)\):
 - \(\sigma \) is the *scope*, a list of variables
 - \(\phi \) is the *cost function*, a mapping from \(D^{\left|\sigma\right|} \) to \(\Omega \) specifying the cost of each tuple of values
Valued Constraint Satisfaction Problems

Let $\mathcal{P} = (V, D, \Omega, C)$ be a VCSP. For any assignment $s : D^{|V|} \rightarrow D$, we define

\[
\text{Cost}_\mathcal{P}(s) = \sum_{\langle \sigma, \phi \rangle \in C} \phi(s(\sigma))
\]

An optimal solution to \mathcal{P} is an assignment with minimal cost.
A *Valued Constraint Language* is a set of cost functions over a finite set D and valuation structure Ω.

For every valued constraint language Γ, we have the corresponding class of problems $\text{VCSP}(\Gamma)$: the VCSPs $\langle V, D, \Omega, C \rangle$ in which every $\langle \sigma, \phi \rangle \in C$ has $\phi \in \Gamma$.

The *expressive power* of a language Γ, denoted $\langle \Gamma \rangle$, is the set of all cost functions which can be expressed as elements of $\text{VCSP}(\Gamma)$.
Tractable languages

We say a Valued Constraint Language Γ is *tractable* if there exists a polynomial time algorithm which can compute an optimal solution to every $P \in \text{VCSP}(\Gamma)$.

We say Γ is *maximal* if, for any $\phi \notin \langle \Gamma \rangle$, $\langle \Gamma \cup \{\phi\} \rangle$ is equal to the set of all cost functions.

Question: Which maximal Valued Constraint Languages are tractable?
Our result

Theorem

There are precisely 9 maximal Valued Constraint Languages on a Boolean domain, 8 of which are tractable.

Proof.

Uses the Galois connection of (Cohen et al., ’06 and ’11) and a characterisation of all minimal weighted clones.

Previously proved using gadgets in (Cohen et al., ’03)
Outline

1 Motivation

2 Related Work

3 A Galois connection for the VCSP

4 Minimal weighted clones on a Boolean domain

5 Conclusions
Clones and Crisp Constraint Languages

Let D be a finite set.

Definition

A *k-ary operation* on D is a mapping $f : D^k \rightarrow D$.

A set of operations F is called a *clone* if F contains all projections and is closed under composition. For any set of operations F, we define $\text{Clone}(F)$ to be the smallest clone containing F.

Definition

An *r-ary relation* on D is a set $R \subset D^r$.

For every set of relations (a.k.a. crisp constraint language) Φ we define $\langle \Phi \rangle$ to be the set of relations expressible as CSPs over Φ.

Note that $\text{Clone}(\text{Clone}(F)) = \text{Clone}(F)$ and $\langle \langle \Phi \rangle \rangle = \langle \Phi \rangle$.
The Galois connection $\text{Pol} – \text{Inv}$

Sets of relations

R_D

$\text{Inv}(\text{Pol}(\Phi))$

$\langle \Phi \rangle$

Φ

\emptyset

Sets of operations

O_D

Inv

$\text{Pol}(

\Phi

)$
The Galois connection $\text{Pol} - \text{Inv}$

Sets of relations

$\text{Pol}(\text{Inv}(F))$

$\text{Inv}(F)$

\emptyset

Sets of operations

$\text{Clone}(F)$

\emptyset

F
The Galois connection $\text{Pol} - \text{Inv}$

Sets of relations

$\emptyset = \text{Inv}(\text{Pol}(\emptyset))$

Sets of operations

$F = \text{Pol}(\text{Inv}(F))$

$\emptyset = \text{Pol}(\text{Inv}(\emptyset))$

$\emptyset = \text{Inv}(\text{Pol}(\emptyset))$
Minimal clones and maximal constraint languages

The Galois connection gives a bijection between crisp constraint languages (closed under expressibility) and clones.

Fact

Minimal clones correspond to maximal (crisp) constraint languages.

Schaefer’s Dichotomy Theorem for Boolean CSP (Schaefer, ’78) can be inferred from Post’s classification of all clones on a Boolean domain (Post, ’41).

Many more applications of this Galois connection to identifying the tractable crisp constraint languages.
Outline

1 Motivation

2 Related Work

3 A Galois connection for the VCSP

4 Minimal weighted clones on a Boolean domain

5 Conclusions
Weighted operations

There is a Galois connection for the VCSP using *weighted operations* (Cohen et al., ’11).

Definition

Let C be a clone of operations on some finite domain D. A k-ary weighted operation supported by C is a mapping $\omega : C^{(k)} \to \mathbb{Q}$ satisfying:

1. $\sum_{f \in C} \omega(f) = 0$;
2. $\omega(f) < 0$ only if f is a projection ($\exists i$ such that $f(x) = x_i$ for all $x \in D^k$).

For the special case where $\omega(f) = -1$ whenever f is a projection, we will use the shorthand $\omega = \{(\omega(f), f) : \omega(f) > 0\}$.
Weighted clones

Definition

A set of weighted operations \(W \) (supported by some clone \(C \)) is a weighted clone if it contains the 0-weight operation of every arity and is closed under:

1. Addition
2. Translation (similar to composition)
3. Scaling by positive constants

For any set of weighted operations \(W \), we write \(\text{wClone}(W) \) for the smallest weighted clone containing \(W \).

Note that \(\text{wClone}(\text{wClone}(W)) = \text{wClone}(W) \).
Weighted Polymorphisms

Definition

Let ω be a weighted operation, supported by some clone C, and ϕ a cost function. We say ω is weighted polymorphism of ϕ (or ϕ is improved by ω) if for all $x_1, x_2, \ldots, x_k \in D^r$

$$\sum_{f \in C} \omega(f)\phi(f(x_1[1], \ldots, x_k[1]), \ldots, f(x_1[r], \ldots, x_k[r])) \leq 0$$

We say $\omega \in \text{wPol}(\phi)$ and $\phi \in \text{Imp}(\omega)$.
Weighted Polymorphisms: example

Suppose ω is a binary weighted operation with:

$$\omega(e_1^{(2)}) = \omega(e_2^{(2)}) = -1 \quad \omega(\text{min}) = \omega(\text{max}) = 1$$

Let ϕ be an r-ary cost function.

Then ω is a weighted polymorphism of ϕ if $\forall t_1, t_2 \in D^r$:

$$-\phi(t_1) - \phi(t_2) + \phi(\text{min}(t_1, t_2)) + \phi(\text{max}(t_1, t_2)) \leq 0$$

That is, if and only if ϕ is submodular:

$$\phi(\text{min}(t_1, t_2)) + \phi(\text{max}(t_1, t_2)) \leq \phi(t_1) + \phi(t_2)$$
Weighted Polymorphisms: example

Suppose ω is a binary weighted operation with:

$$\omega(e_1^{(2)}) = \omega(e_2^{(2)}) = -1 \quad \omega(\text{min}) = \omega(\text{max}) = 1$$

Suppose $\phi : \{0, 1\}^2 \rightarrow \mathbb{Q}$ has values

$$\phi(0, 0) = 1; \quad \phi(0, 1) = 1; \quad \phi(1, 0) = 1; \quad \phi(1, 1) = 0.$$

Applying ω to the pair of tuples $t_1 = \langle 0, 1 \rangle$ and $t_2 = \langle 1, 0 \rangle$ gives

$$-1 \cdot \phi(0, 1) - 1 \cdot \phi(1, 0) + 1 \cdot \phi(0, 0) + 1 \cdot \phi(1, 1) = -2 + 1 = -1 \leq 0.$$

So, ϕ is submodular, i.e. $\phi \in \text{Imp}(\omega)$.
The Galois connection $wPol$ – Imp

\mathcal{F}_D \mathcal{W}_D

Sets of cost functions

$\text{Imp}(wPol(\Gamma))$ $\text{Imp}(\langle \Gamma \rangle)$

$\langle \Gamma \rangle$ $wPol(\Gamma)$

Sets of weighted operations
The Galois connection $\text{wPol} - \text{Imp}$

- Sets of cost functions
- $\text{Sets of weighted operations}$

- $\text{wPol}(\text{Imp}(W))$
- $\text{wClone}(W)$
The Galois connection $\text{wPol} - \text{Imp}$

Sets of cost functions

$\Gamma = \text{Imp}(\text{wPol}(\Gamma))$

Sets of weighted operations

$W = \text{wPol}(\text{Imp}(W))$
Minimal weighted clones

The Galois connection $wPol - Imp$ gives a bijection between valued constraint languages and weighted clones.

Fact

Maximal valued constraint languages correspond to minimal weighted clones.
Outline

1 Motivation

2 Related Work

3 A Galois connection for the VCSP

4 Minimal weighted clones on a Boolean domain

5 Conclusions
Minimal weighted clones on a Boolean domain

Theorem

There are precisely 9 minimal weighted clones on a Boolean domain, generated by the following weighted operations:

1. \{ (1, f_0) \}
2. \{ (1, f_1) \}
3. \{ (1, 1 - x) \}
4. \{ (2, \text{min}) \}
5. \{ (2, \text{max}) \}
6. \{ (1, \text{min}), (1, \text{max}) \}
7. \{ (3, \text{Minority}) \}
8. \{ (3, \text{Majority}) \}
9. \{ (1, \text{Minority}), (2, \text{Majority}) \}
There are precisely 9 minimal weighted clones on a Boolean domain, generated by the following weighted operations:

1. \(\{(1, f_0)\}\)
2. \(\{(1, f_1)\}\)
3. \(\{(1, 1 - x)\}\)
4. \(\{(2, \text{min})\}\)
5. \(\{(2, \text{max})\}\)
6. \(\{(1, \text{min}), (1, \text{max})\}\)
7. \(\{(3, \text{Minority})\}\)
8. \(\{(3, \text{Majority})\}\)
9. \(\{(1, \text{Minority}), (2, \text{Majority})\}\)
Outline

1 Motivation

2 Related Work

3 A Galois connection for the VCSP

4 Minimal weighted clones on a Boolean domain

5 Conclusions
Conclusions and Open Problems

- Valued constraint languages are in bijection with weighted clones
- Maximal languages correspond to minimal weighted clones
- We have obtained a weighted version of Rosenberg’s Classification Theorem, which gives conditions minimal weighted clones must satisfy (in the paper)
- We have identified the minimal weighted clones on a Boolean domain
- What are the minimal weighted clones on larger domains?
- What are the other weighted clones on a Boolean domain?
- Are integer weights sufficient?