
The Seventeenth International Conference on Principles and
Practice of Constraint Programming (CP 2011)

Doctoral Program Proceedings

Perugia, Italy
12–16 September 2011

Preface

The Doctoral Program was organized as a full-day event at the Seventeenth International Conference
on Principles and Practice of Constraint Programming, CP 2011, and took place in Perugia, Italy, on
September 12, 2011.
The purpose of the Doctoral Program is to provide an opportunity for current PhD students to meet each
other as well as researchers in the field. Participants present their work via both a poster and a talk, and
discuss their research with a mentor with similar research interests.
The program is open to all PhD students involved in Constraint Programming or related fields at any level.
Applicants were required to submit a short paper (no more than 6 pages) containing original unpublished
work which is at least in part the work of the student. It can either be completed or in progress.
Any students with (long, short, or application) papers accepted in the CP conference did not need to
submit a paper to the Doctoral Program, but were automatically eligible for entry (assuming, of course,
that the paper is at least in part the work of the student).
The papers collected here are those which have been submitted directly to the Doctoral Program. They
present a wide variety of work, both completed and in progress, being undertaken by the current gener-
ation of PhD students in quite different phases of their studies. We also included the abstracts of papers
by students who were accepted to the Doctoral Program because they have a paper in the main CP con-
ference. The corresponding full papers can be found in the CP 2011 conference proceedings (volume
6876 of LNCS, Springer Verlag).
The Doctoral Program would not be possible without the support we received from many people and
organizations. We would like to thank the program committee members, the CP conference chair Stefano
Bistarelli, and the sponsors of the CP conference, in particular PSI Metals and the Italian Association for
Artificial Intelligence (AI*IA).

Christopher Jefferson and Guido Tack
Doctoral Program Chairs, 2011

i

Doctoral Program Organization

Doctoral Program Chairs:

Christopher Jefferson, University of St. Andrews, UK
Guido Tack, Katholieke Universiteit Leuven, Belgium

Program Committee:

Lucas Bordeaux, Microsoft Research
Sebastian Brand, NICTA Victoria Research Lab, University of Melbourne
Andrei Bulatov, Simon Fraser University
Sophie Demassey, École des Mines de Nantes
Stefano Gualandi, Politecnico di Milano
Christopher Jefferson, University of St. Andrews
Inês Lynce, IST/INESC-ID, Technical University of Lisbon
Chris Mears, Monash University
Peter Nightingale, University of St Andrews
Claude-Guy Quimper, Université Laval
Andrea Rendl, Austrian Institute of Technology
Horst Samulowitz, IBM Research
Meinolf Sellmann, IBM Research
Guido Tack, Katholieke Universiteit Leuven
Willem-Jan Van Hoeve, Carnegie Mellon University
Roland Yap, National University of Singapore
Magnus Ågren, Tomologic
Stanislav Živný, Computing Laboratory, University of Oxford

Additional Reviewers:

Martin Cooper
Andreas Schutt

iii

Doctoral Program Participants

The following 30 students were selected to participate in the doctoral program.

Students with full papers in the main conference:

Alessio Bonfietti
Jessica Davies
Alexis De Clercq
Samir A. Mohamed Elsayed
Jean-Guillaume Fages
Antti Hyvärinen
Roger Kameugne
Ronan Le Bras
Vianney le Clément
Amit Metodi
Eoin O’Mahony
Marie Pelleau
Joseph Scott
Walid Trabelsi

Students with short doctoral program papers:

Markus Aschinger
Dario Campagna
Nicholas Downing
Guillaume Escamocher
Natalia Flerova
Maria Francisco
Matthew Gwynne
Katherine Lai
Arnaud Letort
Jean-Baptiste Mairy
Florence Massen
Faten Nabli
Dario Pacino
Anna Roubickova
Silvia Tomasi
Hu Xu

v

Table of Contents

Doctoral Program Papers

A new logic-based formalism for Configuration problems . 1
Markus Aschinger

A CLP-based System For Custom Product Manufacturing . 7
Dario Campagna

Explaining flow-based propagation . 13
Nicholas Downing

Mapping Out the Tractability of 3-Variable Forbidden Patterns 19
Guillaume Escamocher

Bucket and Mini-bucket Schemes for M Best Solutions over Graphical Models 25
Natalia Flerova

Consistency of Constraint Networks Induced by Automaton-Based Constraint Specifications . . . 31
Maria Francisco

Towards a better understanding of hardness . 37
Matthew Gwynne

The Min Average Latency Steiner Multigraph Problem: Budget-Constrained Wildlife Corridor
Design for Multiple Species . 43

Katherine Lai

Cumulatives trajectories: a Constraint for Modelling Preemptive Reassignable Tasks with Mo-
menterily Resource Consumption . 49

Arnaud Letort

Reinforced Adaptive Large Neighborhood Search . 55
Jean-Baptiste Mairy

A Relaxation-Guided Approach for Vehicle Routing Problems with Black Box Feasibility 61
Florence Massen

Finding minimal siphons and traps as a Constraint satisfaction Problem 67
Faten Nabli

Adaptive Randomized Decompositions for Jobshop Scheduling 73
Dario Pacino

Flexible timeline-based planning and its constraints . 79
Anna Roubickova

Satisfiability Modulo Theory with Cost Optimization . 85
Silvia Tomasi

Genetic Based Automatic Congurator for Minion . 91
Hu Xu

vii

Abstracts of Papers in the Main CP 2011 Conference

A constraint based approach to cyclic RCPSP . 97
Alessio Bonfietti, Michele Lombardi, Michela Milano and Luca Benini

Solving MAXSAT by Solving a Sequence of Simpler SAT Instances 98
Jessica Davies and Fahiem Bacchus

Filtering Algorithms for Discrete Cumulative Problems with Over-loads of Resource 99
Alexis De Clercq, Thierry Petit, Nicolas Beldiceanu and Narendra Jussien

Synthesis of Search Algorithms from High-level CP Models . 100
Samir A. Mohamed Elsayed and Laurent Michel

Revisiting the tree Constraint . 101
Jean-Guillaume Fages and Xavier Lorca

Grid-Based SAT Solving with Iterative Partitioning and Clause Learning 102
Antti Hyvärinen, Tommi Junttila and Ilkka Niemelä

Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling 103
Ronan Le Bras, Theodoros Damoulas, Ashish Sabharwal and Carla Gomes

An Efficient Light Solver for Querying the Semantic Web . 104
Vianney Le Clément De Saint-Marcq, Yves Deville and Christine Solnon

Boolean Equi-propagation for Optimized SAT Encoding . 105
Amit Metodi, Michael Codish, Vitaly Lagoon and Peter Stuckey

Incorporating Variance in Impact-Based Search . 106
Serdar Kadioglu, Eoin O’Mahony, Philippe Refalo and Meinolf Sellmann

Octagonal Domains for Continuous constraints . 107
Marie Pelleau, Charlotte Truchet and Frederic Benhamou

A Quadratic Edge-Finding Filtering Algorithm for Cumulative Resource Constraints 108
Roger Kameugne, Laure Pauline Fotso, Joseph Scott and Youcheu Ngo-Kateu

Pruning Rules for Constrained Optimisation for Conditional Preferences 109
Nic Wilson and Walid Trabelsi

viii

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 1–6,
Perugia, Italy, 12 September 2011.

A new logic-based formalism for Configuration
problems?

Markus Aschinger, Conrad Drescher, Georg Gottlob (Supervisor)
firstname.lastname@cs.ox.ac.uk

Department of Computer Science, University of Oxford

Abstract. In this paper we present the core of a logic-based high-level
representation language for expressing configuration problems. It shall
allow to model these problems in an intuitive and declarative way, the
dynamic aspects of configuration notwithstanding. Our logic enforces
that configurations contain only finitely many components and reasoning
can be reduced to the task of model construction.

1 Introduction

In this work we describe ongoing work on a new logic-based formal-
ism expressive enough for dealing with practical configuration problems.
Configuration systems are one of the most successful applications of AI-
techniques. In industrial environments, they support the configuration
of complex products and, compared to manual processes, help to reduce
error rates and increase throughput [7]. The following definition by Mit-
tal and Frayman [5] describes what is typically meant by a configuration
problem.

Definition 1. Given a fixed, predefined set of components, where a com-
ponent is described by a set of properties, ports for connecting it to other
components, constraints at each port that describe the components that
can be connected at that port, and other structural constraints, some de-
scription of the desired configuration and some criteria for making opti-
mal selections.
Build: One or more configurations that satisfy all the requirements, where
a configuration is a set of components and a description of the connec-
tions between the components in the set, or, detect inconsistencies in the
requirements.

For instance, a car configurator must compute a valid vehicle variant sat-
isfying the user requirements and all applicable commercial and technical
restrictions derived from the marketing and engineering policies of the
manufacturer. In typical configuration problems, the number of compo-
nents in a solution is unknown beforehand because of various reasons, for
example if the number of components depends on the choices made for

? Work funded by EPSRC Grant EP/G055114/1 Constraint Satisfaction for Configu-
ration: Logical Fundamentals, Algorithms and Complexity

1

2 M. Aschinger, C. Drescher and G. Gottlob

other components. This brings up the need for creating new components
on-the-fly throughout the solving process.
To date there is still a lack of high-level knowledge representation (KR)
tools being able to cope with this demand without requiring knowledge
about specific solving algorithms. In this work a new logical formalism
will be investigated to deal with the aforementioned challenges that is
expressive enough for practical configuration problems. The aim is to
develop a high-level representation language suitable for modelling con-
figuration knowledge for practical applications. This will consist of syn-
tactic restrictions and, at the same time, extensions of First Order Logic
(FO). The logical language is to be defined with the goal that the config-
uration knowledge can be represented compactly and conveniently. We
plan to transform the logic representation into a low-level input format
for various solvers, e.g. SAT or Integer Programming, in an automated
transformation step. This approach allows the modelling of general con-
figuration problems in an intuitive and declarative way without the need
of having knowledge about the underlying solving algorithms.

2 Related work

Over the years several different approaches for Configuration have been
investigated, e.g. expert systems, rule-based systems, nonmonotonic rea-
soning, case-based reasoning, description logics and constraint process-
ing. A recent survey is given by Junker in [3]. The constraint satisfaction
problem (CSP) is the most widely used approach for the formalisation of
configuration problems. Although this allows a very natural way of mod-
elling, the standard CSP formulation is not appropriate for configuration
problems in a knowledge representation (KR) sense: it does not feature
variables that are conditionally activated depending upon the values of
the other components in the solution.
In the area of constraint-based configuration, a number of extensions
of the traditional CSP paradigm have been developed to cope with the
dynamic aspects of configuration problems. In Conditional CSPs only a
relevant subset of the variables and constraints is taken into consideration
for generating a solution because of additional activation constraints [4].
Composite CSP is another formalism informally introduced by Sabin and
Freuder. It allows to model CSPs where variables can have subproblems
(sub-CSPs) as values [6]. However, in both formalisms the number of
possibly activated variables and constraints is defined in advance. For
this reason it comes as no surprise that these formalisms in fact have the
same expressive power as classic CSPs since there exist polynomial-time
many-one reductions between composite CSPs and conditional CSPs,
and also between conditional CSPs and classic CSPs [8].
There have also been some previous attempts to capture configuration
with logic-based formalisms. Traditional CSPs can be equivalently formu-
lated as sentences of the existential fragment 9FO^,+ of FO^,+, which is
the fragment of first-order logic of formulae with arbitrary quantifications
and conjunctions, but with no negations or disjunctions. Apparently, one
well-suited candidate for extending a standard CSP is to add the logi-
cal implication as a connective, besides conjunction [2]. The resulting

2

A new logic-based formalism for Configuration problems 3

language is the fragment 9FO!,^,+ of FO. This language is - even with-
out further extensions - sufficiently strong for modelling a wide range of
configuration constraints and is one of the main starting points for our
own formalism. On the other hand, this formalism still makes the un-
derlying assumption that all variables range over an initially given finite
set of values (fixed finite domain) and all constraints must be coded in
extension in the constraint database.

3 A new logic-based modelling formalism

To cope with the aforementioned challenges, we will introduce a new
logic-based framework for modelling practical configuration problems.
The basic idea is to describe a configuration problem (the problem do-
main) by a set of logical sentences. The task of finding a configuration is
then reduced to the problem of finding a model for the logical sentences.
The logic is based on classical many-sorted logic with equality inter-
preted as identity. For restricting the number of potential connections
between components we use existential counting quantifiers. For exam-
ple, we might have a formula 9u

l x�(x) enforcing that the number of
different x such that �(x) holds is restricted to be within the range [l, u],
with l and u natural numbers such that l  u.
Sorts: We stipulate that for every component type there is a sort Id,
the component’s identifier. Other sorts may include the natural numbers
or sorts for specific component attributes. We stipulate that there are
standard names for the elements in the domain of each sort, with any
two different names interpreted as being ’not equal’.
Components: The different components are modelled as n-ary pred-
icates Component(id, x), with id the component’s identifier, and x a
vector of component attributes. Components come in two major vari-
ants, they are either input or generated components. For a component
C1 of the input variant we will make a closure assumption on the domain
of the components identifiers �id

C1
— none but the component identifiers

mentioned in the input exists. We also stipulate that a configuration
problem includes at least one component of the input variant. In order
to transform the model into SAT or OPL, we need to enforce finiteness
of the model by computing upper bounds on the generated components,
to be explained below.
Connections: Configuration is about connecting components: For every
set {C1, C2} of potentially connected components we introduce one of the
binary predicate symbols C12C2 and C22C1 - it does not matter which.
We allow connections from a component type to itself, i.e., C2C. We
stipulate that there be no isolated component types that do not partake
in any connection. Based on the different component types we can dis-
tinguish three different connection types: input2input, input2generated,
and generated2generated. For every connection predicate C12C2 for con-
nections between component types C1 and C2 two formulas are included:

3

4 M. Aschinger, C. Drescher and G. Gottlob

8(id1, x)9u1
l1

(id2, y)C1(id1, x)) (1)

C12C2(id1, id2) ^ C2(id2, y) ^ �(id1, id2, x, y)

8(id2, x)9u2
l2

(id1, y)C2(id2, x)) (2)

C12C2(id1, id2) ^ C1(id1, y) ^ (id1, id2, x, y)

The first formula says how many components of type C2 can be connected
to any given component of type C1, with the subformula �(id1, id2, x, y)
expressing constraints that must hold additionally, e.g. an aggregate
function like

P
n  Capacity with n being a component attribute. The

second formula is for the other direction. If the connection is from a
component type to itself only one of the formulas is included.
Next to binary connections, we also support 1-to-many connections.
These rules are used to express the relationship between a component
and a set of connected components. It is mandatory in this setup to define
a formula expressing the cardinalities ranging from the single component
to the set of components (3). Notice that the single component on the
left-hand side can’t be part of the set on the right-hand side. A rule
of this type can coexist next to binary connections between the single
component and components in the set.
Optionally, we can also state cardinalities in the direction from the set
of components to the single component, i.e. a many-to-one connection
(4). Since this expresses the bounds from every component in the set
to the single component, there is no need of additionally stating binary
components. In fact, it is allowed to either define a many-to-one rule or a
set of binary connections for this direction, but not both simultaneously.
This restriction is needed to ensure consistency in the propagation of
bounds, to be explained in more detail below.

8(id1, x)9u
l (idi, y)C1(id1, x)) [

_

i

C12Ci(id1, idi) ^ Ci(idi, y)] (3)

8(idi, x)9u
l (id1, y)[

_

i

Ci(idi, x)]) C12Ci(id1, idi) ^ C1(id1, y) (4)

Calculating upper and lower bounds: For computing the possible
domain sizes of generated components, we extract Diophantine inequali-
ties from the connection formulas. This builds up on the work by Falkner
et al. about semantics of UML class diagrams and cardinalities applied
to the configuration domain [1]. Knowing these domain sizes is very im-
portant for the planned translation to SAT or OPL models.
Referring back to the binary connection defined by formulas (1) and (2),
assuming C1 is an input and C2 is a generated component, we are able to
calculate upper and lower bounds for component C2. After some simple
combinatorics omitted due to space reasons, we get the following formula
for the bounds of C2:

⇠
l1 ⇤ |C1|

u2

⇡
 |C2| 

�
u1 ⇤ |C1|

l2

⌫
(5)

4

A new logic-based formalism for Configuration problems 5

In order to define a lower resp. an upper bound for C2, we need the
bounds l2 resp. u2 in the direction of C1. It is necessary to at least have
upper bounds on all generated components in order to ensure finiteness
of the model. For this reason there needs to be a directed path to an
input component without lower bounds of zero. We generally allow the
definition of lower bounds with value zero on connection cardinalities, as
long as the boundedness is secured by another connection. A propagation
algorithm makes sure that bounds are propagated throughout the whole
connection graph.

4 Example: Modified Bin-Packing

We want to explain our approach by means of a simple Bin-Packing
example containing the basic characteristics of configuration problems,
i.e. connecting components and dynamically generating new components.
We distinguish between two types of Things A and B with all Things
having a certain size. The Bins have an upper bound on the total size
for Things of each type that can be put into them. Things are input
components while the Bins are generated components with the goal of
their number being minimized. The problem can be described by the
following formulas:

8(idTA, size)91
1(idBin)CTA(idTA, size)) (6)

CTA2CBin(idTA, idBin) ^ CBin(idBin)

8(idBin)95
0(idTA, size)CBin(idBin)) (7)

CTA2CBin(idTA, idBin) ^ CTA(idTA, size) ^
X

size  5

8(idTB, size)91
1(idBin)CTB(idTB, size)) (8)

CTB2CBin(idTB, idBin) ^ CBin(idBin)

8(idBin)92
0(idTB)CBin(idBin)) (9)

CTB2CBin(idTB, idBin) ^ CTB(idTB, size) ^
X

size  2

8(idBin)91(idT , y)CBin(idBin)) (10)
(CTA2CBin(idT , idBin) ^ CTA(idT , y))_
(CTB2CBin(idT , idBin) ^ CTB(idT , y))

Formula (6) states that every ThingA has to be put into exactly one
Bin. The subformula at the end of formula (7) determines that the total
size of ThingA components placed in a Bin must not exceed 5. Up to
5 ThingA components can be put into a Bin in case all of them having
minimum size 1 (hence the cardinality upper bound is 5). Formulas (8)
and (9) analogously define the binary connection for ThingB.

5

6 M. Aschinger, C. Drescher and G. Gottlob

Assume having an instance with 20 Things of each type, connection
ThingA-Bin gives a lower bound of 4 and connection ThingB-Bin gives
a lower bound of 10 for component Bin using the computation defined in
(3). We take the maximum of all available values, hence the lower bound
for Bin is 10. Notice that in (7) and (9) the cardinality lower bounds of
the connections are defined as zero to express the situation that a Bin
could contain only one type of Thing without the other. This results in
the fact that we can’t compute an upper bound for Bin using the binary
connections and this violates the finite model requirement. In order to
express that for a Bin to exist it needs to have at least one Thing in
it, we can define a one-to-many connection between Bin and the set of
Things like in rule (10). It is sufficient to only define a lower bound for
this connection and in conjunction with the binary connections we can
now compute an upper bound of 40 for a Bin, which would occur in a
situation where every Thing would be put in a separate Bin.

5 Conclusion and future work

We presented the basic framework of a logic-based formalism for mod-
elling configuration problems. The main focus lies on the knowledge rep-
resentation level and not on competing with optimized algorithms for
specific problems. As a next step we plan to define a precise language
for constraints involving arithmetic expressions and aggregate functions.
The automatic transformation of our formalism into OPL is also one of
our next milestones. We also plan to integrate taxonomies in the form of
component ontologies and to specify the needed domain closure axioms.
Further perspectives are to analye the expressive power and the complex-
ity of decision and computational problems related to this formalism in
detail.

References

1. Falkner, A., Feinerer, I., Salzer, G., Schenner, G.: Computing prod-
uct configurations via UML and integer linear programming. Interna-
tional Journal of Mass Customisation 3(4), 351–367 (2010)

2. Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfac-
tion: Logical foundations and complexity. In: IJCAI. pp. 88–93 (2007)

3. Junker, U.: Configuration. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, pp. 837 – 874. Elsevier (2006)

4. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction prob-
lems. In: Proc. AAAI-90. pp. 25 – 32. MIT Press (1990)

5. Mittal, S., Frayman, F.: Towards a generic model of configuraton
tasks. In: IJCAI. pp. 1395–1401 (1989)

6. Sabin, D., Freuder, E.C.: Configuration as composite constraint sat-
isfaction. In: Proc. of the AIMRP Workshop (1996)

7. Sabin, D., Weigel, R.: Product configuration frameworks - a survey.
IEEE Intelligent Systems 13(4), 42–49 (1998)

8. Thorstensen, E.: Capturing configuration. In: Proceedings of Doctoral
Program at CP 2010. St. Andrews, Scotland (2010)

6

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 7–12,
Perugia, Italy, 12 September 2011.

A CLP-based System For Custom Product
Manufacturing

Dario Campagna? and Andrea Formisano??

Dipartimento di Matematica e Informatica, Università di Perugia, Italy
(dario.campagna|formis)@dmi.unipg.it

Abstract. In this paper we present the first results of an ongoing work on product
and production process modeling and configuration. First, we describe a graph-
ical modeling framework that allows one to model both a product and its pro-
duction process. Then, we outline a possible CLP-based implementation of such
product/process configuration system.

1 Introduction

During the past years, the interest of companies deploying mass customization strate-
gies toward product configuration systems has grown, since such software can support
them in the management of configuration processes. Many research studies have been
conducted so far on this topic (see, e.g., [9]), and different software product configura-
tors have been proposed (see, e.g., [6,4,10]).

Process modeling tools, differently from product configuration systems, allow one
effectively to deal with (business) process management. In general, they allow the user
to define a description of a process, and guide her through the process execution. Also
within this field it is possible to find tools and scientific works (see, e.g, [11,8]).

Mass customization needs to cover the management of the whole customizable
product cycle, from product configuration to product production. Current product con-
figuration systems and researches on product configuration focus only on product mod-
eling and on techniques for configuration process support. They do not cover product
production process issues, despite the advantages that coupling of product with process
modeling and configuration could give.

Inspired by the works of Aldanondo et al. (see, e.g., [1]), we started implementing
a CLP-based configuration system on top of a graphical framework for modeling con-
figurable products (whose producible variants can be represented as trees), and their
production processes. The main intent of our framework, called PRODPROC, is to na-
tively support features for modeling production process aspects otherwise difficult to
describe. Such features may lead to the definition of reacher configurable product mod-
els, that allow the propagation of consequences of product configuration decision to-
ward the planning of its production process, and the propagation of consequences of
process planning decision toward the product configuration. Moreover, we want our
graphical framework to allow one to easily define mixed product/process models, with-
out the need to know how the configuration systems works “under the hood”.
? Student

?? Supervisor

7

2 The PRODPROC Modeling Framework

In this section, we present the main modeling features of PRODPROC. Also, we outline
a brief description of PRODPROC semantics in terms of model instances. 1

Modeling Products We are interested in modeling configurable products whose corre-
sponding (producible) variants can be represented as trees. Nodes of these trees corre-
spond to physical components, whose characteristics are all determined. The tree struc-
ture describes how the single components taken together define a configured product.
Hence, we model a configurable product as a multi-graph, called product model graph,
and a set of constraints. A product model represents a configurable product. Its config-
uration can lead to the definition of different (producible) product variants.

Nodes of the product model graph represent well-defined components of a product
(e.g., the frame of a bicycle). A node is characterized by a name, a set of variables
representing configurable features of the component (e.g., the material of which the
bicycle frame is made of), and a set of constraints involving variables of the node as well
as variables of its ancestors in the graph. Each variable is endowed with a finite domain
(typically, a finite set of integers or strings), i.e., the set of its possible values. In the
description of a configured product, physical components are represented as instances
of nodes in the graph. The graphical representation of a node (cf. Fig. 1) consists of a
box with three sections, each containing one of the elements constituting a node.

The edges model has-part/is-part-of relations between product components (e.g.,
between the frame and the handlebar of a bicycle). An edge is defined by: a name,
two node names indicating the parent and the child nodes in the has-part relation, the
cardinality of such relation (expressed as either an integer number or a variable), and a
set of constraints. Such constraints may involve the cardinality variable (if any) as well
as the variables of the parent node and of any of its ancestors. An instance of an edge
connecting two nodes is an edge connecting two instances of such nodes. An edge is
graphically represented by an arrow connecting the parent node to the child node (cf.
Fig. 1). Such an arrow is labeled with the edge name and cardinality, and may have
attached an ellipse containing cardinality constraints. We require the presence of a node
without entering edges in the product model graph. We call this node root node. It will
have only one instance, such instance will be the root of the configured product tree.

As mentioned, a product description consists of a product model graph together with
a set of global constraints. Such constraints, called model constraints, involve variables
of nodes not necessary related by has-part relations (node model constraints) as well
as cardinalities of different edges exiting from a node (cardinality model constraints).
Also, node model constraints can be defined using arithmetic constraints, propositional
constraints, and global constraints like alldifferent and aggregation constraints.

Modeling Processes In general, a process can be represented in terms of activities and
temporal relations between them. We characterize a process by: a set of activities, a set

1 Further examples and details on PRODPROC can be found in www.dmi.unipg.it/
formis/papers/report2011_04.ps.gz.

2

8

Node
constraints

Node
variables

Node name

Node
constraints

Node
variables

Node name
Edge label

Card
Cardinality
constraints

Fig. 1: Graphical representation of nodes and edges.

of variables (as before, endowed with a finite domain of strings or of integers) repre-
senting process characteristics and involved resources; a set of temporal constraints be-
tween activities; a set of resource constraints; a set of constraints on activity durations.
A process model does not represent a single production process. Instead, it represents
a configurable production process, whose configuration can lead to the definition of
different executable processes.

PRODPROC defines three kinds of activity: atomic activities, composite activities,
and multiple instance activities. An atomic activity A is an event that happens in a time
interval. It has associated a name, two integer decision variables denoting the start time
and end time of the activity, a decision variable denoting the duration of the activity, and
a flag indicating whether or not the activity is executed. A composite activity is an event
described in terms of a process. Hence, it has associated four variables analogously to
an atomic activity. Moreover, it is associated with a model of the process it represents.
A multiple instance (atomic or composite) activity is an event that may occur multiple
times. Together with the four variables (and possibly the process model), a multiple
instance activity has associated a decision variables representing the number of times
the activity can be executed. Figures 2a, 2b, and 2c, show the graphical representation
of atomic activities, composite activities, and multiple instance activities, respectively.

Activity
duration
constraints

Activity name

(a)

Activity
duration
constraints

Activity name

(b)

Activity
duration
constraints

Activity name

inst

(c)

Fig. 2: Graphical representation of activities.

Temporal constraints between activities are inductively defined starting from atomic
temporal constraints, using logical operators like conjunction and disjunction. We con-
sider as atomic temporal constraints all the thirteen binary relations which capture all
the possible ways in which two time intervals might overlap or not (as introduced by
Allen in [2]), and some constraints inspired by the constraint templates of the language
ConDec [8]. Fig. 3 shows the graphical representation of some temporal constraints.

PRODPROC allows one to specify constraints on resource amounts [7] and activity
durations. A resource constraint is a quadruple hA, R, q, TEi, where A is an activity;
R is a variable endowed with a finite integer domain; q is an integer or a variable en-
dowed with a finite integer domain, defining the quantity of resource R consumed (if
q < 0) or produced (if q > 0) by executing A; TE is a time extent that defines the
time interval where the availability of resource R is affected by the execution of ac-

3

9

beforeA B

(a) A is executed before B.

BA

(b) Either A or B is executed.

before

during
A B

(c) A is executed before B or A is executed during
the execution of B.

Fig. 3: Graphical representation of temporal constraints.

tivity A. The possibilities for TE are: FromStartToEnd, AfterStart, AfterEnd,
BeforeStart, BeforeEnd, Always, with their obvious meaning. Another form of
resource constraint defines initial level constraints, i.e., expressions determining the
quantity of a resource available at the time origin of a process. The basic form is
initialLevel(R, iv), where R is a resource and iv 2 N. Fig. 4 shows the graphical
representation for a resource R and the constraints hA, R, qA, TEAi, hB, R, qB , TEBi,
and initialLevel(R, iv), where qA > 0 and qB < 0.

R
iv

qA,TEA qB,TEB BA

Fig. 4: Graphical representation of resource constraints.

An activity duration constraint for the activity A is a constraint involving the duration
of A, process variables, and resource quantity variables related to A.

PRODPROC also allows one to couple elements for modeling a process and elements
for modeling a product through constraints involving process variables and product
variables. In general, constraints involving both product and process variables may help
to detect/avoid planning impossibilities due to product configuration, and configuration
impossibilities due to production planning, during the configuration of a product. For
example, they can allow one to detect the impossibility to produce a product due to the
lack of a certain resource needed by an activity.

PRODPROC Models and Instances A PRODPROC model consists of a product de-
scription, a process description, and a set of constraints coupling the two. It represents
a collection of single (producible) variants of a configurable product, and describes the
processes needed to produce them. A PRODPROC instance represents one of such vari-
ants and its production process. To define the notion of instance we need to introduce
first the auxiliary notion of candidate instance. A PRODPROC candidate instance con-
sists of the following components: a tree, called instance tree, defined by instances of
nodes and edges in the product model graph; a set of assignments for node instance
variables; a set of activity instances, i.e., activities that will be executed; a set of assign-
ments for all process model variables and activities parameters. A PRODPROC instance
is a candidate instance such that the assignments to product and process variables and

4

10

parameters satisfy all the conditions specified through constraints in the PRODPROC
model (i.e., node constraints, temporal constraints, etc.). Intuitively, such constraints,
being expressed at the PRODPROC model level (i.e., on model variables), have to be
reflected onto the PRODPROC instance (i.e., on instance variables). This is obtained by
applying an appropriate instantiation mechanism that, given a model and a (partial) can-
didate instance (a candidate instance is partial when there are variables with no value
assigned to), generates a set of constraints defined on variables of the candidate instance
from each constraint in the model.

3 CLP-based Product/Process Configuration

On top of the PRODPROC framework it is possible to implement a full-fledged configu-
ration system. In particular, the graphical language presented in Sect. 2 can allow a user
to easily define product/process models, and Constraint Logic Programming (CLP) [5]
can be exploited to implement an interactive algorithm that, given a PRODPROC model,
guide a user through the configuration process to obtain a PRODPROC instance.

From a PRODPROC model and a user defined (partial) candidate instance, it is pos-
sible to obtain a Constraint Satisfaction Problem (CSP) hV, D, Ci where: V is the set of
all the variables appearing in the (partial) candidate instance; D is the set of domains
for variables in V; C is the set of constraints in the PRODPROC model instantiated on
variables of the (partial) candidate instance. Given such a CSP, a finite domain solver
can be used to reduce domains associated with variables, preserving satisfiability, or to
detect the inconsistency of the encoded CSP (due to user’s assignments that violate the
set of constraints or to inconsistencies of the original product model). Moreover, it can
be used to detect that changes are needed in the topology of the instance tree.

We are using SWI-Prolog to develop a CLP-based configuration system that exploit
the close relation between configuration problems and CSPs.2 In particular, we are us-
ing the SWI-Prolog pce library to implement the system graphical user interface, and
the clpfd library for constraint propagation and labeling purposes. The current ver-
sion of the system is limited to product modeling. It allows a user to define a product
description using the PRODPROC graphical language, to check model syntactic cor-
rectness, and to automatically generate product instances to check model validity. Our
system will support a configuration process as follows. First, the user initializes the
system (1) selecting the model to be configured. After such an initialization phase, the
user starts to make her choices by using the system interface (2). The interface commu-
nicates to the system engine, i.e., the piece of software that maintains a representation
of the product/process under configuration and checks the validity and consistency of
user’s choices, each data variation specified by the user (3). Whenever an update of the
(partial) configuration takes place, the user, through the system interface, can activate
the engine inference process (4). The engine instantiates PRODPROC constraints on
the current (partial) candidate instance defined by user choices, and encodes the prod-
uct/process configuration problem into a CSP. Then, the engine uses the SWI-Prolog
finite domain solver to propagate CSP constraints, i.e., to compute the logical effects of

2 We chose CLP instead of Constraint Programming for the advantages the former gives in terms
of rapid software prototyping.

5

11

user’s choices (5). Once the inference process ends (6), the engine returns to the inter-
face the results of its computation (7). In its turns, the system interface communicates to
the user the consequences of her choices on the (partial) configuration (8). The user can
then make new choices, or modify previous ones if an inconsistency has been reported.

4 Conclusions

In this paper, we presented the first results of an ongoing work on product and process
modeling and configuration, and pointed out the the lack of a tool covering both phys-
ical and production aspects of configurable products. To cope with this absence, we
presented a framework called PRODPROC. Furthermore, we outlined how it is possible
to build a full-fledged CLP-based configuration system on top of it.

The PRODPROC framework presents features that, to the best of our knowledge,
are not present in other existing product or process modeling languages. These are,
for example, product model graphs, model constraints, resource variables and resource
constraints, activity duration constraints. Moreover, all these innovative features belong
to a single framework that allows one to model products, their production processes,
and to couple products with processes using constraints. With respect to the modeling
language presented in [1], PRODPROC is far more complex and expressive.

We already implemented a first prototype of a CLP-based configuration system that
uses PRODPROC. It covers only product modeling and configuration, but we are work-
ing to add to it process modeling and (automatic) configuration capabilities. We also
plan to experiment our configuration system on different real-world application do-
mains, and to compare it with commercial products, e.g., [3].

References
1. M. Aldanondo and E. Vareilles. Configuration for mass customization: how to extend product

configuration towards requirements and process configuration. J. of Intelligent Manufactur-
ing, 19(5):521–535, 2008.

2. J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26:832–843,
1983.

3. U. Blumöhr, M. Münch, and M. Ukalovic. Variant Configuration with SAP. SAP Press,
2009.

4. Configit A/S. Configit Product Modeler. http://www.configit.com.
5. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log. Program.,

19/20:503–581, 1994.
6. U. Junker. The Logic of ILOG (J)Configurator: Combining Constraint Programming with a

Description Logic. In Proc. of the IJCAI’03 Workshop on Configuration, pages 13–20. 2003.
7. P. Laborie. Algorithms for propagating resource constraints in AI planning and scheduling:

existing approaches and new results. Artif. Intell., 143:151–188, 2003.
8. M. Pesic, H. Schonenberg, and W. van der Aalst. DECLARE: Full support for loosely-

structured processes. In Proc. of EDOC’07, pages 287–287, 2007.
9. D. Sabin and R. Weigel. Product configuration frameworks-a survey. IEEE Intelligent Sys-

tems, 13:42–49, July 1998.
10. Tacton Systems AB. Tacton Configuration Studio. http://www.tacton.com.
11. A. H. M. ter Hofstede, W. van der Aalst, M. Adams, and N. Russell. Modern Business

Process Automation - YAWL and its Support Environment. Springer, 2010.

6

12

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 13–18,
Perugia, Italy, 12 September 2011.

Explaining flow-based propagation

Nicholas Downing, Thibaut Feydy, and Peter J. Stuckey

National ICT Australia and the University of Melbourne, Victoria, Australia
{ndowning@students.,tfeydy@,pjs@}csse.unimelb.edu.au

Abstract. Lazy clause generation is a powerful approach to reducing
search in constraint programming. For use in a lazy clause generation
solver, global constraints must be extended to explain themselves. Alter-
natively they can be decomposed into simpler constraints which already
have explanation capability. In this paper we present a new generic flow-
based propagator with explanation capability, and show how it can be
applied to gcc and sequence constraints. We compare di↵erent gcc and
sequence implementations on several real-world problems to determine
how explanation changes the trade-o↵s for propagation and search.

1 Introduction
Lazy clause generation [9] is a hybrid approach to constraint solving that com-
bines features of finite domain propagation and Boolean satisfiability. By creating
an implication graph recording the reasons for propagation we can reduce search
by deriving and propagating nogoods to avoid repeating failed searches.

gcc and sequence are two of the most important global constraints. They
occur frequently in scheduling and rostering problems. Earlier work has shown
flow-based propagation to be useful for these constraints [10, 3]. Explanations
have been described for gcc [6], but not sequence. We generalize this work to other
constraints, e.g. sequence and the problem-specific gsc [11]. Our experiments
verify that our methods are useful, and also provide some interesting comparisons
to see how explanations a↵ect propagation methods and search strategies.

2 Lazy clause generation
We give a brief description of propagation-based solving and lazy clause gen-
eration, for more details see [9]. We consider constraint satisfaction problems,
consisting of constraints over integer variables x1, . . . , xn, each with a given
finite domain Dorig(xi). A feasible solution is a valuation to the variables such
that each xi is within its allowable domain and all constraints are satisfied.

A propagation solver maintains a domain restriction D(xi) ✓ Dorig(xi) for
each variable and considers only solutions that lie within D(x1) ⇥ · · · ⇥ D(xn).
Solving interleaves propagation, which repeatedly applies propagators to remove
unsupported values, and search which splits the domain of some variable and
considers the resulting sub-problems. This continues until all variables are fixed
(success) or failure is detected (backtrack and try another subproblem).

Lazy clause generation is implemented in the above framework by defining
an alternative model for the domains D(xi), which is maintained simultaneously.

13

Specifically, Boolean variables are introduced for each potential value of a vari-
able, named [[xi = j]] and [[xi � j]]. Negating them gives the opposite, [[xi 6= j]]
and [[xi  j � 1]]. Fixing such a literal modifies D to make the corresponding
fact true in D(xi) and vice versa. Hence these literals give an alternate Boolean
representation of the domain, which can support SAT reasoning.

In a lazy clause generation solver, the actions of propagators (and search) to
change domains are recorded in an implication graph over the literals. Whenever
a propagator changes a domain it must explain how the change occurred in terms
of literals, that is, each literal l that is made true must be explained by a clause
L ! l where L is a (set or) conjunction of literals. When the propagator causes
failure it must explain the failure as a nogood, L ! false, with L a conjunction of
literals which cannot hold simultaneously. Conflict analysis reduces L to a form
suitable to use as a clausal propagator to avoid repeating the same search [8].

3 Flow networks

A flow network is a graph (V, E) which models a system where flow is conserved,
with vertices/nodes V and edges E = {(u, v) : there is a directed arc u ! v}.
Flow in the graph is represented by a vector f with bounds l,u such that luv 
fuv  uuv. If the flow network is a circulation then flow is strictly conserved,
that is outflows � inflows = 0 at each node, but for convenience we allow a
constant vector s of supplies (or demands, if negative) per node, giving

8n 2 V,
X

v2V :(n,v)2E

fnv �
X

u2V :(u,n)2E

fun = sn. (1)

Example 1. Figure 1 shows a simple flow network with nodes representing nurses
(x = Xavier, y = Yasmin), shifts (d = day, n = night), and a sink t. A feasible
(integer) assignment to f gives a solution to the problem of rostering the nurses
with 1 or 2 nurses on day shift and 0 or 1 nurses on night shift, where fij =
1 if nurse i works shift j, 0 otherwise. A nurse i works only one of the shifts
due to flow conservation at his/her node, fid + fin = 1. The number of nurses
on shift j is fjt due to flow conservation at its node, fxj + fyj = fjt, with the
sta�ng requirement expressed as the bounds on fjt. This illustrates Régin’s [10]
encoding of the constraint gcc([x, y], [1..2, 0..1]), with x, y = 1 (day) or 2 (night),
and flows e.g. fxd being integer views e.g. bool2int([[x = 1]]) of domain literals.

Fig. 1: Example flow network encoding a gcc constraint

14

4 Circulation propagator
We define a new constraint circulation(V, E, s, f) which enforces the flow conser-
vation constraints (1) on f according to the graph (V, E) and supplies s, where
luv, uuv = min, max D(fuv). To propagate, we first solve for a feasible flow, using
artificial supplies or demands, which can be cancelled by augmenting paths [4].

Suppose there is no feasible solution. Let C, the ‘cut’, be the set of nodes
searched. It must contain node(s) in excess but none in deficit. Then according
to the current flow bounds, more flow enters C than can leave it, taking into
account the arcs crossing C and the net supply/demand of C. Summing the flow
conservation equations (1) over n 2 C gives flow conservation for the cut,

X

(u,v)2(C⇥V \C)\E

fuv �
X

(u,v)2(V \C⇥C)\E

fuv =
X

n2C

sn. (2)

Given C that proves infeasibility, we explain (2) as a bounds-consistent linear
constraint [9], i.e. even if outflows are at maximum for outgoing arcs and inflows
are at minimum for incoming arcs, maximizing the RHS of (2), the RHS is still
<

P
n2C sn. The failure nogood is the conjunction of literals [[fuv � luv]] for

inflows and [[fuv  uuv]] for outflows, substituting the current l,u.

Example 2. Continuing Example 1, suppose search sets fxd = fyd = 0, equiva-
lently x, y 6= 1, so that insu�cient nurses are available for day shift. Figure 2
shows the residual graph of a partial solution with flows in range but not con-
served. Attempting to resolve the excess, BFS explores nodes C = {x, d, y}.
Cut-conservation gives bool2int([[x = 1]]) + bool2int([[y = 1]]) + fnt = 2, which
is unachievable since both literals are false and fnt  1. Hence the circulation
propagator fails with nogood [[x 6= 1]] ^ [[y 6= 1]] ^ [[fnt  1]] ! false.

Fig. 2: Example residual graph showing infeasibility of the gcc constraint

In case of feasibility, pruning is attempted, by a generalization of Régin’s gcc
algorithm [10], based on Strongly Connected Components (SCCs), to arbitrary
networks. We use SCC-splitting [5], and we generate explanations lazily.

Example 3. Continuing Example 1, suppose search sets y = 2, then the network
is feasible with x = 1. There are no augmenting cycles so each node is a separate
SCC. Arc (x, n) spans SCCs, so C = the target SCC {n} is used as a cut, giving
fnt � bool2int([[x = 2]]) � bool2int([[y = 2]] = 0, unachievable with both literals
true, as fnt  1. Hence [[fnt  1]] ^ [[y = 2]] ! [[x 6= 2]], pruning arc (x, n).

15

For gcc the explanations are the same as Katsirelos’s [6] except that we can
deduce and propagate equalities (rather than just disequalities) which is more
succinct in certain cases e.g. the alldi↵erent explanations [[x = v]] ! [[y 6= v]].

5 New sequence and gsc encodings

The sequence constraint takes the form sequence(l, u, w, [y1, . . . , yn]) and says
that every consecutive w-window must sum to l..u. We give a new flow-based
encoding for sequence, as a flow network, similar to [7] but simpler and using
fewer arcs. Referring to Figure 3, a flow fi along the spine corresponds to a sum
of yi over some w-window, which we may show by a series of cuts, e.g. the cut
illustrated shows by cut-conservation that f3 = y3 + y4 + y5. Constraining the
fi-flows to l  fi  u enforces sequence. Our circulation propagator ensures
domain-consistency on yi provided they are 0..1 valued (the common case).

Fig. 3: Flow network encoding a w = 3, n = 7 sequence constraint

Régin and Puget’s gsc(l, u, w, [x1, . . . , xn], [(v1, c1), . . . , (vm, cm)]) says that
xi 2 {v1, . . . , vm} occurs l..u times per w-window and that xi = vj occurs cj

times overall [11]. They reduce it to gcc, we give an equivalent, but simpler,
direct encoding that requires no side constraints. Referring to Figure 4, nodes
xi, vj represent variables and values as in a standard gcc network. Nodes wk

ensure that xk, . . . , xk+w�1 meet the l..u constraint by setting the flow from the
overall source s to those variable nodes. As the windows wk do not overlap, there
are w di↵erent window alignments, hence w circulation propagator instances.

Fig. 4: The w flow networks encoding a w = 2, n = 4, m = 2 gsc constraint

6 Experiments

We implemented the circulation constraint in Chu↵ed , the state-of-the-art lazy
clause generation solver. We tried it on cs: car sequencing (prob001 in CSPLib),
instances from main 79-instance set, and nr: nurse rostering, models 1 and 2
of [3], instances based on the first 50 instances from the N30 data set in NSPLib.
Hardware was a cluster of Dell PowerEdge 1950 with 2 ⇥ 2.00GHz Intel Quad
Core Xeon E5405, 2⇥6MB Cache, and 16 GB RAM. Timeouts were 1800s. Data
files are available from http://www.csse.unimelb.edu.au/~pjs/flow.

16

Both problems use gcc and sequence as the only constraints, except that cs
has table constraints to decode the set of options required for each car class, and
nr has clausal constraints that force a nurse to take 2 consecutive days on any
given shift, and lexical symmetry breaking between the nurses’ rosters. Both use
multiple sequence constraints; cs has a single gcc to set the production per car
type, whereas nr has a gcc per day for the sta�ng levels. For cs we also tried
gsc, which is applied once per option and subsumes all other constraints.

gcc([x1, . . . , xn], [c1, . . . , cm]) is implemented as ld: decomposition into linear
constraints

Pn
i=1 bool2int([[xi = j]]) = cj 8j 2 1..m, or df: Régin’s domain-

consistent flow-based encoding using our new circulation propagator.
sequence(l, u, w, [y1, . . . , yn]) is implemented as cd: ‘cumulative’ decomposi-

tion into partial sums si =
Pi

j=1 yj 8i 2 0..n and di↵erences l  si+w � si  u
8i 2 0..n � w (both implemented as linear constraints), rd: regular decompo-
sition into table constraints over allowable state change tuples (qi�1, yi, qi) and
thence to SAT, or df: the new domain-consistent flow-based encoding.

The search strategy is io: input order, an appropriate static search which
for cs is based on the ideas of [12] and for nr rosters each nurse before moving
forward one day, dwd: dom/wdeg [2], act: activity-based (VSIDS) search [8].

Table 1 reports the geometric mean of runtimes (using the timeout for timed-
out instances), with the number of timeouts appearing as a superscript. The
heading line shows how many solved instances were unsatisfiable or satisfiable
and how many were indeterminate as not solved by any solver. These latter
instances aren’t included in the rest of the table. In each block the solver with
the fewest timeouts is highlighted, with ties being broken by the runtimes.

cs: car scheduling, unsat=0 sat=73 ?=6 nr: nurse rostering, unsat=59 sat=37 ?=4

nolearn learn nolearn learn
gcc=ld df gcc=ld df gcc=ld df gcc=ld df

io seq=cd 149.71s36 151.60s36 77.03s31 92.38s34 1297.53s88 1256.51s88 32.57s19 79.98s20

rd 10.81s27 11.95s27 6.52s25 11.88s29 1090.06s84 1049.24s83 14.69s18 39.37s17

df 7.01s24 8.14s26 10.41s22 20.76s28 890.48s82 918.25s82 2.38s15 5.69s15

gsc 0.52s6 0.47s5

dwd seq=cd 149.50s35 153.37s36 11.67s4 14.89s4 1524.06s92 1525.60s91 14.15s12 28.79s17

rd 12.59s28 13.82s28 0.14s3 0.15s3 1384.28s86 1013.71s78 70.91s25 158.05s40

df 8.84s27 10.61s28 0.61s5 0.89s4 11.01s46 11.86s45 0.80s10 1.34s13

gsc 0.43s4 0.45s

act seq=cd 19.36s5 22.89s5 18.87s6 30.89s24

rd 591.42s45 774.01s56 12.46s9 13.14s20

df 1490.41s67 1725.10s67 1.48s4 1.80s1

gsc 1028.57s46

Table 1: Our methods versus standard gcc and sequence implementations

7 Conclusions and further work
Learning changes the tradeo↵s for propagation. Strategy dwd allows the best
comparison. For the sequence in cs, the strong propagator df was better than
rd without learning but the decomposition was better with learning. Similarly,
for the gcc in nr, the strong propagator df was better without learning but
the decomposition ld was better with learning. This suggests that learning can
often recover some of the global knowledge lost through decomposition.

17

Learning also changes the tradeo↵s for search. Dynamic search dwd was
slightly worse than static search io without learning but usually much better
with learning, suggesting that dwd drives the search towards nogood reuse.
nr with act is even better, with domain-consistent gcc becoming useful again,
suggesting enhanced local reuse of the longer and more specific nogoods produced
under domain consistency. For cs, act is the wrong strategy as the sequence
constraints are tight, so any gaps in the schedule are impossible to resolve later
on, whereas dwd tends to propagate the search linearly within the schedule.

For nr we can close more instances than previous standard methods in less
time, showing the value of adding explanations to the standard flow-based prop-
agators. For cs, given that we cannot use act, our gcc and sequence constraints
were not as good as the standard decompositions ld and rd respectively, but
flow-based explanations are still applicable, since the problem-specific gsc with
learning closes more instances than standard methods, and shows the usefulness
of explanations plus genericity for rapid implementation of new constraints.

For future work on soft constraints we also have a similar propagator based
on Dual Network Simplex, essentially an explained version of Steiger’s [13], with
the explanations being derived from Benders’ infeasibility and objective cuts [1].

References

1. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4, 238–252 (1962)

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by
Weighting Constraints. In: Procs. of ECAI04. pp. 146–150 (2004)

3. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P., Walsh, T.: Encodings of
the SEQUENCE constraint. In: CP. Volume 4741 of LNCS. pp. 210–224 (2007)

4. Ford, L., Fulkerson, D.: Maximal flow through a network. Canad. J. Math. 8, 399–
404 (1956)

5. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the AllDi↵erent
constraint: An empirical survey. AI 172(18), 1973 – 2000 (2008)

6. Katsirelos, G.: Nogood processing in CSPs. Ph.D. thesis, University of Toronto,
Canada (2008)

7. Maher, M., Narodytska, N., Quimper, C.G., Walsh, T.: Flow-Based Propagators
for the SEQUENCE and Related Global Constraints. In: Procs. of CP08. pp. 159–
174 (2008)

8. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Cha↵: engineering an
e�cient SAT solver. In: Procs. of DAC01. pp. 530–535 (2001)

9. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14, 357–391 (2009)

10. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Procs.
of AAAI96. pp. 209–215 (1996)

11. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
In: Smolka, G. (ed.) Procs. of CP97, vol. 1330, pp. 32–46 (1997)

12. Smith, B.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering.
In: Procs. of PACT97. pp. 321–330 (1997)

13. Steiger, R., van Hoeve, W.J., Szymanek, R.: An e�cient generic network flow
constraint. In: Procs. of SAC11. pp. 893–900 (2011)

18

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 19–24,
Perugia, Italy, 12 September 2011.

Mapping Out the Tractability of 3-Variable Forbidden
Patterns ⇤

Martin C. Cooper, supervisor Guillaume Escamocher, PhD student

Abstract

Identifying the exact frontier between tractable and intractable classes of Constraint Satis-
faction Problems (CSP) is a fundamental problem in complexity theory. Going beyond tractable
classes defined by restrictions either on the language of constraint relations or on the structure
defined by the set of constraint scopes, we study classes of CSP instances defined by forbid-
ding subproblems. This approach has already led to the identification of properties defining
new tractable classes, such as the broken-triangle property (BTP) [1], which generalises tree-
structured instances, and the crisp version of the joint-winner property (JWP) [2] which gener-
alises a set of non-overlapping AllDiff constraints. As a first step in the search for new tractable
classes defined by forbidden subproblems, we have begun a systematic study of the tractability
of classes of binary CSP instances defined by forbidding 3-variable patterns. We present a set
of possible supports for tractable patterns, which can be viewed as a necessary condition for a
pattern to be tractable, and which greatly reduces the number of open cases left to study. We
also give a characterization of the complexity of all (but two) patterns which satisfy some given
properties on their size.

Introduction

A pattern is a partially-specified subproblem. We say that a pattern A is tractable if there exists
a polynomial-time algorithm to solve the class of CSP instances CSP(A) in which A does not
occur; A is intractable if CSP(A) is NP-complete. If a pattern is not known to be tractable or
intractable, then we say that it is open. We consider 3-variable patterns in binary CSPs, since
this is the first case which goes beyond classes defined by properties of individual constraints
and since interesting 3-variable tractable patterns have already been discovered [1, 2]. Since
binary CSP with size-3 domains is NP-complete by reduction from 3-SAT, we only need consider
forbidding patterns with at most three distinct values in each domain. We denote by V the set
of all variables in the instance. For all v 2 V , we denote by Dv the domain of v. A point is a
variable-value assignment. Where there is no possible ambiguity we will also use Dv to represent
the set of points involving variable v. For simplicity of presentation, we assume that there is a
unique binary constraint between every pair of variables. In a CSP instance, two points a, b
are compatible (incompatible) if making this pair of assignments satisfies (does not satisfy) the
corresponding binary constraint. We can consider a pattern as a generic CSP instance in which
certain compatibilities are left unspecified, and a CSP instance can be viewed as a pattern in
which all compatibilities are specified.

By convention, in a pattern all variables are assumed to be distinct. However, two points
a, b 2 Dv may actually represent the same variable-value assignment (unless one is compatible
and the other incompatible with some assignment c to another variable v0).

Since the patterns contain at most three variables, and that there are at most three possible
assignments for each of these variables, a pattern can contain at most 27 edges. Since an edge can
be of three possible kinds (compatible edge, incompatible edge, no edge), the number of patterns
to study is 327.

⇤supported by ANR Project ANR-10-BLAN-0210.

1

19

We start in Section 1 by defining the graphical representation used to describe patterns. Then
in Section 2 we introduce a new tool we call reduction, which will subsequently allow us to
restrict the number of patterns to study to a reasonable number. Combining this new tool and
already known properties, we present our results in the two following sections. We build in
Section 3 a set of patterns which form the support of all possible tractable patterns. We then give
in Section 4 an exhaustive characterisation of complexity (with two exceptions) of patterns with
three or less compatible edges. We finally summarize our results in the conclusion.

1 Graphical Representation

The domains of the variables are represented by circles. Possible assignments for a given variable
v are represented by points inside the circle representing Dv . If two assignments are known to be
compatible, then we draw a continuous line between them. If two assignments are known to be
incompatible, then we draw a dashed line between them. If we don’t have any information on
the compatibility of two assignments, then we don’t draw any line between them.

Examples:

OPENV CLOSEDV SINGLE_EDGE L9

OPENV, CLOSEDV and SINGLE_EDGE are subpatterns which occur in many tractable pat-
terns. The pattern L9 is one of the patterns whose tractability we demonstrate in section 4. The
class it defines is a generalization of the already known tractable class zero-one-all [6].

2 Reduction

In a pattern A, a point a which is linked by a single compatible edge to the rest of A is known as a
dangling point. If an arc consistent instance I does not contain the pattern A then it does not con-
tain the pattern A0 which is equivalent to A in which the dangling point a and the corresponding
compatibility edge have been deleted. Thus, since arc consistency is a polynomial-time operation
which cannot introduce a forbidden pattern, to decide tractability we only need consider patterns
without dangling points.

Definition 1. We say that a pattern A can be reduced to a pattern B, and that B is a reduction of A, if
one of the following is true:

1. A is embedded in B. Example:

A B

2

20

2. Fusioning two points in A transforms A into B. Example:

A B

3. Adding a dangling point and its corresponding compatibility edge to B transforms B into A. Ex-
ample:

A B

4. A can be reduced to a pattern C, such that B is a reduction of C.

Definition 2. Let k � 0 and P be a pattern with k or less compatible edges. We say that P is a k-final
tractable pattern if P is tractable and cannot be reduced to a different tractable pattern with k or less
compatible edges.

Lemma 1. Let A and B be two patterns, such that A can be reduced to B. Let I be a CSP instance
satisfying arc consistency. If B occurs in I , then A also occurs in I .

Proof. We suppose B occurs in I . If A is embedded in B, then the result is immediate. If fusioning
two points a and b in A transforms it into B, then A actually covers two different patterns: the
one where a and b are different points, and the one where a and b are the same point. The latter
pattern is B. So the set of instances containing B is a subset of the set of instances containing A
and we have the result. If adding a dangling point and its corresponding compatibility edge to B
transforms it into A, then since I satisfies arc consistency A also occurs in I . If A can be reduced
to a pattern C such that B is a reduction of C, then by induction C and A also occur in I .

Corollary 1. Let A and B be two patterns, such that A can be reduced to B. Then

• If B is tractable, then A is tractable.

• If A is NP-Complete, then B is NP-Complete.

Therefore, we can use the reduction tool to study only patterns which cannot be reduced to a
known tractable pattern, or which are not the reduction of a known NP-Complete pattern.

3 Necessary Conditions for Tractability

Let U = {U1, . . . , U4}

U1 U2 U3 U4

3

21

A pattern on 3 variables with three or more incompatible edges is NP-Complete [3]. A pattern
with two or more distinct incompatible edges between the same couple of domains is also NP-
Complete [3]. Consequently, if a 3-variable pattern is tractable, then the subpattern formed by its
incompatible edges can be reduced to either CLOSEDV or OPENV. So the only unknown part in
a tractable pattern are the compatibility edges. We have the following Lemma:

Lemma 2. Let P be a tractable pattern. Then P can be reduced to a pattern belonging to U .

Proof. For space reasons, we cannot include the entire proof. The proof consists of showing first
that any pattern which is not embedded in one of the patterns in U contains one of four given
patterns. Then we show these four patterns are all NP-Complete. Since a pattern containing a
NP-Complete subpattern is NP-Complete, we have the result.

This result shows that the only tractable patterns are the ones which are reducible to a pattern
in U . By Lemma 1, we only need to study the subpatterns of the patterns in U . There are 4 patterns
in U , each one having either 10 or 11 edges. So the number of patterns to study is bounded by
4 ⇥ 211 = 213. However, 81  i  4, 8e where e is an incompatible edge in Ui, it is easy to show
that Ui\e is reducible by arc consistency and fusion to the trivial tractable pattern SINGLE_EDGE.
So the only non-trivial subpatterns to study are the ones which have both incompatible edges.
So the number of patterns to study is actually bounded by 4 ⇥ 29 = 211. In fact, by symmetry
arguments it is not difficult to show that the number of distinct open patterns on three variables
is actually less than 1000.

4 Complexity of Patterns with Three or Less Compatible Edges

We now give the complete complexity map of all patterns with three or less compatible edges.
In order to do so, we need to give the set L which is, apart from only two open patterns, the set
of all 3-final tractable patterns. We also give the only two open patterns O1 and O2 with three or
less compatibles edges.

Let L = {L1, . . . , L12}

L1 L2 L3 L4

L5 L6 L7 L8

L9 L10 L11 L12

4

22

and O = {O1, O2}.

O1 O2

Lemma 3. Let P be a pattern with three or less compatible edges such that P 6= O1, O2. Then the two
following properties are equivalent:

1. P can be reduced to a pattern belonging to L.

2. P is tractable.

Proof. The proof consists of two parts. The first one shows that any pattern P 6= O1, O2 with three
or less compatible edges not reducible to a pattern in L is NP-Complete. The second one shows
that all the patterns in L are tractable. For space reasons, we cannot include the entire proof. We
however give one proof of tractability for one of the patterns in L.

We are going to show that the pattern L9 is tractable. We suppose we have an instance in
which we forbid the pattern L9.

Let G be the following gadget: two vari-
ables v0 and v1 such that we have a in Dv0

, b
and c in Dv1 , with b 6= c, a compatible with both
b and c, and a incompatible with a point in Dv1 .

cb

a

6=

Dv0

Dv1

Let f be a point in Dv2 , with v2 6= v0, v1. If f is compatible with b but not with c, then
we have the forbidden pattern L9. Likewise, if f is compatible with c but not with b, then we
have the forbidden pattern L9. So all the points of the instance not in Dv0

or Dv1
have the same

compatibility towards b and c.
If all points in Dv0 have the same compatibility towards b and c, then b and c have the same

compatibility towards all the points in the instance. So by neighborhood substitution [4, 5] we
can remove c. Removing points cannot introduce a forbidden pattern. If all the points in Dv0

which have not the same compatibility towards b and c are compatible with b but not with c, then
all the points in the instance compatible with c are also compatible with b. So by neighborhood
substitution [4, 5] we can remove c. Similarly, if all the points in Dv0

which have not the same
compatibility towards b and c are compatible with c but not with b, then all the points in the
instance compatible with b are also compatible with c and by neighborhood substitution [4, 5] we
can remove b.

Thus we can assume there are d and e in Dv0

such that d is compatible with b but not with c,
and e is compatible with c and not with b.

cb

a
Dv0

Dv1

d e

Edges (b, e), (b, a) and (b, d) form the gadget G. So a and d have the same compatibility
towards all the points in the instance outside of Dv0

and Dv1
. Similarly, edges (c, d), (c, a) and

(c, e) form the gadget G. So a and e have the same compatibility towards all the points in the

5

23

instance outside of Dv0 and Dv1 . So d and e have the same compatibility towards all the points
in the instance outside of Dv0 and Dv1 .

Let S be a solution containing c. Let c0 be the point of S in v0. If c0 is compatible with b, then
we can replace c by b in S while maintaining the correctness of the solution, since b and c have
the same compatibility towards all the points in the instance outside of Dv0

and Dv1
. If c0 is not

compatible with b, then we can replace c by b and c0 by d in S while maintaining the correctness
of the solution, since b and c have the same compatibility towards all the points in the instance
outside of Dv0

and Dv1
and c0 and d have the same compatibility towards all the points in the

instance outside of Dv0
and Dv1

(by the same argument as above with e replaced by c0). So if a
solution contains c, then there is another solution containing b. So we can remove c.

So each time the gadget G is present, we can remove a point. The gadget G is a known
tractable pattern since forbidding G is equivalent to saying that all constraints are zero-one-all
[6]. So if it is not present, then the instance is tractable.

Hence we have shown that the pattern L9 is tractable.

We can remark at this point that all patterns with two or less compatible edges and whose sub-
pattern of incompatible edges is a subpattern of either OPENV or CLOSEDV can be embedded
in one of the patterns in L. Hence all such patterns are tractable.

Conclusion

We have introduced a reduction operation on patterns, which implies a complexity hierarchy
between patterns. We then used this tool to show that all tractable 3-variable patterns reduce
to just one of four patterns. This leaves only subpatterns of the aforementioned four patterns
as open cases. This effectively reduces the number of open patterns from 327 to 211. We also
characterised the tractability of all patterns with three or less compatible edges, except for two
patterns whose tractability remains open. In particular, we have shown that all patterns with two
or less compatible edges, providing they satisfy some simple properties on their incompatible
edges, are tractable. We now have a set U of only four patterns to which all tractable 3-variable
patterns are reducible, and a set L of patterns which summarises the tractable 3-variable patterns
with at most three compatible edges (with two exceptions which are still open). Our future work
will focus on narrowing the gap between these upper and lower boundaries, by showing the NP-
Completeness of a subpattern of some pattern in U , or by proving the tractability of an extension
of some pattern in L.

References

[1] Martin C. Cooper, Peter G. Jeavons, András Z. Salamon, Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination, Artificial Intelligence 174 (9–10) (2010) 570–
584.

[2] Martin C. Cooper, Standa Živný, Hybrid tractability of valued constraint problems, Artificial In-
telligence 175 (9-10) (2011) 1555–1569.

[3] David A. Cohen, Martin C. Cooper, Páidí Creed, András Z. Salamon, The tractability of CSP
classes defined by forbidden patterns, arXiv:1103.1542.

[4] Eugene C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: Pro-
ceedings AAAI-91, Anaheim, CA (1991) 227-233.

[5] Martin C. Cooper, Fundamental properties of neighbourhood substitution in constraint satisfaction
problems, Artificial Intelligence 90 (1997) l-24.

[6] Martin C. Cooper, David A. Cohen and Peter G. Jeavons, Characterising tractable constraints,
Artificial Intelligence 65 (2), 1994, 347-361.

6

24

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 25–30,
Perugia, Italy, 12 September 2011.

Bucket and Mini-bucket Schemes for M Best

Solutions over Graphical Models

Natalia Flerova1 (student), Emma Rollon2 and Rina Dechter1 (supervisor)

1University of California Irvine, 2Universitat Politecnica de Catalunya

Abstract. The paper focuses on finding the m best solutions of a com-
binatorial optimization problem defined over a graphical model (e.g.,
Weighted CSP). We describe elim-m-opt, a new bucket elimination algo-
rithm for solving the m-best task and analyze its worst-case performance.
An extension to the mini-bucket framework that yields a collection of
bounds for each of the m-best solutions is discussed and empirically
evaluated.

1 Introduction

Given an optimization problem, the objective typically is to find an optimal
solution, i.e., a solution that provides the best value of the objective function.
However, in many applications it is desirable to obtain not just a single optimal
solution but a set (of a given size m) of the best possible solutions.

In the paper we focus on graphical models and show how the well-known
Bucket Elimination framework can be extended to compute the m-best solutions
by a relatively simple modification of its underlying combination and marginal-
ization operators [1] yielding algorithm elim-m-opt.

We analyze the complexity of elim-m-opt and discuss extensions to Mini-
Bucket Elimination to compute bounds on each of the m-best solutions, yielding
algorithm mbe-m-opt. We also provide empirical analysis for mbe-m-opt demon-
strating its effectiveness both as an exact scheme as well as for approximation.
Most proofs are omitted for lack of space.

2 Background

We consider problems expressed as graphical models, e.g., Markov and Bayesian
networks [3], constraint networks and influence diagrams.

Definition 1 (graphical model).
A graphical model is a tuple M = (X,D,A,F,

⊗
), where: X = {X1, . . . , Xn}

is a set of variables; D = {D1, . . . , Dn} is the set of their finite domains of values;
F = {f1, . . . , fr} is a set of discrete functions, defined on subsets of variables of
X, called scopes and their range is a set A whose elements are called valuations
and

⊗
is the combination operator over functions (typically sum, product, or

join). The graphical model M represents the function C(X) =
⊗

f∈F f .

25

Definition 2 (reasoning task, m-best task).
A reasoning task is a tuple P = (X,D,A,F,

⊗
, ⇓), where (X,D,A,F,

⊗
) is

a graphical model and ⇓ is a marginalization operator (i.e. min, max, sum). The
reasoning task is to compute ⇓X C(X). The m-best task over a graphical model
M is to find m complete assignments T = {t1, . . . , tm}, such that ∀t′ #∈ T ∀t ∈
T, C(t′) ≤ C(t). The solution is the set of valuations {C(t1), . . . , C(tm)}, called
m-best solutions.

It was shown in several works that, when the operators of a graphical model
satisfy certain axioms, inference algorithms, such as variable elimination and join
tree schemes, are sound and complete for the reasoning task. These axioms can
be stated directly over the operators

⊗
and ⇓ over functions, as was done by

Shenoy and Shafer [4]. In this paper we assume graphical models and reasoning
tasks obeying the Shenoy-Shafer axioms.

Definition 3 (bucket elimination). Bucket elimination (BE) is a dynamic
programming framework used for many reasoning tasks [1]. The input of BE is
a reasoning task P and an elimination ordering o = (X1, X2, . . . , Xn). Each
fi ∈ F is placed in the bucket of its latest variable in o. BE processes the buckets
from Xn to X1, computing for each BucketXi , noted Bi, ⇓Xi

⊗n
j=1 λj , where

λj are the function in the Bi, some of which are original f ′is and some are
earlier computed messages. The result of the computation, a new function also
called message, is placed in the bucket of its latest variable in o. The time and
space complexity of the algorithm is exponential in a structural parameter called
induced width, which is the largest scope of all the functions computed.

3 Algorithm elim-m-opt

Let M = (X,D,A,F,
⊗

) be a graphical model, over which we want to solve
the m-best task. Let 2A be the set of subsets of A, and let us call a function
with range in 2A a vector function.

Definition 4 (combination and addition over sets). Let S, T ∈ 2A. Their
combination, noted S ⊗T , is the set {a⊗ b | a ∈ S, b ∈ T }. Their addition, noted
sortm{S, T }, is the set of the m-best elements in the set S ∪ T .

Definition 5 (combination and marginalization over vector functions).

Let f : Df → 2A and g : Dg → 2A be two vector functions. Their combina-

tion, noted f
⊗

g, is a new vector function defined on scope var(f) ∪ var(g) s.t.

∀t ∈ Dvar(f)∪var(g), f
⊗

g(t) = f(t[var(f)]) ⊗ g(t[var(g)]) The marginalization
of f over Xi ∈ var(f), noted sortm

Xi

f , is a function over scope var(f) − {Xi}
such that ∀t ∈ Dvar(f)−Xi

, (sortm
Xi

f)(t) = sortm{⋃
x∈DXi

f(t · x)}

The bucket-elimination algorithm elim-m-opt is described in Algorithm 1
using the two new combination and marginalization operators of

⊗
and sortm.

26

The algorithm processes the buckets from last to first as usual. The message-
function associates each tuple in its domain with the m-best costs-to-go restricted
to the subproblem below the bucket variable in the bucket tree. It is easy to
show that the combination and marginalization operators defined obey Shenoy-
Shafer’s axioms, from which the correctness of the algorithm follows.

Complexity of elim-m-opt : Given n buckets, one for each variable Xi,
Bi containing degi (i.e., the degree of the respective node in the bucket-tree)
functions and at most w∗ different variables, the total time complexity of elim-
m-opt is O(nmkw∗

log m) and the total space complexity is O(mnkw∗
).

Algorithm 1 elim-m-opt algorithm

Input: An m-best reasoning task P̃(m) = (X, D, A, F,
⊗

, sortm); An ordering of variables o =
{X1, . . . , Xn};

Output: A zero-arity function λ1 : ∅ → 2A containing the solution.
1: Initialize: Generate an ordered partition of vector functions h in buckets B1, . . . , Bn, where

Bi contains all the functions whose highest variable in their scope is Xi.
2: for i← n down to 1 (Processing bucket Bi) do

3: Generate λi = sortm
Xi

(
⊗

f∈Bi
f) and assignment xi = argsortm

Xi
(
⊗

f∈Bi
), concatenate with

relevant elements of the previously generated assignment messages.
4: Place λi and xi in the bucket of the largest-index variable in var(λi)
5: end for
6: Return: λ1

3.1 The Mini-Bucket for the m-best

Mini-bucket Elimination (MBE) [2] is an approximation designed to avoid the
space and time complexity of BE. Consider a bucket Bi and an integer bounding
parameter z. MBE creates a z-partition Q = {Q1, ..., Qp} of Bi, where each set
Qj ∈ Q, called mini-bucket, includes no more than z variables. Then, each mini-
bucket is processed separately, thus computing a set of messages {λij}p

j=1, where
λij =⇓Xi (

⊗
f∈Qj

f). In general, greater values of z increase the quality of the
bound.

Definition 6 (m-best bound). Let S = {a1, . . . , aj} and T = {b1, . . . , bk} be
two sets (i.e., S, T ∈ 2A). S is a m-best bound of T iff ∀1 ≤ i ≤ |T |, bi ≤ ai.

Algorithm m-best MBE (mbe-m-opt) (given in Figure 2) is a straightforward ex-
tension of MBE to m-best reasoning task, where the combination and marginal-
ization operators are the ones defined over vector functions. Algorithm mbe-m-
opt solves m-best reasoning task P̃(m) and its output is a m-best bound on the
m-best solutions.

Theorem 1 (mbe-m-opt bound and complexity) Given an m-best reason-
ing task P̃(m), mbe-m-opt computes an m-best bound on P̃(m). Given an integer
control parameter z, the time and space complexity of mbe-m-opt is O(mnkz log(m))
and O(mnkz), respectively, where k is the maximum domain size and n is the
number of variables.

27

Algorithm 2 MBE-m-opt algorithm

Input: An m-best reasoning task P̃(m) = (X, D, A, F,
⊗

, sortm); An ordering of variables o =
{X1, . . . , Xn}; parameter z.

Output: bounds on each of the m-best solution costs and the corresponding assignments for the
expanded set of variables (i.e., node duplication).

1: Initialize: Generate an ordered partition of functions f(t) = {f(t)} into buckets B1, . . . , Bn,
where where Bi contains all the functions whose highest variable in their scope is Xi.

2: for i← n down to 1 (Processing bucket Bi) do
3: Partition functions in bucket Bi into {Qi1 , ..., Qil

}, where each Qij
has no more than z

variables.
4: Generate cost messages λij

= sortm
Xi

(
⊗

f∈Qij
f) and place each in the largest index variable

in var(Qij
)

5: end for
6: Return: The set of all buckets, and the vector of m-best costs bounds in the first bucket.

3.2 Using the m-best bound to tighten the first-best bound

It is easy to observe that upper or lower bounds are generated by solving a
relaxed version of a problem, the relaxed problem’s solution set contains all the
solutions to the original problem.

Proposition 1. Given the m-best solutions costs generated by mbe-m-opt (for
clarity we consider MPE problem, namely

⊗
=

∏
, ⇓= max and A ∈ {0, 1}. The

results can be extended for other reasoning tasks) C̃ = {p̃1 ≥ p̃2 ≥, ..., ≥ p̃m},
let popt be the probability of the most probable explanation and let j0 be the first
index such that p̃j = popt, or else we assign j0 = m + 1. Then, if j0 > m, p̃m

is an upper bound on popt, which is as tight or tighter than all other p̃1, ...p̃m−1.
In particular p̃m is tighter than the bound p̃1.

If j ≤ m, we already have optimal value, otherwise we can use p̃m as our
tighter upper bound, useful during search algorithms such as A*. It is possible
to decide efficiently (in O(nm) steps) if a bound coincides with the exact opti-
mal cost. The mbe-m-opt provides for each bound a corresponding tuple, where
assignments to duplicated variables are maintained. The first assignment from
these m-best bounds (going from largest to smallest) that corresponds to a tuple
whose duplicate variables are assigned identical value, is optimal.

4 Empirical demonstrations

All experiments assume solving m-best MPE task. We evaluated empirically
algorithm mbe-m-opt with m = {1, 5, 10, 20, 50, 100, 200} and with z-bound 10
on two sets of instances from the UAI 2008 evaluation1. The first set contained
grid instances with 100-2500 variables and tree-width 12-50, the second - pedigree
instances with several hundred variables and tree width 15-30. For clarity and
space reasons we present only a subset of instances illustrating typical behaviour.

Figures 1 and 3 present the dependence of the run-time on m for a few
selected instances. Figure 2 shows as a function of j the change in accuracy

1 http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks

28

0

10

20

30

40

50

60

70

80

1 5 10 20 50 100 200

Tim
e, s

ec
Number of solutions m

Grids: run5time (sec) as a function of m

90,22,5 90,24,5 90,25,5 90,26,5 90,30,5

90,34,5 90,38,5 90,42,5 90,46,5 90,50,5

Fig. 1: Run time (sec) as a function of required number of solutions m for the
grid instances

1,5

1,55

1,6

1,65

1,7

1,75

1,8

1,85

1,9

1 21 41 61 81 101 121 141 161 181

ab
s(l

og
(P)

*lo
g(U

B)
)

Solution index number

The difference between the exact solution and
the bound

50,12,5 50,14,5

Fig. 2: The absolute difference between the first exact solution and the mth upper
bound as a function of m for two grid instances

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" '" #!" $!" '!" #!!" $!!"

!"
#$%&

#'%

()*+,%-."/#0%)1%&),.!)-&%"%

2#3450##&6%0.-7!"#%+&%+%1.-'!)-%)1%"%

()*+,-))#%" ()*+,-))#." ()*+,-))$!" ()*+,-))$%"

()*+,-))%/" ()*+,-))%0" ()*+,-))%." ()*+,-))&#"

Fig. 3: Run time (sec) as a function of required number of solutions m for the
pedigree instances

!"#$

!%&$

!%"$

!%'$

!%($

!%#$

!'&$

!'"$

!''$

!'($

!$ "$ %$ '$)$ ($ *$ #$ +$!&$

!"#
$%

&'(
)

*"!+,"-).-/01)-+2304)

5%%6)78)230929":;)

!&,!&-!&$./01.1234$562789:!&$!&,!&-!&$6;;<$!&,!&-*$./01.1234$562789:!&$

!&,!&-*$6;;<$!&,!&-!&$23=.>?$@2?7=28$!&,!&-*$23=.>?$@2?7=28$

Fig. 4: Comparison of mbe-m-opt with z-bound 10 and BMMF to the exact
solution for the two instances of random 10 by 10 grids

29

defined as the absolute difference between the optimal solution and the bound
on the jth solution. For these grid instances as j increases, the bound on the
cost of the jth solution slowly approaches the exact best solution demonstrating
a potential improving of the bound on the optimal assignment using the m-best
bounds as discussed in Section 3.2.

We carried some comparison with BMMF, an approximate message-passing
algorithm by [5], on randomly generated 10 by 10 grids. The run times of the
algorithms are not comparable since our algorithm is implemented in C and
BMMF in Matlab, which is inherently slower. The algorithms also differ in the
nature of the outputs: BMMF provides approximate solutions with no guaran-
tees while mbe-m-opt generates bounds on all the m-best solutions. Still some
information can be learned. In Figure 4 we see that the algorithm with the
z-bound=10 yields an upper bound and that BMMF outputs significantly less
accurate results than mbe-m-opt with even a low z-bound. Admittedly, these
experiments are quite preliminary and not conclusive.

5 Conclusions

We presented a new bucket-elimination algorithm for solving the m-best task
over a graphical model and analyzed its performance. The significance of the
proposed algorithm is primarily in providing a unifying inference framework for
the m-best task that can both suggest approximation schemes and yield heuristic
advice. The promise of the elim-m-opt inference algorithm is in its potential to
yield viable bounds for the m-best solutions via the mini-bucket algorithm.

Furthermore, it could also lead to loopy propagation message-passing schemes.
Moreover, all such approximation extensions would be applicable to the broad
range of graphical models captured by the unifying framework of Shenoy and
Shafer. Future work will focus on such extensions and on empirical evaluations
of the emerging schemes.

The empirical analysis we provided is only preliminary. Yet it shows that mbe-
m-opt scales even better than worst-case predict as a function of m. Comparison
with other exact and approximation algorithms is left for future work.

References

1. R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1):41–85, 1999.

2. R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference.
Journal of the ACM (JACM), 50(2):107–153, 2003.

3. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann, 1988.

4. P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation.
Uncertainty in Artificial Intelligence, 4:169–198, 1990.

5. C. Yanover and Y. Weiss. Finding the M Most Probable Configurations Using Loopy
Belief Propagation. In Advances in Neural Information Processing Systems 16. The
MIT Press, 2004.

30

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 31–36,
Perugia, Italy, 12 September 2011.

Consistency of Constraint Networks Induced by
Automaton-Based Constraint Specifications

Maŕıa Andréına Francisco Rodŕıguez, Pierre Flener, and Justin Pearson

Uppsala University, Department of Information Technology, Uppsala, Sweden
MariaAndreina.Francisco_Rodriguez.3450@student.uu.se,

Pierre.Flener@it.uu.se, Justin.Pearson@it.uu.se

Abstract. We discuss the consistency of constraints for which the set of
solutions can be recognised by an automaton. Such an automaton induces
a decomposition of the constraint into a conjunction of constraints. The
so far most general result is that if the constraint hypergraph of such a
decomposition is Berge-acyclic, then the decomposition provides hyper-
arc consistency. We focus on constraint networks that have ↵-acyclic or
centred-cyclic hypergraph representations and show the necessary con-
ditions to achieve hyper-arc consistency in these cases.

Keywords: Acyclicity, hypergraph, automaton.

1 Introduction

Global constraints are an important component in many modern constraint
solvers. A global constraint does two things: from the modelling perspective,
it allows a modeller to express commonly occurring combinatorial structures;
from the solving perspective, it comes with a filtering algorithm that removes
impossible domain values during search.

In [3], a framework is given where a global constraint can be specified in a
relatively simple and high-level way by a (deterministic or non-deterministic)
finite automaton. The idea is to describe what it means for the constraint to
be satisfied in terms of the accepting paths of the automaton. Based on the
automaton, the framework decomposes the specified new global constraint into
a conjunction of already implemented (global) constraints. These constraints
give the semantics of the specified global constraint and provide the filtering.

It is so far known [2, 3] that if the constraint graph of a decomposition (in-
duced by an automaton) is Berge-acyclic [5], then the decomposition automat-
ically provides hyper-arc consistency, that is the decomposition achieves all the
filtering that is possible. Beside Berge-acyclity, another ten patterns of constraint
hypergraph structure are identified in the current on-line version of the Global
Constraint Catalogue [4],1 but little is known about the filtering strength of the
(automaton-induced) decompositions that satisfy these structures.

1 See http://www.emn.fr/z-info/sdemasse/gccat/sec3.6.5.html

31

2 M. A. Francisco Rodŕıguez, P. Flener, and J. Pearson

In this paper, we show how an ↵-acyclic constraint hypergraph (see Sec-
tion 3) can be modified to provide hyper-arc consistency. Moreover, we show
that by adding implied constraints the so-called centred-cyclic networks of [4]
can also be modified to provide hyper-arc consistency (see Section 4). This cov-
ers five of the ten open hypergraph patterns (namely ↵-acyclic(2), ↵-acyclic(3),
centred-cyclic(1), centred-cyclic(2), and centred-cyclic(3)) and almost doubles
the number of automaton-induced decompositions in the on-line version of the
Global Constraint Catalogue [4] that are known to provide hyper-arc consistency.

It was observed in [2] that an ↵-acyclic constraint hypergraph can be made
hyper-arc consistent by making the constraints pairwise consistent, but no algo-
rithm was given. Here we show the connection (Theorem 1) between maintaining
pairwise consistency and doing a reachability analysis on an automaton.

There is also a large body of related work (e.g., [6–8, 13]) on decomposing
global constraints to achieve hyper-arc consistency. This work can be seen as a
more systematic approach to provide hyper-arc consistency via decompositions.

2 Background: The automaton Constraint

The automaton(A, V) constraint [3] holds if the constraint described by the
automaton A holds for the sequence of decision variables V , that is if A accepts
the sequence of values of V . We define the automaton constraint in three stages:
first its particular case that is also known as the regular constraint [12], and then
two orthogonal extensions, namely predicate automata and counter automata.

2.1 Modelling Constraints with Automata

The automaton constraint can be implemented either via a specialised propaga-
tor [12], or via decomposition into a conjunction of constraints [3]. For a given
automaton, define a constraint T (⇢, ⇢0, �) extensionally by the following set:

{h⇢, ⇢0, �i | ⇢ ��! ⇢0} (1)

That is, T (⇢, ⇢0, �) is satisfied whenever there is a transition from state ⇢ to
state ⇢0 that consumes symbol �. An automaton constraint on a sequence of n
decision variables, v1, . . . , vn, is then decomposed into the following conjunction
of n + 2 constraints, called the transition constraints :

q0 2 S ^ T (q0, q1, v1) ^ · · · ^ T (qn�1, qn, vn) ^ qn 2 F (2)

where q0, q1, . . . , qn�1, qn are new decision variables, called the state variables,
with domain Q. For contrast, we call v1, . . . , vn the problem variables.

The implementation of [3] actually works unchanged for non-deterministic
finite-state automata, but we have elected to restrict our focus to deterministic
ones, in order to ease the notation.

32

Consistency of Automaton-Induced Constraint Decompositions 3

2.2 Modelling Constraints with Predicate Automata

The automata in [3] are more powerful than those in [12]: the labels can be
predicates, and all predicates must be satisfied on an accepting path. Let Predk

be a set of k-ary predicates in some suitable language. That is, a predicate takes
a vector, V, of k values and it is either true or false.

A k-ary-predicate DFA is a tuple hQ,⌃, �, S, F, �i, where Q, ⌃, S, F , and �
are exactly as for a DFA, and � is a function from ⌃ to Predk. Given a predicate
automaton hQ,⌃, �, S, F, �i, the automaton hQ,⌃, S, F, �i is referred to as the
underlying automaton of the predicate automaton.

In [3], constraints defined by predicate automata are implemented with the
help of reification. The constraint T defined in (1) is used for the following
transition constraints:

q0 2 S ^ T (q0, q1, s1) ^ · · · ^ T (qn�1, qn, sn) ^ qn 2 F (3)

These transition constraints are like (2), but are expressed for new decision
variables s1, . . . , sn, which are connected as follows to the problem variables
via the predicates and reification: given an n-length sequence V1, . . . , Vn of k-
ary vectors of problem variables, we add the following constraints, called the
signature constraints : ^

�2⌃

(si = � , �(�)(Vi)) (4)

for all 1  i  n, where the si are called the signature variables, with domain
⌃. Hence Predk contains whatever can be implemented as reified constraints in
the underlying constraint solver.

2.3 Modelling Constraints with Counter Automata

While the class of constraints that can be described by (predicate) automata
is very large (currently, 63 of the 354 constraints of the on-line version of the
Global Constraint Catalogue [4] are described that way), it is often the case
that (predicate) automata are very large or specific to a problem instance. The
second extension in [3] is the use of counters that are initialised at the start
and evolve through counter-updating operations coupled to the transitions of
the automaton. Such counter automata allow the capture of non-regular lan-
guages and yield (even for regular languages) automata that are much smaller
if not instance-independent (and currently enable another 57 constraints of the
catalogue to be described succinctly or generically). The two extensions are or-
thogonal and can be composed, so we define this second extension in isolation.

Unlike the counter automata in theoretical computer science (see, e.g., [11]),
the counter automata here do not have access to the values of the counters during
a run, but the values of the counters are updated by the transitions.

In [3], counter automata are decomposed into transition constraints that are
slightly extended to include information about the values of the counters. Define
a new constraint T (⇢, ⇢0, C, C0, �) extensionally by the following set:

{h⇢, ⇢0, C, C0, �i | (⇢, C)
��! (⇢0, C0)}

33

4 M. A. Francisco Rodŕıguez, P. Flener, and J. Pearson

An automaton constraint on a sequence of n problem variables, v1, . . . , vn, and
a vector of ` counters, C, is then decomposed into the following conjunction of
n + 3 transition constraints:

q0 2 S^T (q0, q1, C0, C1, v1)^· · ·^T (qn�1, qn, Cn�1, Cn, vn)^qn 2 F ^C = Cn (5)

where q0, q1, . . . , qn�1, qn are state variables, with domain Q, while
C0, C1, . . . , Cn�1, Cn are vectors of integer decision variables, called counter vari-
ables, and C0 has the initial values of the counters.

3 ↵-Acyclic Automata

It is well known that a su�cient method for achieving hyper-arc consistency for a
constraint set with a Berge-acyclic constraint hypergraph is to ensure each con-
straint of the hypergraph is hyper-arc consistent [9,10]. Nevertheless, in general,
hyper-arc consistency of the individual constraints of a problem is not su�cient
to ensure hyper-arc consistency of the whole problem.

Without loss of generality, in the rest of the paper, we only consider constraint
satisfaction problems whose constraint hypergraph is connected and reduced.

Let {R1(S1), . . . , Rm(Sm)} be a set of constraints with an ↵-acyclic con-
straint hypergraph that are pairwise consistent, and let R(S) be the constraint
representing the set of solutions of the conjunction of these constraints, where
S is a tuple containing all the variables in S1, . . . , Sm. It can be shown [1] that
for all i the projection projSi

R(S) is equal to Ri(Si). Thus, all tuples in the
constraints Ri(Si) participate in a solution. In particular, if all the constraints
in the set are hyper-arc consistent, their conjunction is hyper-arc consistent.

Theorem 1. Consider the transition constraints (5) from a counter-automaton-
induced constraint decomposition:

q0 2 S ^ T (q0, q1, C0, C1, v1) ^ · · · ^ T (qn�1, qn, Cn�1, Cn, vn) ^ qn 2 F ^ C = Cn

Maintaining these transition constraints pairwise consistent is equivalent to do-
ing reachability analysis on the corresponding automaton.

Proof. The transition constraint T (qi�1, qi, Ci�1, Ci, vi) codes the transition re-
lation of the automaton. Achieving pairwise consistency on the pair q0 2 S and
T (q0, q1, C0, C1, v1) forces the domain of q1 and C1 to include only states and
counter values that are reachable after consuming one alphabet symbol of the
automaton. Thus T (q0, q1, C0, C1, v1) can be replaced by a constraint T0, which is
a sub-constraint of T that only contains the tuples corresponding to transitions
that can happen in one step. Assume that hyper-arc consistency and pairwise
consistency have been achieved up to step i by the constraints:

q0 2 S ^ T (q0, q1, C0, C1, v1) ^ · · · ^ T (qi�1, qi, Ci�1, Ci, vi)

By induction, the domains of qi and Ci are all states and counter values that
are reachable after i transitions in the automaton. Thus, achieving pairwise

34

Consistency of Automaton-Induced Constraint Decompositions 5

consistency on the pair Ti(qi�1, qi, Ci�1, Ci, vi) and T (qi, qi+1, Ci, Ci+1, vi+1) gives
a new constraint Ti+1 that contains only the subset of the tuples of Ti that can
take part in a chain of transitions of length i + 1.

4 Centred-Cyclic Automata

We now analyse another type of constraint hypergraph that appears in the on-
line version of the Global Constraint Catalogue [4], namely centred-cyclic hyper-
graphs. We show that it is possible to ensure hyper-arc consistency for this kind
of constraint hypergraph. Since a centred-cyclic hypergraph is not ↵-acyclic, in
order to achieve hyper-arc consistency, new methods have to be used.

A centred-cyclic constraint decomposition has two groups of constraints: the
transition constraints and the signature constraints. Considered alone, the tran-
sition constraints are berge-acylic, and the signature constraints are ↵-acyclic.
So, it is possible to achieve hyper-arc consistency on each group separately, but
this is not enough to achieve hyper-arc consistency of the whole decomposition.
The transition constraints and the signature constraints only overlap in the se-
quence of signature variables s1, . . . , sn. In order to ensure hyper-arc consistency
for the whole hypergraph, the projection of both subproblems onto their common
variables must be the same: that is, the set of possible values for the sequence of
signature variables s1, . . . , sn must be a solution to both the signature constraints
and the transition constraints. Thus it is su�cient to add to the decomposition
an implied constraint I(hs1, . . . , sni) that is satisfied by a sequence of signature
values h�1, . . . , �ni if and only if the corresponding transition sequence is allowed
by the automaton and the signature constraints.

Theorem 2. Given an automaton-induced decomposition, the constraint
I(hs1, . . . , sni) can be computed directly from the underlying automaton.

Proof. Assuming that each predicate of the automaton is satisfiable for some
assignment of the problem variables, the signature constraints (4) allow all pos-
sible values for each signature variable si. The only restrictions on the values of
the signature variables come from the transition constraints (3).

The transition constraints, together with the condition that q0 and qn re-
spectively belong to the start and accepting state sets, restrict the intermediate
values to correspond to a chain of transitions from a start state to an accepting
state. Thus the constraint I must restrict the values of the signature variables to
correspond to the edge labels of accepting chains of the underlying automaton.

5 Conclusion

We have used the notions and results of hypergraphs and relational databases
to derive properties of constraints given their hypergraph. In particular, we have
shown that a constraint satisfaction problem whose hypergraph is ↵-acyclic can
be modified in order to achieve hyper-arc consistency. Also, we have shown a

35

6 M. A. Francisco Rodŕıguez, P. Flener, and J. Pearson

way to decompose centred-cyclic constraints and evaluate their consistency. We
will now investigate the remaining five hypergraph constraint patterns currently
identified in the on-line version of the Global Constraint Catalogue [4]. Moreover,
we will study how these results can be applied in practice.

Acknowledgements. The second and third authors are supported by grant
2007-6445 of the Swedish Research Council (VR).

References

1. Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the de-
sirability of acyclic database schemes. Journal of the ACM, 30(3):479–513, July
1983.

2. Nicolas Beldiceanu, Mats Carlsson, Romuald Debruyne, and Thierry Petit. Re-
formulation of global constraints based on constraints checkers. Constraints,
10(4):339–362, 2005.

3. Nicolas Beldiceanu, Mats Carlsson, and Thierry Petit. Deriving filtering algorithms
from constraint checkers. In Mark Wallace, editor, Proceedings of CP’04, volume
3258 of LNCS, pages 107–122. Springer-Verlag, 2004.

4. Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint
catalogue: Past, present, and future. Constraints, 12(1):21–62, March 2007. The
catalogue is at http://www.emn.fr/z-info/sdemasse/gccat.

5. Claude Berge. Graphes et Hypergraphes. Dunod, Paris, France, 1970.
6. Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, Claude-

Guy Quimper, and Toby Walsh. Reformulating global constraints: The slide and
regular constraints. In Proceedings of SARA’07, volume 4612 of LNAI, pages 80–
92. Springer-Verlag, 2007.

7. Christian Bessière, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, and
Toby Walsh. Decomposition of the NVALUE constraint. In David Cohen, editor,
Proceedings of CP’10, volume 6308 of LNCS, pages 114–128. Springer-Verlag, 2010.

8. Christian Bessière, George Katsirelos, Nina Narodytska, and Toby Walsh. Circuit
complexity and decompositions of global constraints. In Craig Boutilier, editor,
Proceedings of IJCAI’09, pages 412–418, 2009.

9. Philippe Janssen and Marie-Catherine Vilarem. Problèmes de satisfaction de con-
traintes : Techniques de résolution et application à la synthèse de peptides. Techni-
cal Report 54, Centre de Recherche en Informatique de Montpellier, France, 1988.

10. Philippe Jégou. Contribution à l’étude des problèmes de satisfaction de con-
traintes : Algorithmes de propagation et de résolution - Propagation de contraintes
dans les réseaux dynamiques. PhD thesis, Université Montpellier II, France, 1991.

11. Jérôme Leroux and Grégoire Sutre. Flat counter automata almost everywhere! In
Proceedings of ATVA’05, the 3rd International Symposium on Automated Technol-
ogy for Verification and Analysis, volume 3707 of LNCS, pages 489–503. Springer-
Verlag, 2005.

12. Gilles Pesant. A regular language membership constraint for finite sequences of
variables. In Mark Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS,
pages 482–495. Springer-Verlag, 2004.

13. Claude-Guy Quimper and Toby Walsh. Decomposing global grammar constraints.
In Christian Bessière, editor, Proceedings of CP’07, volume 4741 of LNCS, pages
590–604. Springer-Verlag, 2007.

36

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 37–42,
Perugia, Italy, 12 September 2011.

Towards a better understanding of hardness

Matthew Gwynne and Oliver Kullmann

Computer Science Department
Swansea University, UK

csmg@Swansea.ac.uk, O.Kullmann@Swansea.ac.uk
http://cs.swan.ac.uk/~csmg, http://cs.swan.ac.uk/~csoliver

Abstract. Of fundamental importance for SAT solving is the transla-
tion to CNF. One of the basic tasks is to find metrics for determining
what are “good” translations, i.e., what makes the resulting SAT prob-
lem easy to solve. We introduce a new measure hd(F), the “hardness”,
for formulas F in conjunctive normal form (i.e., clause-sets). hd(F) for
unsatisfiable clause-sets has been studied in [6,8]. However, now we treat
satisfiable clause-sets di↵erently. We consider the Advanced Encryption
Standard (AES) and Data Encryption Standard (DES) as examples. The
key discovery for these ciphers present examples of hard problems, and
we investigate translations of these problems geared towards minimis-
ing hd(F). We present the SAT representation hypothesis: The task of
solving a SAT problem e�ciently is captured by constructing a repre-
sentation of the underlying boolean function which is of low hardness.

1 Introduction

Over the past decade, the use of SAT solvers for solving industrial and crafted
problems has greatly increased. In particular, the use of SAT to solve cryp-
tographic problems has become popular, and there are several translations of
the Data Encryption Standard and Advanced Encryption Standard ciphers into
SAT. The question arises with any translation: what makes a good translation for
some problem P? We investigate this question using AES and DES as examples.

We assume that P is already decomposed, somehow, into “constraints”. In
our example, a constraint C is a “box” within the cipher; another typical example
for C would be a cardinality constraint. By a ”constraint” we mean that we
”know” (at least) all satisfying and falsifying assignments. We consider only
SAT translations which preserve the decomposition of P and so each C gets
translated into a clause-set FC , and all the FC together yield the translation of
P . Despite translating to SAT, we still want to consider F = FC as some form
of constraint; we want to “know” its satisfying and falsifying assignments and
we want to let the SAT solver know! A common approach here is to adapt the
notion of “hyper-arc consistency” by the use of UCP (unit-clause propagation),
that is, in the weak sense, for every partial assignment ' such that ' ⇤ F is
unsatisfiable, UCP on ' ⇤ F yields the empty clause, or, in the stronger sense,
additionally every forced assignment in '⇤F (for satisfiable '⇤F) is also derived
by UCP. We strengthen/generalise this approach in three ways:

– we generalise UCP, allowing arbitrary polynomial time, in some standardised
sense, to get to “know” the satisfying and falsifying assignments;

– we consider all variables in FC , not just those in C — that is, we should
know all satisfying assignments of F ;

37

2

– instead of ad-hoc methods to construct F (for example those for cardinality
constraints) we develop systematic methods.

The Data Encryption Standard and the Advanced Encryption Standard have
both received significant attention from the cryptography community, and have
been attacked in [1,5,10] using SAT solvers. In both cases, the ciphers encrypt
a plaintext P to a ciphertext C using a key K. We consider the key discovery
problems, i.e., finding K from P and C. The DES can be considered as computing
the ciphertext via iterated application, using 16 rounds, of various 10-bit S-boxes
(6-bit to 4-bit boolean functions, 8 per round) and addition (XOR) of input
and key bits. The AES can be considered in a similar way, using 10 rounds
and 16-bit S-boxes (8-bit to 8-bit permutations, 16 per round); the AES also
has a linear MixColumns operation in each round, using 4 · 16 8-bit to 8-bit
multiplication operations, and also a non-trivial key-schedule (unlike the DES),
involving further S-boxes and additions. It is these S-boxes, multiplications and
additions that we consider as our constraints. That is, we translate the AES
and DES via a decomposition based on the definition, considering the S-boxes,
additions and multiplications as the constraints to translate directly to SAT.
This di↵ers from the approaches taken in [2,5,10], which apply global algebraic
methods and completely “rewrite” the DES/AES constraint system.

In order to obtain solvable problems, we consider the “small-scale AES”
generalisation as introduced in [2], denoted by aes(m, r, c, e), and parameterised
by the number m of rounds, number r of rows, number c of columns, and the bit-
size e of individual elements of the AES “block”. Key, plaintext and ciphertext
have the same number of bits r ·c ·e. The standard 128-bit AES is aes(10, 4, 4, 8),
that is, 10 rounds and the 128-bits are considered as 4⇥4 matrix of 8-bit elements.
All “boxes” (i.e., permutations) have e input bits and e output bits, and thus
yield 2e-bit boolean functions. The MixColumns operation, itself an operation
using r2 many such (multiplication) permutation boxes, has r-vectors of e-bit
elements as inputs and outputs, and there are c such operations per round.

In Section 2, we investigate a new notion of hardness of CNF formulas where,
in general, a low hardness should mean a good translation. Then in Section 3,
we present experimental results on using representations with low hardness. All
work presented is available within the OKlibrary (see [9]), a research platform
for hard problems, and also in [4], a forthcoming technical report.

2 Notions of hardness

In [6,8], a measure of hardness hdU,S : CLS ! N0 of clause-sets1) was introduced.
For unsatisfiable clause-sets, this notion is closely related to the complexity of
tree-resolution. For satisfiable instances it measures the complexity of unsatis-
fiable sub-instances one has to solve to arrive at a satisfying assignment, using
only forced assignments (i.e., the negated assignment yields an unsatisfiable sub-
instance) plus guessed assignments. hdU,S is parameterised by oracles U, S for
unsatisfiability/satisfiability detection. For this paper, we restrict our consider-
ations to the simplest cases U0 := {F 2 CLS : ? 2 F} (? is the empty clause)
and S0 := {>} (> is the empty-clause-set). A clause-set is considered trivially
unsatisfiable or satisfiable if it is in U0 or S0 respectively. In [6,8] a hierarchy of
clause-set classes Gk(U, S) is defined. Checking whether F 2 Gk(U, S) can be
done in time O(n2k) using breadth-first search.

1) A clause-set is set of set of literals which is then interpreted as either a conjunctive
or disjunctive normal form formula. If not stated, we consider CNF clause-sets.

38

3

Definition 1. The hardness hdU,S(F) 2 N0 of a clause-set F 2 CLS is the
minimum k 2 N0 with F 2 Gk(U, S).

We have:

1. F 2 G0(U0, S0) i↵ ? 2 F or F = >.
2. F 2 G1(U0, S0) i↵ after unit-clause propagation either ? 2 F or F = >,

where for the latter we can guess one assignment.
3. F 2 G2(U0, S0) i↵ after failed-literal reduction either ? 2 F or F = >,

where for the latter we can guess two assignments.

Only using the aspect of forced assignment, without guessing assignments, we
obtain the k-level reductions rk : CLS ! CLS. r1 is unit-clause propagation, r2 is
failed-literal reduction, and so on. For unsatisfiable F we have that hdU0,S0

(F) =
hdU0

(F) is the smallest k 2 N0 such that ? 2 rk(F).

2.1 A new notion of hardness

We introduce a new notion of hardness, based on hdU0
. For satisfiable clause-sets,

now instead of measuring the resources for finding some satisfying assignment,
we measure the level of rk-reductions needed to derive all possible conclusions.

Definition 2. The hardness hd(F) 2 N0 for F 2 CLS is the minimal k 2
N0 such that for all clauses C with F |= C (i.e., F implies C) we have ? 2
rk('C ⇤ F). The partial assignment 'C sets all literals of C to 0, while “⇤”
denotes application of partial assignments. If hd(F)  k we call F k-soft, and
if hd(F) � k we call F k-hard.

For unsatisfiable clause-sets F , we have hdU0(F) = hd(F). However, for satisfi-
able clause-sets, the two notions di↵er. For F 2 SAT , hd(F) characterises the
level of look-ahead needed to determine that the solver has entered a unsatis-
fiable sub-branch, during any depth-first backtracking search. Some polynomial
time SAT decision classes have low hardness. For instance:

– If F is (renamable) Horn formula, then hd(F)  1.
– If all clauses of F have length at most 2, then hd(F)  2.

A satisfying assignment for F with hd(F) = k can be found in polynomial time
by checking whether ? 2 rk(F); if ? 2 rk(F) then F is unsatisfiable; otherwise
we find a variable v and assignment b 2 {0, 1} such that ? 62 rk(hv ! bi ⇤ F)
and continue recursively on hv ! bi ⇤ F which must itself be satisfiable. Now
consider a boolean function f with n variables, such that we wish to represent
f as a CNF clause-set.

Definition 3. A representation F 2 CLS of a boolean function f is a clause-
set F with var(f) ✓ var(F) such that restricting the satisfying assignments of F
to var(f) we get exactly the satisfying assignments of f .

The two most extreme representations (without new variables) of f with mini-
mum and maximum hardness are the set of all prime implicates and the canonical
CNF.

Definition 4. Let prc0(f) be the set of all clauses C which as CNF are prime
implicates of f , that is, f |= {C} while f 6|= {C 0} for every C 0 ⇢ C. For clause-
sets, we overload this notion, that is, for F 2 CLS, we have prc0(F) = prc0(f)
for the boolean function f given by F .

39

4

Let CNF(f) be the canonical CNF clause-set for f , that is, the CNF clause-
set F with var(F) = var(f) and with C 2 F for all clauses of length n(f) :=
|var(f)| with F |= C. For the canonical DNF clause-set, we use DNF(f). In
general, we call a clause-set F full if every clause C 2 F has |C| = n = |var(F)|.

The prime implicates for f have that hd(prc0(f)) = 0; for all unsatisfiable
full CNFs F , we have that hd(F) = n and for arbitrary full F we have that
hd(F) = n(F) � minC2prc0(F)|C|.

2.2 Representations with low hardness

With hdU,S(F), there is a polynomial time algorithm for checking “hdU,S(F) =
k?”. For hd(F), the core idea is that we do not measure hd(F) but construct
a clause-set F representing some boolean function f so as to minimise hd(F).
Therefore, we consider 1-soft representations of boolean functions, which we will
use to translate small sub-functions within the AES and DES in Section 3.

The use of new variables is a powerful method for reducing the complexity
when solving problems from propositional logic. We introduce a translation for a
boolean function f using new variables based on the canonical DNF, introducing
a new variable vctf (C) /2 var(f) for each clause C 2 DNF(f) (recall, these
clauses represent the total satisfying assignments of f).

Definition 5. Consider a boolean function f : {0, 1}V ! {0, 1}. Let the canon-
ical translation ct(f) 2 CLS be defined as

ct(f) :=
�

{vctf (C)}C2DNF(f)

[

[

C2DNF(f)

prc0

�
vctf (C) $

^

x2C

x
�
.

Lemma 6. For all f : {0, 1}V ! {0, 1} the canonical translation ct(f) is 1-soft.

To construct k-soft representations without new variables, we present a search-
based approach. We want then to find representations which are minimal in a
sense, and so we introduce the notion of a “base”.

Definition 7. A k-base, k 2 N0, for a boolean function f is a clause-set F
fulfilling the following conditions:

1. F is a representation of f ;
2. F is k-soft;
3. F is minimal w.r.t. elimination of clauses and literal occurrences for 1 & 2.

F is a k-base (for itself) if it is a k-base for the underlying boolean function.

The basic idea to construct a k-base F is to start with the set prc0(f) of all
prime implicates, and iteratively remove clauses from F while checking that all
C 2 prc0(f) still follow from F by rk. This simple scheme takes a very long time,
and so we have developed heuristics for generating small 1-bases. We remark that
computing smallest 1-bases seems not feasible for the examples we considered.

2.3 SAT representation hypothesis

Based on our new notion of hardness, we present the SAT representation hypoth-
esis. This states that the task of finding a “good” representation of a boolean

40

5

function f , for the purpose of SAT solving in polynomial time, is fully captured
by constructing a k-soft representation F for f for some appropriate k (depend-
ing on the problem). The smaller k, the lower the exponent for the polynomial
in the run-time estimation, but the larger F is, so a balance is to be sought. If
f is only some part of a bigger function (for example the S-box in AES), then f
should be made as large as possible.

3 Experimental results

The AES and DES ciphers were translated using translations provided in the
OKlibrary. Additions are translated directly as their prime implicates, while
each of the S-boxes, and multiplications were translated using:

– “minimum” CNF representations, minimising the number of clauses;
– the canonical representation (see Section 2.2);
– 1-base translations (see Section 2.2);

In terms of hardness, the canonical and 1-base translations are both 1-soft, while
the minimum translations are k-hard for 2  k  4 (computed). We would expect
to see the fact that the canonical and 1-base translations are “easier” reflected in
run times of the solvers, and in particular in the number of conflicts (or nodes)
the solver uses.

We ran SAT solvers minisat-2.2.0 ([3]) and the OKsolver 2002 ([7]) on
key discovery instances of the DES over m rounds, des(m), and small scale
AES variants with m rounds, c columns, r rows and field size e, aes(m, r, c, e).
In general, as each of the parameters increases, the instances become harder.
Results for DES and AES are presented in Figure 1 and Figure 2; the full results
are available at http://cs.swan.ac.uk/~csmg/Hardness/.

Variant |K| minisat-2.2.0 OKsolver 2002
can 1-base min can 1-base min

des(3) 64 3,717.85 1,146.9 3,714.85 72.75 13,186.7 395,749.8
des(4) 64 1,557,147 1,259,590 1,271,120 - 4,205,769 4,818,590
des(5) 64 40,018,619 183,335,114 258,451,462 - - -

aes(10, 2, 1, 8) 16 135,919 131,517 159,292,117 - 17,633 -
aes(3, 2, 4, 4) 32 26,578,774 9,731,073 43,754,923 - - -
aes(2, 2, 2, 8) 32 3,908,438 19,744,428 181,241,122 - - -

Fig. 1. Conflicts/nodes used to solve DES/AES variants

4 Conclusion

Based on the results so far, the hardness of small sub-functions in translations
to SAT seem to o↵er a good indicator of the performance of SAT solvers on the
whole problem. Translations using sub-function representations with low hard-
ness were sometimes an order of magnitude better than small or full translations.

In some instances, the results were not as expected, with the minimum trans-
lation performing better than a 1-soft translation. However, there are still further

41

6

Variant |K| minisat-2.2.0 OKsolver 2002
can 1-base min can 1-base min

des(3) 64 0.20 0.016 0.027 4.22 7.54 129.04
des(4) 64 459.18 48.19 31.12 > 10800 2,039.62 1,140.81
des(5) 64 17,221 13,363 14,291 > 18000 > 18000 > 18000

aes(10, 2, 1, 8) 16 298.18 229.37 9,617.52 > 18000 3,224.61 > 18000
aes(3, 2, 4, 4) 32 4,067.81 690.87 1,771.68 > 18000 > 18000 > 18000
aes(2, 2, 2, 8) 32 13,600.25 4,679.6 9,429.73 > 18000 > 18000 > 18000

Fig. 2. Times (in seconds) used to solve DES/AES variants

questions to be answered including, for instance, how the decomposition of the
translation into small boolean functions a↵ects hardness. Answering such ques-
tions should shed light on the reasons for the performance of solvers in such
instances.

The next step is to investigate di↵erent decompositions of the DES and AES
into small boolean functions, considering also translations given in [1,5,10], and
to consider how such decompositions a↵ect the hardness of the final transla-
tion. Such investigations must also continue at a theoretical level, providing a
framework for constructing “easy” representations of boolean functions.

References

1. Gregory V. Bard and Nicholas T. Courtois. Algebraic cryptanalysis of the Data
Encryption Standard. In Steven D. Galbraith, editor, Proceedings of the 11th IMA
international conference on Cryptography and coding, volume 4887 of Lecture Notes
in Computer Science, pages 152–169. Springer, 2007.

2. Carlos Cid, Sean Murphy, and Matthew Robshaw. Algebraic Aspects of the Ad-
vanced Encryption Standard. Springer, 2006. ISBN-10 0-387-24363-1.

3. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing
2003, volume 2919 of Lecture Notes in Computer Science, pages 502–518, Berlin,
2004. Springer. ISBN 3-540-20851-8.

4. Matthew Gwynne and Oliver Kullmann. Attacking DES + AES via SAT: Con-
straints and boolean functions. Technical Report arXiv:??? [cs.DM], arXiv, April
2011.

5. Philipp Jovanovic and Martin Kreuzer. Algebraic attacks using SAT-solvers.
Groups-Complexity-Cryptology, 2(2):247–259, December 2010.

6. Oliver Kullmann. Investigating a general hierarchy of polynomially decidable
classes of CNF’s based on short tree-like resolution proofs. Technical Report TR99-
041, Electronic Colloquium on Computational Complexity (ECCC), October 1999.

7. Oliver Kullmann. Investigating the behaviour of a SAT solver on random formulas.
Technical Report CSR 23-2002, Swansea University, Computer Science Report Se-
ries (available from http://www-compsci.swan.ac.uk/reports/2002.html), Oc-
tober 2002. 119 pages.

8. Oliver Kullmann. Upper and lower bounds on the complexity of generalised res-
olution and generalised constraint satisfaction problems. Annals of Mathematics
and Artificial Intelligence, 40(3-4):303–352, March 2004.

9. Oliver Kullmann. The OKlibrary: Introducing a ”holistic” research platform for
(generalised) SAT solving. Studies in Logic, 2(1):20–53, 2009.

10. Fabio Massacci and Laura Marraro. Logical cryptoanalysis as a SAT problem.
In Ian Gent, Hans van Maaren, and Toby Walsh, editors, SAT2000 Highlights
of Satisfiability Research in the Year 2000, volume 63 of Frontiers in Artificial
Intelligence and Applications, pages 343–375. IOS Press, Amsterdam, 2000. ISBN
1 58603 061 2.

42

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 43–48,
Perugia, Italy, 12 September 2011.

The Min Average Latency Steiner Multigraph
Problem: Budget-Constrained Wildlife Corridor

Design for Multiple Species

Katherine J. Lai (student) and Carla P. Gomes (supervisor)

Computer Science Department, Cornell University
Ithaca, NY 14853

klai,gomes@cs.cornell.edu

Abstract. We introduce the Min Average Latency Steiner Multigraph
Problem, an extension of our recent work concerning wildlife conservation
e↵orts to combat the negative e↵ects of habitat loss and fragmentation
a↵ecting endangered species. We model this problem as a network design
problem where the goal is to select a set of land parcels (nodes in a graph)
which will form a so-called wildlife corridor that connects core habitat
areas (terminals) while minimizing the average di�culty (latency) for an-
imals to travel between pairs of locations, subject to a budget constraint.
This is an extension of the work on the Steiner Multigraph Problem, a
formulation we introduced to find the min-cost wildlife corridor for multi-
ple species with di↵erent landscape requirements. In this new extension,
we are given a budget constraint and want to find the network that max-
imizes a connectivity measure based on the Least-Cost Paths model, a
popular measure used in landscape ecology. While this is motivated by
the wildlife conservation application, this problem can be stated gener-
ally and can model applications in other network design applications.

1 Introduction

The study of network design optimization problems has many practical applica-
tions. In recent years, techniques in this area have been used to address wildlife
conservation problems in computational sustainability [5]. For many endangered
species, human development activities have diminished and fragmented their
existing habitat. In addition to setting aside parks and reserves, maintaining
connectivity between such areas is important to mitigate the negative demo-
graphic and genetic consequences that may result from isolated populations [4].
This connectivity problem can be modeled as a network design problem where
conservation planners design so-called wildlife corridors, or swaths of preserved
land that connect important patches of habitat for the endangered species. These
wildlife corridors have been used successfully by wildlife, though the design
choices must be made carefully to increase the likelihood of use [8]. Another
important computational issue arises given that funds are usually quite limited
for these conservation e↵orts. It is also important to simultaneously consider the
various needs of di↵erent species for biodiversity and economic reasons [1].

43

Conrad et al. [2] have modeled the wildlife corridor design problem for a
particular species as a Connection Subgraph problem which requires connectivity
between a set of terminals which represent the animal’s core habitat areas (ter-
minals). The land parcels under consideration are modeled as graph nodes and
are characterized by two nonnegative values: habitat suitability and cost. Edges
are drawn between any two land parcels that share a border. A feasible corridor
is a subgraph of land parcels that connect all the given terminals. The goal of
the problem is then to maximize the total utility of the purchased nodes subject
to a budget constraint. Maximizing the utility allows the model to prefer wildlife
corridors that contain highly suitable habitat.

Our more recent work [9] introduces the Steiner Multigraph Problem to ac-
commodate multiple species which may have di↵erent landscape requirements.
In particular, each species under consideration may only be able to travel over
some particular subset of the landscape based on landscape features such as
slope and ground cover. Thus the Steiner Multigraph problem takes as input a
set of terminals and a subgraph representing the permeable landscape for each
of the species. The objective is then to find the min-cost corridor satisfying these
connectivity constraints. As such, it does not address what decisions should be
made when additional funds are available under a budget constraint.

In this work, we extend the Steiner Multigraph Problem to find the multi-
species wildlife corridor with the best connectivity possible under a budget con-
straint. There are various connectivity measures that can be considered for op-
timization, most of which are based on considering the resistance value of a
node rather than the habitat suitability value. This value quantifies the di�-
culty or unlikelihood for a particular species to travel across that piece of land.
This value can be quite di↵erent from habitat suitability; for example, while a
particular animal may not live in an open field or in a river, it may still be
quite willing to travel across these land features. A popular model for evaluat-
ing landscape connectivity in landscape ecology is the Least-Cost Path model,
where two locations are considered to have high connectivity if the length of the
shortest resistance-weighted path (latency) between them is small [10]. Thus our
objective will be to minimize the average latency between pairs of terminals in
the solution’s subgraph. We could also have chosen to extend the Steiner Multi-
graph Problem by adopting the approach of the Connection Subgraph model
where the sum of the habitat suitability values is maximized. However, given
that the goal of conserving a wildlife corridor is to connect locations in a frag-
mented landscape, using the additional funds to further improve connectivity is
perhaps more appropriate.

In this work, we propose the Min Average Latency Steiner Multigraph Prob-
lem, a budget-constrained extension of the Steiner Multigraph Problem which
finds a wildlife corridor that connects habitat areas (terminals) for multiple
species while respecting their respective landscape requirements. Given a bud-
get value, the goal is to find a wildlife corridor which also maximizes connectiv-
ity between the species’ terminals by minimizing the average shortest resistance
paths (latency) between pairs of terminals in the corridor.

44

2 The Problem

2.1 Problem Definition

We will focus on the node-weighted version of the problem because of our moti-
vating application in wildlife corridor design, though it can easily be formulated
with weights on the edges instead. Another consequence of the wildlife applica-
tion is that there is oftentimes a physical limit to how far an animal will travel
to explore and find new habitat. We will therefore take as input a set of pairs
of terminals for each species to represent pairs of locations that represent fea-
sible destinations for a single animal. This approach is also used in our recent
work on Upgrading Shortest Paths [3]. We formally define the problem as follows.

The Min Average Latency Steiner Multigraph Problem (MALSMP)

Given: an undirected graph G = (V, E), an index set I, node sets Vi ✓ V for
all i 2 I, sets of terminals Ti ✓ Vi for all i 2 I, a set of terminal pairs
Ti ✓ Ti ⇥ Ti, resistance values ri

v 2 R+ for all i 2 I and v 2 Vi, costs cv for
all v 2 V , and a budget value B.

Find: a node set W ✓ V such that
P

v2W cv  B, the induced subgraph
G(W \Vi) connects Ti for each i 2 I, and a path of nodes Pst ✓ W \Vi can
be chosen for each terminal pair (s, t) 2 Ti and i 2 I such that the average
length of the e↵ective shortest resistance path, or latency,

P
i2I

P
(s,t)2Ti

P
v2Pst

r(v)
P

i2I |Ti|

is minimized.

We assume that connecting all the terminal pairs in each Ti subsequently
connects all terminals Ti. If this is not the case, we partition the terminals in
Ti based on the connected components implied by connecting all pairs in Ti and
add another index value to I for each additional set of terminal pairs. We also
note that as stated, we are averaging all latencies equally across all terminal
pairs regardless of their index in I. However, we can easily imagine that each
index may represent a species that has a di↵erent level of importance compared
to the others, or it may have far fewer terminal pairs in comparison to another
species that is more widely-distributed. We may therefore want to consider a
multi-objective version of the problem where we have an objective for each index
i 2 I equal to the average latency over all the pairs in Ti. We can address this
multi-objective problem by weighting the di↵erent objectives di↵erently. This
is a trivial modification to the mixed integer programming formulation we will
describe, so we will simply assume equal weights for each index i 2 I for clarity.

2.2 A Mixed Integer Programming (MIP) Formulation

We can encode MALSMP by formulating each shortest path for a terminal pair
p = (s, t) 2 Ti as a single unit of flow traversing the graph G(Vi) from s to t

45

that incurs a latency equal to the total resistance values included in the path’s
nodes. Combining the constraints for each terminal pair gives a min-cost multi-
commodity flow mixed integer program, and we restrict the use of nodes in the
graph for these flows via a common set of variables xv that indicate which nodes
have been conserved. The total cost of conserving the nodes cannot exceed the
budget value B. As mentioned previously, we assume that connecting all termi-
nal pairs in a set Ti implies that all terminals in Ti are subsequently connected.
For each pair of terminals p(s, t) where p 2 Ti, we have a set of node variables
f ip

v for all v 2 Vi and two arc variables f ip
uv and f ip

vu for all edges (u, v) in G(Vi).
Using �i(v) to indicate the neighboring nodes of v in Vi, we define the following
expressions for incoming and outgoing flow at each node in the graph:

inip
v =

X
u2�i(v)

f ip
uv (1)

outipv =
X

u2�i(v)
f ip

vu (2)

The complete MIP is shown in Figure 1. Constraints (4)-(5) force one of the
terminals s in a terminal pair p = (s, t) 2 Ti to be the source of 1 unit of flow
for the other terminal t. The corresponding sink constraints are captured by (7)-
(8). Constraints (6) and (9) force the endpoints s and t of each flow to be in the
solution. Constraints (10) and (11) capture flow conservation for all other nodes
while preventing flow through a node v if f ip

v is set to 0. By (12), the node flow
variable f ip

v can only be positive if v has been chosen for the solution, i.e. xv has
been set to 1. The last two constraints (15) and (16) force the indicator variables
to be integer and the flow to be nonnegative. An optimal solution to this MIP is
a Steiner Multigraph solution where the average shortest path lengths over all
the terminal pairs is minimized as given by the objective function (3). Each set
of terminals must be connected by the set of nodes V 0 = {v 2 V : xv = 1} since
there must be a feasible flow from s to t, and any such flow must use some path
in Vi that can only travel via nodes that have nonzero capacity, i.e. nodes for
which xv = 1.

3 Solution Methods

Given the MIP encoding of the MALSMP, a straightforward method for solving
the problem is to use a MIP solver such as CPLEX. In the original Connection
Subgraph problem, it was shown that a hybrid approach that first solves the min-
cost Steiner tree problem before using the result as an initial feasible solution for
the MIP solver makes a large impact on the running time [6]. We expect that such
an approach will also be helpful here. However, it has been shown that solving
the min-cost Steiner Multigraph problem is NP-hard even for planar instances
with a constant number of terminals, so it may be faster in practice to only
find an approximate solution as a first step [9]. Other solution approaches to be
explored and tested include local search algorithms such as simulated annealing.
We have not yet implemented and tested these solution methods.

46

min
1P

i2I |Ti|
X

i2I

X

p2Ti

pathip (3)

s.t. inip
s = 0 8i 2 I, p = (s, t) 2 Ti (4)

outip
s = 1 8i 2 I, p = (s, t) 2 Ti (5)

f ip
s = 1 8i 2 I, p = (s, t) 2 Ti (6)

inip
t = 1 8i 2 I, p = (s, t) 2 Ti (7)

outip
t = 0 8i 2 I, p = (s, t) 2 Ti (8)

f ip
t = 1 8i 2 I, p = (s, t) 2 Ti (9)

inip
v = f ip

v 8i 2 I, p = (s, t) 2 Ti, v /2 {s, t} (10)

f ip
v = outip

v 8i 2 I, p = (s, t) 2 Ti, v /2 {s, t} (11)

f ip
v  xv 8i 2 I, p 2 Ti, v 2 Vi (12)

pathip =
X

v2Vi

ri
vf ip

v 8i 2 I, p 2 Ti (13)

X
v2V

cvxv  B (14)

xv 2 {0, 1} 8v 2 V (15)

f ip
v , f ip

uv � 0 8i 2 I, 8p 2 Ti, 8v 2 Vi, 8u 2 �i(v) (16)

Fig. 1. Using the expressions from (1) and (2), this min-cost multicommodity flow MIP
exactly captures MALSMP. For each species i, a unique commodity is defined for each
terminal pair p = (s, t) 2 Ti, and exactly 1 unit of flow of this type must travel from
the source s to the sink t. Each flow incurs a resistance value or latency equal to the
sum of the resistances of the path’s nodes. Nodes can only carry flow if they have been
bought, and the total cost of the bought nodes must not exceed the budget B.

47

4 Discussion

In this work, we propose the Min Average Latency Steiner Multigraph Problem
(MALSMP) to capture the network design problem of finding a well-connected
wildlife corridor for multiple species under a budget constraint. While motivated
by wildlife applications, this problem can also be used to model network design
problems in other applications such as the design of multicast networks. For
example, researchers working on multicast networks have studied a very similar
problem where instead of optimizing the average latency, the goal is to find
the min-cost Steiner tree for which the diameter, or equivalently the maximum
latency, is constrained by an upper bound [7].

In MALSMP, we optimize the average connectivity measure under the Least-
Cost Paths model. We could also consider other objective functions such as
minimizing the maximum latency or using a di↵erent connectivity model that
reflects the benefit of having redundancy in the graph, i.e. a measure of robust-
ness against node failures. As future work, it would be interesting to find a good
way to define and optimize over such a connectivity measure.

References

1. Beier, P., Majka, D.R., Spencer, W.D.: Forks in the road: Choices in procedures
for designing wildland linkages. Conservation Biology 22(4), 836–851 (2008)

2. Conrad, J., Gomes, C.P., van Hoeve, W.J., Sabharwal, A., Suter, J.: Connections
in Networks : Hardness of Feasibility versus Optimality. In: CPAIOR. pp. 16–28
(2007)

3. Dilkina, B., Lai, K.J., Gomes, C.P.: Upgrading shortest paths in networks. In:
CPAIOR. pp. 76–91 (2011)

4. Gilpin, M., Soule, M.: Minimum viable populations: processes of extinction. In:
Soule, M. (ed.) Conservation Biology: The Science of Scarcity and Diversity, pp.
19–34. Sinauer Associates (1986)

5. Gomes, C.: Computational sustainability: Computational methods for a sustain-
able environment, economy, and society. The Bridge 39(4) (2009)

6. Gomes, C.P., van Hoeve, W.J., Sabharwal, A.: Connections in networks: A hybrid
approach. In: CPAIOR. pp. 303–307 (2008)

7. Gouveia, L., Magnanti, T.L.: Network flow models for designing diameter-
constrained minimum-spanning and Steiner trees. Networks 41(3), 159–173 (May
2003)

8. Haddad, N.M., Bowne, D.R., Cunningham, A., Danielson, B.J., Levey, D.J., Sar-
gent, S., Spira, T.: Corridor Use By Diverse Taxa. Ecology 84(3), 609–615 (Mar
2003)

9. Lai, K.J., Gomes, C.P., Schwartz, M.K., McKelvey, K.S., Calkin, D.E., Mont-
gomery, C.S.: The Steiner Multigraph Problem: Wildlife Corridor Design for Mul-
tiple Species. In: AAAI, Special Track on Computational Sustainability and AI
(2011)

10. Singleton, P.H., Gaines, W.L., Lehmkuhl, J.F.: Landscape permeability for large
carnivores in washington: a geographic information system weighted-distance and
least-cost corridor assessment. Res. Pap. PNW-RP-549: U.S. Dept. of Agric., Forest
Service, Pacific Northwest Research Station (2002)

48

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 49–54,
Perugia, Italy, 12 September 2011.

cumulatives trajectories: a Constraint for

Modelling Preemptive Reassignable Tasks
with Momentarily Resource Consumption !

Arnaud Letort (student) and Nicolas Beldiceanu (supervisor)

TASC team, (EMN-INRIA,LINA) Mines de Nantes, France
{arnaud.letort,nicolas.beldiceanu}@mines-nantes.fr

Abstract. This paper presents a constraint for modelling cumulative
problems with preemptive reassignable tasks and temporary resource
consumption. We design this constraint to tackle problems where a task
can be dynamically reassigned (i.e. can migrate) to some alternative
resource during its execution. While migrating, tasks consume additional
resources such as CPU, RAM, I/O.

Keywords: cumulative, preemption, planning, migration, data centre

1 Motivation

Data centres involve a number of servers (called resources in the following) run-
ning virtual machines (i.e., tasks) such as web services or scientific computations.
In order to adapt themselves to variations of the workload during time, a cru-
cial operation consists of dynamically migrating tasks between resources [1],
[6] (e.g., if we want to adapt the number of active resources w.r.t. the current
workload). In order to be feasible, a migration requires temporarily additional
resources such as CPU, memory or network which depend on the nature of the
task. Because of the dynamic character of migrations which are not known a pri-
ori, current approaches [8], [10] that try to optimise the number of active servers,
solve a sequence of optimisation problems, each of them being related with suc-
cessive variations on the overall workload [9]. Consequently they are limited in
the way they can anticipate future workload variations and consider temporary
consumptions associated with migrations when solving the optimisation problem
at a given step, i.e., they may be too greedy. Motivated by this problem, the
contribution of this paper is a new constraint, cumulatives trajectories (called
ct in the following), which can directly model such a situation with a single
constraint. The advantage of ct are twofold:

– First, ct allows to directly model tasks that can potentially migrate from
one resource to an other, i.e., it allows encoding a planning problem [2]
rather than a scheduling problem. On the one hand, the word trajectories

! This research was founded in part by the SelfXL project of the French National
Research Agency (ANR).

49

2

stems from the fact fact some task can move from one source resource to an
other target resource several times, i.e., the trajectory of a task consists of
the sequence of moves of the task. On the other hand, the word cumulatives
indicates that each resource aspect attached to a resource has its own limited
capacity.

– Second, ct also allows to directly model detailed operational rules on how a
task uses additional resources (i.e., when and how much) during a migration.

Section 2 provides an informal description of the constraint and introduces a
running example that will be used throughout this paper. Section 3 defines the
arguments of the constraint and Section 4 describes future work.

2 Informal Description of ct and Running Example

For each task we describe its resource consumption profiles on the different re-
source aspects it actually uses. The trajectory of a task is defined by a maximum
number of slices, where a migration or a suspension separate two consecutive
slices.1 The different resource aspects associated with a resource must satisfy a
cumulative constraint w.r.t. all tasks slices assigned to that resource. Depending
on the migration type, additional resource aspects may be temporarily used on
the source/target resources during the migration of the task.

Example 1. A data centre is a centralised repository, composed of interconnected
servers, for the storage and management of data. Here we consider three different
resource aspects, (i) RAM (i.e. Random-Access Memory), (ii) CPU (i.e. Central Pro-
cessing Unit) and (iii) link capacity. A server is a physical machine with a fixed amount
of RAM and CPU, connected to others via a network. A virtual machine is a process
which requires a certain amount of CPU and RAM that may evolve over time to
run. Servers and network links correspond to resources in our context, whereas virtual
machines correspond to tasks. Figure 1 presents a running example with two servers
connected by a network link and a task that migrates from server one to server two. !"

3 Defining the ct Constraint

The constraint ct has the following form :

ct(Resources ,Tasks ,Network ,Migrations ,Ratios)

We follow the style use in the Constraint Catalog [4, p. 6-9] for describing the
constraint arguments. A collection(A1, A2, . . . , An) corresponds to a collection
of ordered items, where each item consists of n > 0 attributes. Each attribute
is an expression of the form a-T , where a is the name of the attribute and T its
type. The basic data types int and dvar respectively denote an integer and a
domain variable.

1 For space reason we do not speak about suspension in the rest of this paper.

50

3

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
Resources

(eid = 2)
server 2

r1

slice 2
tbram

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

c1

slice 2

tbcpu

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

(eid = 1)
server 1

Resource aspectsram
(rid = 1)

r1

slice 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

cpu
(rid = 2)

c1

slice 1
sbcpu

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

(eid = 3)
network link

link capacity
(rid = 3)

Main consumptions of task t1

Surplus consumptions of t1

Network consumptions of t1

Migration time of t1

Fig. 1. (running example) During the four first time units, task t1 is assigned to re-
source one (slice one of t1) where it uses some ram and cpu (in grey), then it migrates
to resource two (slice two of t1). This migration provokes three extra consumptions
(i.e. two for the cpu and one for the ram) and a network link consumption. These
additional consumptions (shown in dashed) are caused by the copy of the ram.

3.1 Resources

Resources is a collection where each resource is identified by a unique identifier,
its different resource aspects and corresponding capacities. Each resource aspect
is also identified by a unique integer.

Resources : collection(eid , rcapa)

– eid : int. Identifier of the resource.
– rcapa : collection(rid -int,capa-int). Set of different fixed constant capacities,

one for each resource aspect that the resource has (i.e. capa > 0).

Example 2. (declaration of resources of the running example) A server is declared as
a resource with two different resource aspects : (i) RAM and (ii) CPU. By convention,
we identify the RAM by rid = 1 and the CPU by rid = 2 . A network link between
two servers is a resource with only (iii) link capacity.

〈(eid − 1 , rcapa − 〈(rid − 1 , capa − 5), (rid − 2 , capa − 4)〉) %server 1
(eid − 2 , rcapa − 〈(rid − 1 , capa − 5), (rid − 2 , capa − 7)〉) %server 2
(eid − 3 , rcapa − 〈(rid − 3 , capa − 4)〉)〉 % link between server 1 and 2 !"

51

4

3.2 Tasks

The Tasks argument corresponds to a collection of tasks where each task con-
sumes resources between its start and end times, one or more resource aspects
according to its resource consumption profiles. Throughout its execution, a
task must be assigned to a resource with corresponding resource aspects. It can
migrate from a resource to another.

Tasks : collection(tid , start , effdur , rundur , end , cons , sl , nbslices , preemptive,mid)

– tid : int. Identifier of the task.
– start , end : dvar. Start/End time of the task.
– effdur : dvar. Effective duration i.e. pauses included.
– rundur : dvar. Running duration, i.e. pauses excluded.
– cons : collection(rid -int,dur-int,height -int). This collection describes all re-

source consumption. Since the resource consumption of a task on a resource
aspect rid may vary over time it is given as a profile (i.e. a sequence of
consecutive intervals where each interval is defined by its duration dur and
height height). The sum of attributes dur of each profile is equal to rundur .

– sl : collection(eid -dvar, len-dvar, pause-dvar). This collection gives the tra-
jectory of the task over time (i.e. a sequence of slices), relatively to its start
date. The task is assigned to the resource eid during len time unit, followed
by a suspension of pause time unit.

– nbslices : dvar. Only the nbslices first elements of sl are relevant.
– preemptive: int. Indicates whether the task can be suspended (0) or not (1).
– mid : int. Identifier of the migration mode used by the task.

Example 3. (tasks of the running example) A virtual machine is considered as a task
which consumes an amount of CPU and RAM evolving over time. The following task
consumes resources over ten time units and migrates one time, from resource one to
resource two.

[tid − 1 , start − 0 , effdur − 10 , rundur − 10 , end − 10 ,
cons − 〈[rid − 1 , dur − 6 , height − 4], % RAM consumption profile

[rid − 1 , dur − 4 , height − 2], % see r1 on Figure 1
[rid − 2 , dur − 5 , height − 2], % CPU consumption profile
[rid − 2 , dur − 2 , height − 6]),% see c1 on Figure 1
[rid − 2 , dur − 3 , height − 2]〉,

sl − 〈[eid − 1 , len − 4 , pause − 0], % see slice 1 on Figure 1
[eid − 2 , len − 6 , pause − 0]〉, % see slice 2 on FIgure 1

nbslices − 2 , preemptive − 0 ,mid − 1] !"

3.3 Execution Modes and Momentary Consumptions

We first introduce some terminology about various aspects of migration.

Definition 1. A surplus consumption is a temporary additional consumption
induced by the migration of a task. For each migration, there are for each resource

52

5

aspects four potential surplus consumption, configurable both in duration and
height. Two of them are located on the source resource, while the two other
are situated on the target. Duration and height of the four potential surplus
consumption are given by the attribute mres of the argument Migrations.

From now on, the term ”main consumption of a task” stands only for its con-
sumptions described by attribute cons , i.e. we exclude its surplus consumption
introduced by Definition 1.

Definition 2. The migration time is the first instant when the task stops con-
suming resource on the source resource. Let sl [i] and sl [i + 1] be two consecutive
slices of a task, standing for a migration. The migration time is given relatively
to the begin of the task by

∑k≤i
k=0 (sl [k].len + sl [k].pause).

Definition 3. The migratory offset is the size of the time interval during which
while migrating, the task does not consume any resource in terms of main con-
sumption. The migratory offset is the maximum between the corresponding at-
tribute noffset (of the argument Network) and the result of the computation given
by the attribute moffset (of the argument Migrations).

Definition 4. The migration interval is the time interval during which the task
consumes resources on additional resources associated with the migration from
the source to the target. This time interval is computed with the attribute minterv
of the argument Migrations.

Ratios Migrating a task from a source resource to a target resource usually
requires additional resources depending on the current consumption of the task.
The argument Ratios permits to express duration and height of these surplus
consumption w.r.t. the consumption on a given resource aspect of the task.

Ratios is a collection where each item is defined by an identifier ratid -int, a
numerator num-int, a denominator den-int, a constant cst -int, and a resource
aspect reference r.

The calculation of durations and heights has the following form :

!num∗h(r)
den " + cst , where h(r) stands for the height of resource aspect r consumed

by the task at the migration time.

Network The argument Network is defined by a set of source/target resources
for which we specify the corresponding links and traversal time.

Network : collection(eids , eidt , l , noffset) with :

– eids : int. Identifier of the source resource
– eidt : int. Identifier of the target resource.
– l : collection(eid -int). Resources used by a task during its migration from

eids to eidt . They will all be used during the migration interval given by the
migration mode of task t (i.e. attribute mid).

– noffset : int. The time required for a task to go from eids to eidt using
resources given in l.

53

6

Migrations Migrating a task may introduce both extra delay and/or extra
resource consumptions on the source and target resource or on other resources
(network links). For space limitation reason we do not detail this argument in
the paper.

4 Conclusion

We introduce a constraint, cumulatives trajectories, for modelling problems
with preemptive reassignable tasks. It allows to model the workload distribution
problem in data centres and others like the Airport Parking Assignment [13],
[7]. In the future we will focus on light filtering algorithms for scalability reasons.

Acknowledgements We thank Jean-Marc Menaud and Fabien Hermenier for
introducing us to the topic of data centres.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of
19th ACM. pp. 164–177. SOSP ’03, New York, NY, USA (2003)

2. Barták, R., Toropila, D.: Enhancing constraint models for planning problems. In:
Lane, H.C., Guesgen, H.W. (eds.) Proceedings of the Twenty-Second International
Florida Artificial Intelligence Research Society Conference, May 19-21, 2009, Sani-
bel Island, Florida, USA. AAAI Press (2009)

3. Beldiceanu, N., Carlsson, M.: A New Multi-Resource cumulatives Constraint with
Negative Heights. In: Van Hentenryck, P. (ed.) Principles and Practice of Con-
straint Programming (CP’2002). LNCS, vol. 2470, pp. 63–79. Springer-Verlag
(2002), preprint available as SICS Tech Report T2001-11

4. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog (2010)
5. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Improving virtual machine migration

in federated cloud environments. Evolving Internet, International Conference on
pp. 61–67 (2010)

6. Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live Migration of Virtual Machines. In: In Proceedings of the 2nd
ACM/USENIX NSDI. pp. 273–286 (2005)

7. Dincbas, M., Simonis, H.: APACHE - A Constraint Based, Automated Stand Allo-
cation System. In: ASTAIR’91. pp. 267–282. Royal Aeronautical Society, London

8. Hermenier, F.: Gestion dynamique des tâches dans les grappes, une approche à
base de machines virtuelles. Ph.D. thesis, Université de Nantes (11 2009)

9. Hermenier, F., Demassey, S., Lorca, X.: The bin-repacking scheduling problem in
virtualized datacenters. In: CP’11. Lecture Notes in Computer Science, Springer-
Verlag, Perrugia, Italy (2011)

10. Hermenier, F., Lawall, J., Menaud, J.M., Muller, G.: Dynamic Consolidation of
Highly Available Web Applications. Research Report RR-7545, INRIA (02 2011)

11. Poder, E., Beldiceanu, N.: Filtering for a Continuous Multi-Resources cumulative
Constraint with Resource Consumption and Production. In: ICAPS’08. Sidney

12. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Computer Communications Review 33, 2003 (2002)

13. Simonis, H.: Models for global constraint applications. Constraints 12, 63–92 (2007)

54

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 55–60,
Perugia, Italy, 12 September 2011.

Reinforced Adaptive Large Neighborhood Search

Jean-Baptiste Mairy (UCLouvain, Belgium)
jean-baptiste.mairy@uclouvain.be

Directors: Yves Deville (UCLouvain), Pascal Van Hentenryck (Brown University)

1 Introduction

CP-based Large Neighborhood Search (LNS) combines Local Search (LS) and
Constraint Programming (CP); at each step of LS, a fragment (subset) of the
variables is relaxed and CP is used to search the neighborhood in order to find
a new solution. LNS is known to be e↵ective on numerous problems at quickly
finding good solutions [1–5]. When designing a LNS model, one has to spec-
ify the size of the fragments and how the fragments are chosen. They can be
chosen specifically for the problem, or a simple random strategy can be used.
The specific approach has the advantage of being quite e↵ective. However, it
requires some knowledge on the problem. Even for well-known problems, setting
the right values for the parameters is a di�cult task. Random parameters have
the advantage of being totally generic but can be less performant.

The objective of this research is to develop generic heuristics for an adaptive
selection of the fragments in LNS. This work uses Reinforcement Learning to
adapt the heuristics during the search.

CP-Based Large Neighborhood Search This LNS approach takes advantage of the
expressiveness of Constraint Programming (CP) and the speed of Local Search
(LS). Its working principle is to maintain a candidate solution through the search
that is not violating any constraint but that may not be optimal (or not known
to be). The successive solutions are obtained by repeating the two following
operations until a stopping criterion is met.

1. neighborhood definition: this step consists of choosing the set of variables
(fragment) that will be relaxed to their original domains while fixing the
other variables to their values in the current best solution. The domains of
the relaxed variables define the neighborhood of the current solution that
will be explored with CP at the next step.

2. neighborhood exploration: this step consists of using CP to explore the re-
stricted problem defined by the relaxation of the fragment. When an im-
proving solution is found, the current best solution is replaced. It is replaced
only if CP provides a better solution. A limit in time or in number of failures
is specified to avoid spending too much time in exploring the neighborhood.

Although the LNS framework is really simple, its parameters (the size of the
fragments, the fragment selection procedure and the limit on the CP exploration

55

step) must be carefully chosen. No general principle has emerged yet on how
to choose the fragments during the search. Practitioners often prefer to relax
random variables to favor diversification.

Reinforcement Learning Framework In this paper, Reinforcement Learning is
used to develop adaptive strategies to select the fragments in LNS. Reinforcement
Learning [6] is all about learning while doing. For this work, it means that good
fragments are learned while selecting the variables to relax at each LNS iteration.

The general picture of Reinforcement Learning uses the notion of agent. The
task of the agent is to select actions. For each action chosen, it gets a reward.
Its goal is to maximize those rewards. The best action to choose vary given the
state of the external world. Each action results in a reward but also in a new
state for the external world. In order to choose the actions, the agent maintains
internal quantities. Those quantities usually reflect the quality of the states and
state-action pairs. They are updated each time a new reward is obtained. The
name Reinforcement Learning comes from the fact that those quantities are used
to select actions while being updated with respect to the result of the selected
actions.

All the methods described in this paper use Reinforcement Learning to select
the fragments. The fragment selector selects fragments based on the internal
quantities that it maintains. It updates those quantities based on the rewards.
The rewards are defined with respect to the output of the CP search. The notion
of state is not used to define the heuristics.

The next sections present di↵erent applications of Reinforcement Learning to
LNS. Section 2 presents an Inclusion Quality Based fragment selection. Section
3 describes a Variable Quality Based fragment selection. Those two first tech-
niques are targeted at selecting variables that are important for reoptimizing the
objective function of the problem. Section 4 presents a Relation Based fragment
selection. This last technique is trying to select fragments composed of related
variables.

The techniques are all described in terms of the internal quantities of the
fragment selector, the computation of the rewards, the update of the internal
quantities and the selection of the fragments.

2 Inclusion Quality Based Selection

This technique performs an action for each variable independently. For each
variable, the two possible actions are inclusion in the fragment and non-inclusion.
Choosing one action for every variable results in the selection of a fragment.
The goal is to detect and include variables that are important for optimizing the
objective function.

Internal Quantities: for each variable x, this selector maintains:
Q[x, 0]: quality of non-selection of x

Q[x, 1]: quality of selection of x

Those quantities are positive during the entire search.

2

56

Rewards: the rewards are computed with respect to the output of the CP search:

reward =

⇢
50 + 0.01 ⇤ nbIt if objective improved
�1 � 0.01 ⇤ nbIt else

(1)

where nbIt represents the number of LNS iterations. In case of non-improvement,
the reward is a penalty. Adding a fraction of the number of LNS iterations gives
more importance to the rewards at the end of the search. Improving the objective
at the end of the search is more di�cult than at the beginning.

Updates: for each variable x of the previously selected fragment, the quantities
are updated with the following rules: On improvement, increase the quality of
selection:

Q[x, 1] = Q[x, 1] + ↵ ⇤ (reward � Q[x, 1]) (2)

where ↵ is a constant parameter of the technique. This increase is only applied
to variables that have changed value. In case of non-improvement, increase the
quality of non-selection:

Q[x, 0] = Q[x, 0] + ↵ ⇤ (�reward � Q[x, 0]) (3)

The intuition behind those update rules is that they gather the rewards as
quality of selection and the penalties as quality of non-selection. The penalties are
made positives to keep the quality of non-selection positive. As the parameter
↵ is constant, those updates perform exponential smoothing on the rewards
gathered. This allows to reduce more or less (depending on the value of ↵) the
influence of early rewards. Reducing the influence of the early rewards allows
those heuristics to take the non-stationarity of the problem into account. The
selection of fragment is a non-stationary problem because the good fragments
to relax do not converge to a fixed fragment.

Fragment Selection: the fragment selection uses the following probability of se-
lection (versus non-selection) for each variable x:

P [x] =
Q[x, 1]

Q[x, 0] + Q[x, 1]
(4)

For each variable x independently, it is included in the fragment with proba-
bility P [x]. For this technique, the size of the fragment is automatically adjusted.
If too large fragments are selected, leading to non-improvement of the objective,
the probability of selection of all its variable decreases. This reduces the expected
future fragment size.

3 Variable Quality Based Fragment Selection

This section defines variable quality based selectors. For this selector, a quantity
(the quality of the variable) is maintained for each variable. It tries to capture
the importance of the variable for the objective function. The goal is to select
fragments composed of variables that will allow a reoptimization of the objective
function. Two selectors are presented. They di↵er in the utilization of the internal
quantities.

3

57

Internal Quantities: for each variable x, this selector maintains:

V [x] : the quality of the variable x (5)

Those quantities are positive during the entire search.

Rewards: the rewards depend on the output of the CP search:

reward =

⇢
50 if objective improved
0 else

(6)

There is no need to add a fraction of the number of iterations here. The quality
of a variable is relative to the quality of the other variables.

Updates: both when improvement and non-improvement, the update rule for
each variable x of the previous fragment is the following.

V [x] = V [x] + ↵ ⇤ (reward � V [x]) (7)

where ↵ is a constant parameter of the technique. The intuition behind this
update rule is again the collection of the rewards. As ↵ is constant, the updates
perform exponential smoothing. This reduces the influence of early rewards.
When improvement, the reward is only granted to variables that have changed
value.

Fragment Selection: Two di↵erent fragment selectors are defined. They Both
select variables until a given fragment size is attained. They can be described
as:

1. Iteratively select a variable x among available ones with probability of being
selected proportional to V [x]

2. Include in the fragment variables with the highest quality V

4 Relation Quality Based Fragment Selection

This section presents various relation quality based selectors. For each pair of
variables, they maintain a quantity representing the quality of the relation be-
tween each pair of variables. The goal is to be able to select fragments composed
of closely related variables. All the selectors of this section share the same internal
quantities. Although, two di↵erent reward systems and update rules are defined
and there are five di↵erent utilizations of the quantities for each reward-update.

Internal Quantities: for each pair of variables (x, y), this selector maintains

Q[x, y] : the quality of the relation between x and y (8)

Those quantities try to capture the importance of a variable for another in a
fragment. For instance, if two variables are linked by a strong constraint, it
is important to relax them simultaneously to allow them to change value. The
quality of the relation between the two variables should then be high. The matrix
Q is kept symmetric and all its entries are positive during the search.

4

58

Rewards: two di↵erent reward systems are defined:

reward1 =

⇢
50 if objective improved
0 else

(9)

and

reward2 =

⇢
50 if objective improved
�10 else

(10)

In the second reward system, the reward corresponds to a penalty when no
improvement has been made.

Updates: two update rules are defined. The first uses exponential smoothing
with the first reward system. The second uses the second reward system without
exponential smoothing. They are detailed hereafter. They are applied for each
pair of variables (x, y) of the previously selected fragment.

With exponential smoothing:

Q[x, y] = Q[x, y] + ↵ ⇤ (reward1 � Q[x, y]) (11)

where ↵ is a constant parameter of the technique. Without exponential smooth-
ing:

Q[x, y] = Q[x, y] + reward2 (12)

For this last update rule, the positivity of the elements of Q is restored after
each update.

The intuition behind those updates is again the aggregation of the rewards.
In both cases, when an improvement is made, the reward is only granted between
pairs of variables that have changed value.

Fragment Selection: five fragment selection techniques are defined. Each of them
can be used with any update rule. They all start by picking a random variable
and iteratively select one variable at a time until a given fragment size is attained.
Those fragment selections are detailed hereafter:

1. Select variable x among available ones with probability of being selected
proportional to

X

y2fragm

Q[y, x] (13)

2. Select variable x among available ones with maximum
X

y2fragm

Q[y, x] (14)

3. Select variable randomly among the 10 variables maximizing the quantity

S[x] =
X

y2fragm

Q[y, x] (15)

5

59

4. Let lastVar be the last variable included in the fragment. Select variable
randomly among the 10 variables maximizing S[x] = Q[lastVar , x]

5. Let lastV ar be the last variable included in the fragment. Select variable
among the 10 variables maximizing S[x] = Q[lastVar , x] with probability of
being selected for x proportional to

X

y2fragm

Q[y, x] (16)

All those selectors are targeted at selecting fragments with related variables.
Such fragments allow large search spaces for the CP search.

5 Conclusion

This paper presents preliminary results defining various heuristics to select the
fragments in Large Neighborhood Search. These heuristics use the Reinforcement
Learning framework. We are now experimentally comparing these heuristics on
numerous problems to assess their performance. They will also be compared to
state of the art specific and generic heuristics. We also intend to use learning
techniques to dynamically choose the size of the fragment and the limit on the
CP exploration step. The remaining parameters of the techniques (such as ↵ and
the values of the rewards) will also be studied.

References

1. Laurent Perron, Paul Shaw and Vincent Furnon. Propagation Guided Large Neigh-
borhood Search. CP 2004, LNCS 3258 (2004) 468–481.

2. Daniel Godard, Philippe Laborie and Wim Nuijten. Randomized Large Neighbor-
hood Search for Cumulative Scheduling. AAAI 2005.

3. Guy Desaulniers, Eric Prescott-Gagnon and Louis-Martin Rousseau. A Large Neigh-
borhood Search Algorithm for the Vehicle Routing Problem with Time Windows.
MIC 2007.

4. Emilie Danna and Laurent Perron. Structured vs. Unstructured Large Neighbor-
hood Search : A Case Study on Job-Shop Scheduling Problems with Earliness and
Tardiness Costs. CP 2003, LNCS 2833 (2003) 817–821.

5. Paul Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems CP 1998, LNCS 1520 (1998) 417–431.

6. Richard S. Sutton, Andrew G. Barto. Reinforcement learning : an introduction
Cambridge, MIT Press, 1998

6

60

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 61–66,
Perugia, Italy, 12 September 2011.

A Relaxation-Guided Approach for Vehicle Routing
Problems with Black Box Feasibility

PhD student: Florence Massen
Advisors: Yves Deville, Pascal Van Hentenryck

ICTEAM, Université catholique de Louvain, Belgium

Keywords: Local Search, Set-Covering, Vehicle Routing, Black Box Feasibility

Abstract. This paper proposes an abstraction of emerging vehicle routing prob-
lems, the Vehicle Routing Problem with Black Box Feasibility. In this problem the
routes of a basic VRP need to satisfy an unknown set of constraints. A black box
algorithm, considered of non-linear complexity, is provided to test the feasibility
of a route. The complexity of the problem under consideration lies in the unknown
problem structure and the expensive feasibility check. Practical examples of such
problems are combinations of VRP with Loading problems or VRP with Schedul-
ing problems. We propose a column generation-based approach to locally optimize
this problem. Columns are heuristically generated by so-called collector ants, exe-
cuting a construction heuristic and guided by pheromones. The pheromones are not
deposited by the ants themselves, but by an oracle. This oracle judges which edges
should be preferred by the ants based on the solution of the relaxed problem.

1 Introduction

Vehicle Routing Problems have received a great deal of attention since as early as the
1960’s. While initially only basic variants have been considered, during the following
decades research has focused on more complex variants, such as problems with time win-
dows or with pick-up and delivery. In recent years so-called Rich Vehicle Routing Prob-
lems have been tackled. They strive to give a more realistic representation of problems
encountered in real-world industry. Such problems often require handling the combina-
tion of different complicating constraints, the majority of which are typically considered
individually in literature. This paper introduces a generalized VRP variant, the VRP with
Black Box Feasibility (VRPBB). The problem is an extension of basic VRPs. Besides
respecting the VRP constraints (capacity, time windows, . . .) each route needs to verify
an unknown set of constraints C. The feasibility of a route with respect to C is verified
by a black box algorithm. This verification is considered of non-linear complexity. The
VRPBB thus considers a VRP with unknown hard intra-route constraints. This gener-
alization allows to accommodate emerging routing problems with hard side constraints
for which no efficient feasibility check is available. Typical applications would be com-
binations of routing with loading (3L-CVRP [5]) or routing with scheduling (VRPTW
with Driver Regulations [7]). The challenge in this problem stems obviously from the un-
known problem structure and the cost of the feasibility checks. We propose to reformulate
the VRPBB as a set-covering problem. This allows to maximize the utility of the expen-
sive feasibility checks and allows to move freely in a possibly sparse neighborhood. We

1

61

propose a (non-exact) column generation-based approach to address the problem. Agents
called collector ants heuristically generate and collect columns (routes) of negatived re-
duced cost (with potential to improve the objective of the relaxed problem). The collector
ants are guided by a measure of attractiveness of each edge called pheromone deposits
stemming from an external oracle. This oracle computes pheromone deposits in function
of the current relaxed solution.

2 The Vehicle Routing Problem with Black Box Feasibility

2.1 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem is the most basic vehicle routing problem and
underlying to most VRP variants. It is defined on a complete, undirected and weighted
graph G = (V,E) where V = {0, 1, ..., n} is a set of n + 1 vertices and E the set of
weighted edges connecting every pair of vertices. Vertex 0 represents the depot while
vertices 1, ..., n are the n customers to be served. The weight cij (i, j = 0, ..., n : i 6=
j) of an edge eij corresponds to the cost of traveling from vertex i to vertex j. The
homogeneous fleet is limited to K vehicles, each associated with a maximum capacity
D. With each customer i (i = 1, ..., n) is associated a demand di. Let for the remainder
of this paper first(r) (last(r)) designate the first (last) customer vertex visited by route
r. Let also next(i, r) (prev(i, r)) designate the vertex visited after (before) customer i in
route r.
Finally the goal is to devise a solution composed by at most K routes such that each
customer is visited by exactly one route, such that the sum of demands of the customers
on a route does not exceed the maximum capacity D and such that the total traveling cost,
equal to the sum of the weights of traversed edges, is minimized. For more information
on the CVRP its extensions, and optimization methods see [9].

2.2 Feasibility Black Box

In the VRPBB each feasible route, besides satisfying the constraints associated with the
underlying VRP variant, must verify an unknown set of constraints C. Let feas(r, c) =
true indicate that route r satisfies constraint c 2 C. A tentative route r, satisfying the
constraints associated with the underlying VRP variant is considered feasible if and only
if
V

c2C feas(r, c). The black box provides a function returning a boolean indicating the
feasibility of route r with respect to C. This function is computationally expensive and of
non-linear complexity.
In the following routes that are feasible wrt the constraints of the underlying VRP variant
are called VRP-feasible. Routes that are feasible wrt C are called C-feasible. Routes that
are called feasible are as well VRP-feasible as C-feasible.

3 Proposed Approach for the VRPBB

The presence of the unknown constraint set C entails that no assumptions can be made
on the structure of the search space. A local search approach, commonly used for Vehi-
cle Routing Problems, seems unadapted for several reasons. Contiguous feasible regions

2

62

in the search space can not be guaranteed. To be able to move freely through the search
space it might therefore be necessary to pass through infeasible regions. Since no degree
of violation can be obtained from the black box it is impossible to include an appropri-
ate penalty in the objective function. For these reasons, it has been preferred to solve the
problem as a set-covering problem over routes, as opposed to a vehicle routing problem.
A route generation, as opposed to a solution generation approach allows furthermore to
defer the respect of the fleet size constraint to the overlying set-covering master problem.
We propose a column generation-based approach to tackle the VRPBB. Columns corre-
spond to feasible routes. At each iteration columns are heuristically generated using a
system of collector ants which are guided by pheromones. Each iteration an entire colony
of M identical ants is executed. The columns returned by these ants are used to enrich the
set of columns on which the relaxed set-covering problem is solved. The relaxed solution
is then used to update the pheromones guiding the collector ants. An integer solution is
obtained at the end by solving the integer problem on the available set of columns using
the open-source SCIP solver. The overall algorithm is depicted in Algorithm 1, which will
be described hereafter.

Algorithm 1: Main algorithm for VRPBB
1 initialize Pheromones, DualCosts; R⇤ = ;;
2 while ¬ stopping criterion do
3 foreach i  M do
4 R⇤ = R⇤[CollectorAnt(DualCosts, Pheromones);
5 end
6 Sol = solveRelaxedRMP(R⇤);
7 if Sol 6= ? then
8 DualCosts = getDualCosts(Sol);
9 Pheromones = UpdatePheromones(Sol);

10 end
11 end
12 solve Integer Problem using MIP solver;

3.1 Reformulation as a set-covering problem

Every VRP can be seen as a set-covering problem, consisting in the selection of the op-
timal routes from the set of all possible (feasible) routes R. Let cr be the cost of route r,
xr a variable indicating whether route r is to be used in the solution and vir a constant
indicating whether vertex i is visited in route r. The set covering problem analogous to
the VRP is then defined as follows:

Min
X

r2R
crxr

s.t.
X

i2V \0

virxr = 1

X

r2R
xr  K

xr 2 {0, 1} 8r 2 R

3

63

Note that this problem is defined over the set of all possible routes R. Computing R is
obviously intractable for all but the very smallest VRP problems. The principle of column
generation is to generate columns by necessity. Only columns with potential to improve
the objective function are generated and used to enrich the partial set R⇤. Identifying
those columns corresponds to the Column generation subproblem. The Restricted Master
Problem (RMP) then corresponds to the set-covering problem on the set of columns in
R⇤.

3.2 Column generation subproblem

A classical approach to solving the column generation subproblem in a Vehicle Routing
context is solving a Resource-constrained Shortest Path Problem (RCSPP). To do this
the distances on the underlying problem graph are adapted using the dual costs from
the relaxed RMP. Constraints such as the capacity constraint are modeled as a resource
which is consumed along the produced path. Given the unknown character of constraint
set C, modeling the latter as a resource is not an option. Verifying the feasibility of each
partial path with respect to C is intractable due to the expensive feasibility check. Since
C cannot be used to exclude partial paths, potentially a large number of infeasible paths
would be generated, verifying the feasibility of all those paths is intractable as well. This is
the reason we opted for a guided heuristic approach. Routes are generated and collected
by individual probabilistic heuristic executions, called collector ants. Collector ants are
focused on collecting routes of negative reduced cost. They do this while executing a
solution construction heuristic, which helps them to ensure a good customer coverage in
the collected routes. Note that collector ants follow pheromone trails but do not depose
pheromones themselves. The pheromone deposit is ensured by an oracle and is based on
the current relaxed solution. This allows the ants to build routes similar to those in the
current relaxed solution, which are known to be feasible. The intuition behind this is that
routes similar to feasible routes have a higher probability of being feasible as well. Also
the ants should be able to rapidly gather a set of feasible routes, thus reducing the number
of necessary feasibility checks.

3.3 Collector ants

Each collector ant executes a probabilistic version of the Clarke-Wright heuristic intro-
duced in [2]. Their behavior is a variation of the one of the savings-based ants in [6].

Each collector ant starts with n routes where each of the n customers is visited in a route
of its own. That is for every i = 1, ..., n and its associated route r, prev(i, r) = 0 and
next(i, r) = 0. Routes are then merged by and by until no further merges are possible. A
merge of a route r1 and a route r2 corresponds to introducing an edge between customer
last(r1) and first(r2) and removing the edges connecting those two customers to the
depot. A merge merge(r1, r2, ij) is thus defined by the two routes, r1, r2 to be merged,
and the edge ij to be introduced. With each merge is associated a so-called savings value,
defined as sij = ci0 + cj0 � cij . Each merge also has an associated attractiveness, de-
pending on the savings value sij and the pheromone deposit ⌧ij on the concerned edge.
Each ant disposes at each construction step of the list ⌦⇡ of the ⇡ most attractive merges.

4

64

The merge from ⌦⇡ to be executed is selected using roulette wheel selection.

The collector ants accept into ⌦⇡ only merges that result in VRP-feasible routes. Those
merges may or may not be C-feasible. The ants will only check routes of negative re-
duced cost for C-feasibility, since only those routes can contribute to further improve the
relaxed RMP. This means that the ants may execute merges that are C-infeasible. The idea
behind this is the fact that this may lead to future merges, resulting in C-feasible routes,
that would otherwise not have been considered.

Finally, in order to maximize the utility of the expensive feasibility checks, each collector
ant collects the set of (VRP- and C-) feasible routes that it encounters in its execution.
This means that the ant not only collects feasible routes resulting from merges that it
executed, but also those that it evaluated during the construction of ⌦⇡ . These collected
routes are used to enrich the set R⇤.

A clear advantage of the Clarke-Wright heuristic over other insertion-based heuristics in
the case of the VRPBB is the number of feasibility checks that need to be executed in
order to construct a route of size c, i.e. O(c2) checks in the case of an insertion-based
technique, O(c) checks in the case of the savings-based technique. Of course routes pro-
duced using the Clarke-Wright heuristic tend to be of lesser quality than those produced
using an insertion-based technique. Also note that the Clarke-Wright heuristic is in fact a
solution construction heuristic as opposed to a route construction heuristic. This allows to
guarantee complete coverage of all customers in the produced routes.

3.4 Pheromone Update

Preliminary experiments have shown that the use of dual costs to guide the ants in their
heuristic execution does not lead to routes of lower reduced cost. In fact, adapting the
edges costs using the dual costs, as is commonly done, only led to an increased number of
feasibility checks. This is due to the fact that the dual costs of the relaxed RMP do not take
into account the unknown constraint set C and lead to routes that potentially allow to sig-
nificantly decrease the value of the objective function, but are C-infeasible (which might
be the reason they are not already in R⇤). The routes in the current relaxed solution are
known to be C-feasible and at the same time contribute to the optimum of the relaxation.
We follow two intuitions. First routes using a subset of edges from a C-feasible route,
have a higher probability of being C-feasible themselves. Second routes in the neighbor-
hood of routes contributing to the optimum have potential to help decrease the cost of the
current relaxed solution. A somewhat similar intuition is used in the Relaxation-induced
Neighborhood Search presented in [3] (although the latter focus on variables having the
same value in both incumbent integer and relaxed solutions).
The proposed intensification is implemented using pheromones. The pheromone deposit
on edges that appear in the relaxed solution is increased. This leads the collector ants
to increasingly produce routes containing elements frequently encountered in the relaxed
solution. At the same time, the pheromone deposit evaporates over time. This ensures that
elements which were interesting in the past but did not appear in the last relaxed solutions
lose attractiveness over time.

5

65

4 Conclusion
This paper introduces the novel generic problem of Vehicle Routing with Black Box Fea-
sibility. In the VRPBB routes need to verify an unknown set of hard intra-route con-
straints. The feasibility of a route can only be verified using a computationally expen-
sive black box algorithm. The difficulty of this problem stems mainly from the unknown
problem structure, but also from the expensive feasibility check. To tackle the VRPBB we
propose a column generation-based approach. Collector ants generate and collect columns
with the potential to increase the quality of the current relaxed solution. Those ants are
guided by pheromone deposits derived from the current relaxed solution. We are currently
in the process of applying the described procedure to the 3L-CVRP, a challenging problem
combining routing and loading. In future work the presented approach is to be included
as the pricing step in a branch-and-price framework. The possibility of solving a Shortest
Path Problem with Forbidden Paths, where the forbidden paths correspond to routes that
are known to be C-infeasible, using a Constraint Programming approach will be explored
as well.

References

1. Andreas Bortfeldt. A hybrid algorithm for the capacitated vehicle routing problem with three-
dimensional loading constraints. Technical report, FernUniversität in Hagen, 2010.

2. G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research, 12, 1964.

3. Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighbor-
hoods to improve MIP solutions. Mathematical Programming, 102, 2005.

4. Guenther Fuellerer, Karl F. Doerner, Richard F. Hartl, and Manuel Iori. Metaheuristics for
vehicle routing problems with three-dimensional loading constraints. European Journal of Op-
erational Research, 201, 2010.

5. Michel Gendreau, Manuel Iori, Gilbert Laporte, and Silvano Martello. A tabu search algorithm
for a routing and container loading problem. Transportation Science, 40, 2006.

6. M.Reimann, M.Stummer, and K.F.Doerner. A savings based ant system for the vehicle routing
problem. In Proceedings of the Genetic and Evolutionary Computation Conference, 2002.

7. Eric Prescott-Gagnon, Guy Desaulniers, Michael Drexl, and Louis-Martin Rousseau. European
driver rules in vehicle routing with time windows. Transportation Science, 44, 2010.

8. Christos D. Tarantilis, Emmanouil E. Zachariadis, and Chris T. Kiranoudis. A hybrid meta-
heuristic algorithm for the integrated vehicle routing and three-dimensional container-loading
problem. IEEE Transaction on Intelligent Transportation Systems, 10, 2009.

9. P. Toth and D.Vigo, editors. The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications, 2002.

6

66

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 67–72,
Perugia, Italy, 12 September 2011.

Finding minimal siphons and traps as a
Constraint satisfaction Problem

Faten Nabli
Faten.Nabli@inria.fr

EPI CONTRAINTES
INRIA Paris-Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105,
78153 LE CHESNAY CEDEX - FRANCE

Abstract. Bridging the gap between quantitative and qualitative mod-
els, Petri-nets have recently emerged as a promising tool for modeling
biochemical networks. In this paper, we present a method to compute the
minimal siphons and traps of a Petri-net as a resolution of a CSP. In our
case, siphons and traps are purely structural properties that brings us
information about the persistence of some molecular species. We present
a program that finds minimal siphons and traps containing specific set
of places in a Petri-net.

1 Introduction

During recent years, Systems Biology has become a rich field of study, trying to
encompass the huge amount of heterogeneous information that becomes available
thanks to the new high-throughput techniques of biologists, that requires the
development of scalable analysis for detailed models of complex systems.

Some models have been growing bigger and bigger, filled with more and
more mechanistic details, especially recently acquired post-transcriptional infor-
mation, but lacking most of precise kinetic data. Unfortunately, very few analysis
allow to extract information about the dynamics of these models, either because
of their size or because of the imprecise kinetics. Other models remain of reason-
able size, but have an even larger uncertainty about parameter values. For this
other kind of model it is also important to be able to provide some dynamical
analysis of the system’s behavior.

The use of Petri-nets to represent biochemical reaction models, by mapping
molecular species to places and reactions to transitions, was introduced quite
late in [14], together with Petri-net concepts and tools new for the analysis of
biochemical networks.

In this paper, we consider the Petri-net concepts of siphons and traps. These
structures have already been considered for the analysis of metabolic networks
in [19]. A siphon is a set of places that, once it is unmarked, remains so. A trap is
a set of places that, once it is marked, can never loose all its tokens. Siphons can
correspond to a set of metabolites that are gradually reduced during starvation

67

whereas traps can correspond to accumulation of metabolites that are produced
during the growth of an organism. In this article, after some preliminaries about
Petri-nets and siphons and traps, we give our CSP model for enumerating min-
imal siphons and traps containing a given set (possibly empty) in a Petri-net.

2 Preliminaries

2.1 Petri Nets

A Petri-net graph PN is a weighted bipartite directed graph PN = (P, T, W),
where P is a finite set of vertices called places, T is a finite set of vertices (disjoint
from P) called transitions and W : ((P ⇥ T)[(T ⇥P)) ! N represents a set of
directed arcs weighted by non-negative integers (the weight zero represents the
absence of an arc). A marking of a Petri-net graph is a mapping m : P ! N
which assigns a number of tokens to each place. A (marked) Petri-net is a 4-tuple
(P, T, W, m0) where (P, T, W) is a Petri net graph and m0 is an initial marking.

The set of predecessors (resp. successors) of a transition t 2 T is the set of
places •t = {p 2 P | W (p, t) > 0} (resp. t• = {p 2 P | W (t, p) > 0}). Similarly,
the set of predecessors (resp. successors) of a place p 2 P is the set of transitions
•p = {t 2 T | W (t, p) > 0} (resp. p• = {t 2 T | W (p, t) > 0}).

The classical Petri-net view of a reaction model is to associate biochemical
species to places and biochemical reactions to transitions.

Example 1. The Michaelis-Menten enzymatic reaction system A + E <=>A�E =>B +E

corresponds to the Petri-net depicted in Figure 1.

2.2 Siphons and Traps

Let PN = (P, T, W) be a Petri-net graph.

Definition 1. A trap is a non-empty set of places P 0 ✓ P whose successors are
also predecessors: P 0• ✓ •P 0.

A siphon is a non-empty set of places P 0 ✓ P whose predecessors are also
successors: •P 0 ✓ P 0•.

Example 2. In the Petri-net graph depicted in Figure 2, {A, B} is a minimal
siphon: •{A, B} = {r1, r2} ⇢ {A, B}• = {r1, r2, r3}. {C, D} is a minimal trap:
{C, D}• = {r4, r5} ⇢ •{C, D} = {r3, r4, r5}.

A B

E

A-E

t1

t�1

t2

Fig. 1. Petri-net graph of Example 1
,

A B C D

r1

r2

r3

r4

r5

Fig. 2. Petri-net graph of Example 2.

2

68

2.3 Minimality

A trap (resp. siphon) is minimal if it does not contain any other trap (resp. siphon).
One reason to consider minimal siphons is that they provide a su�cient condition
for the non-existence of deadlocks. Indeed, it has been shown that in a deadlocked
Petri-net (i.e. where no transition can fire) all unmarked places form a siphon [3].
Accordingly, the siphon-based approach for deadlocks detection checks if the net
contains a proper siphon (a siphon is proper if its predecessors set is strictly in-
cluded in its successors set) that can become unmarked by some firing sequence.
A proper siphon does not become unmarked if it contains an initially marked
trap. If such a siphon is identified, the initial marking is modified by the firing
sequence and the check continues for the remaining siphons until a deadlock is
identified, or until no further progress can be done. Considering only the set of
minimal siphons is enough because if any siphon becomes unmarked during the
analysis, then at least one of the minimal siphons must be unmarked.

Other links with behavioral properties of liveness are summarized in [8].

3 Complexity and Algorithms

3.1 Complexity

The problem of computing the set of minimal siphons of a given Petri-net is
EXPSPACE since there can be an exponential number of such structures. The
model of the following example has 2n minimal siphons and 2n minimal traps,
each including either Ai or Bi for all i but not both of them.

Example 3.

A1 +B1 =>A2 +B2

A2 +B2 =>A3 +B3

. . .
An +Bn =>A1 +B1

A1 A2 A3 An

...

B1 B2 B3 Bn

Moreover, the decision problem of the existence of a minimal siphon contain-
ing a given place is NP-complete [17]. On the other hand, deciding whether a
Petri-net contains a siphon or a trap and exhibiting one if it exists is polyno-
mial [6].

3.2 Constraint Programming Algorithm

In the literature, many algorithms have been proposed to compute minimal
siphons and traps of Petri-nets. Since a siphon in a Petri-net N is a trap of
the dual net N 0, it is enough to focus on siphons, the traps are obtained by

3

69

duality. Some algorithms are based on inequalities [13], logic equations [12], or
algebraic approaches [10]. More recent methods were presented in [17,18,6]. In
this section we present a constraint program for solving this problem with a
good practical e�ciency. The search for siphons can be viewed as a Constraint
Satisfaction Problem (CSP), in a similar manner to what has been done in mixed
integer linear programming in [5] or in constraint logic programming for P- and
T-invariants in [16]. For a Petri-net of n places and m transitions, a siphon S
is a set of places whose predecessors are also successors. S can be represented
with a vector V of {0, 1}n such that for all i 2 {1, 2, .., n}, Vi = 1 if and only if
pi 2 S.

It is quite natural to see this as a CSP on n Boolean variables. The siphon con-
straint can be formulated as 8i, Vi = 1) (8t 2 T, t 2 •pi) t 2 ([Vj=1{pj})•).
This constraint is equivalent to 8i, Vi = 1) •pi ✓ (

S
Vj=1{pj})• which can be

written again as 8i, Vi = 1) V
t2•pi

(
W

pj2t• Vj = 1). Under this latter form, the
constraint is a Boolean constraint that can be directly processed in a constraint
programming system.

To exclude the case of the empty set, we add the constraint
W

i Vi = 1.
To ensure minimality, variable values are enumerated by trying sets of small-

est cardinality first. A branch and bound procedure is wrapped around this
enumeration, maintaining a set M of minimal siphons: after finding a new min-
imal siphon, the constraint that the next solution should not have its support
bigger than any vector already present in M is added. In other words, a vector
V is minimal in the set M if 8m 2 M, 9i, Vi = 0 ^ mi = 1.

In a post-processing phase, the set of minimal siphons can be filtered to only
keep minimal siphons that contain a given set of places, in order to solve the
above mentioned NP-complete problem.

These constraints and search strategy constitute a constraint satisfaction
algorithm which has been implemented in GNU PROLOG [7], a Prolog compiler
with constraint solving over finite domains facilities. The program can be used
to either enumerate minimal siphons and traps containing a given set of places
(possibly empty), check whether a set of places is a siphon or a trap.

4 Evaluation

Our CSP can be compared to the mixed integer linear model [5]. To find minimal
siphons, the binary optimization problem on siphon constraint is iterated with
minimal cardinality as objective function. At each iteration, a new constraint is
added to exclude all siphons containing the already found siphons.

An experimental comparison on the biochemical models available in the
Biomodels repository 1 , has shown that the CP enumeration with GNU PRO-
LOG is at least 3 times faster than the MILP enumeration with CPLEX solver.

In this section, we evaluate the performance of our CSP model on some
systems biology models.

1 http://www.ebi.ac.uk/biomodels/models-main/tars/ (accessed January 2011)

4

70

The MAPK signal transduction cascade [11] is a well studied system that
appears in lots of organisms and is very important for regulating cell division.
In this example, 7 minimal siphons were computed in less than 5 ms. The pro-
posed implementation appears to scale up quite well also on bigger models. In
particular, on the largest interaction maps of the cell cycle control we have, the
performance figures are as follows:

– Schoeberl’s model of the MAP kinase cascade activated by surface and inter-
nalized EGF receptors [15] contains 94 places and 242 transitions. 13 minimal
siphons and 15 minimal traps are computed in almost 30 ms 2.

– Calzone et al. E2F/Rb [1] has 404 places and 533 transitions. Its 70 minimal
siphons and 246 minimal traps are both computed in around 284 ms.

– Khon’s map [9,2] has 509 places and 775 transitions. Its 81 minimal siphons
and 297 minimal traps are both computed in around 300 ms.

5 Conclusion

Siphons and traps define meaningful pools of compounds that display a specific
behavior during the dynamical evolution of a biochemical system.

We have described a constraint satisfaction algorithm for computing siphons
and traps and evaluated its scalability on the biochemical models available in
the Biomodels repository.

The idea of applying constraint based methods to classical problems of the
Petri-net community is not new, but seems currently mostly applied to the
model-checking. We argue that structural problems can also benefit from the
know-how developed for finite domain CP solving. The CSP model of minimal
siphons and traps computation extends naturally to the previous model for P-
and T-invariants search as a CSP [16].

In a parallel work, we have shown that siphons and traps entail a family of
particular stability properties which can be characterized by a fragment of CTL
[4] over infinite state structures. This fragment of Boolean CTL formulas can
thus be verified e�ciently thanks to these structural properties.

In a future work, we intend to find CP methods to make the model more
e�cient. We intend also to see how SAT solvers would perform on it and to
consider other CP solvers.

References

1. L. Calzone, A. Gelay, A. Zinovyev, F. Radvanyi, and E. Barillot. A comprehensive
imodular map of molecular interactions in RB/E2F pathway. Molecular Systems
Biology, 4(173), 2008.

2. N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling
and querying biochemical interaction networks. Theoretical Computer Science,
325(1):25–44, Sept. 2004.

2 computation time on a PC with an intel processor 1.66 GHz and 3 GB of memory.

5

71

3. F. Chu and X.-L. Xie. Deadlock analysis of petri nets using siphons and mathemati-
cal programming. IEEE Transactions on Robotics and Automation, 13(6):793–804,
1997.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
5. R. Cordone, L. Ferrarini, and L. Piroddi. Characterization of minimal and basis

siphons with predicate logic and binary programming. In Proceedings of IEEE
International Symposium on Computer-Aided Control System Design, pages 193–
198, 2002.

6. R. Cordone, L. Ferrarini, and L. Piroddi. Some results on the computation of
minimal siphons in petri nets. In Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, Hawaii USA, dec 2003.

7. D. Diaz and P. Codognet. Design and implementation of the GNU Prolog system.
Journal of Functional and Logic Programming, 6, Oct. 2001.

8. M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and synthetic
biology. In M. Bernardo, P. Degano, and G. Zavattaro, editors, 8th Int. School
on Formal Methods for the Design of Computer, Communication and Software
Systems: Computational Systems Biology SFM’08, volume 5016 of Lecture Notes
in Computer Science, pages 215–264, Bertinoro, Italy, Feb. 2008. Springer-Verlag.

9. K. W. Kohn. Molecular interaction map of the mammalian cell cycle control and
DNA repair systems. Molecular Biology of the Cell, 10(8):2703–2734, Aug. 1999.

10. K. Lautenbach. Linear algebraic calculation of deadlocks and traps. In G. Voss and
Rozenberg, editors, Concurrency and Nets Advances in Petri Nets, pages 315–336,
New York, 1987. Springer-Verlag.

11. A. Levchenko, J. Bruck, and P. W. Sternberg. Sca↵old proteins may biphasi-
cally a↵ect the levels of mitogen-activated protein kinase signaling and reduce its
threshold properties. PNAS, 97(11):5818–5823, May 2000.

12. M. Minoux and K. Barkaoui. Deadlocks and traps in petri nets as horn-satisfiability
solutions and some related polynomially solvable problems. Discrete Applied Math-
ematics, 29:195–210, 1990.

13. T. Murata. Petri nets: properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–579, Apr. 1989.

14. V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman. Petri net representations
in metabolic pathways. In L. Hunter, D. B. Searls, and J. W. Shavlik, editors, Pro-
ceedings of the 1st International Conference on Intelligent Systems for Molecular
Biology (ISMB), pages 328–336. AAAI Press, 1993.

15. B. Schoeberl, C. Eichler-Jonsson, E. Gilles, and G. Muller. Computational model-
ing of the dynamics of the map kinase cascade activated by surface and internalized
egf receptors. Nature Biotechnology, 20(4):370–375, 2002.

16. S. Soliman. Finding minimal P/T-invariants as a CSP. In Proceedings of the fourth
Workshop on Constraint Based Methods for Bioinformatics WCB’08, associated to
CPAIOR’08, May 2008.

17. S. Tanimoto, M. Yamauchi, and T. Watanabe. Finding minimal siphons in general
petri nets. IEICE Trans. on Fundamentals in Electronics, Communications and
Computer Science, pages 1817–1824, 1996.

18. M. Yamauchi and T. Watanabe. Time complexity analysis of the minimal siphon
extraction problem of petri nets. EICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, pages 2558–2565, 1999.

19. I. Zevedei-Oancea and S. Schuster. Topological analysis of metabolic networks
based on petri net theory. In Silico Biology, 3(29), 2003.

6

72

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 73–78,
Perugia, Italy, 12 September 2011.

Adaptive Randomized Decompositions for
Jobshop Scheduling

Dario Pacino (Student)1 and Pascal Van Hentenryck2

1 IT-University of Copenhagen (dpacino@itu.dk)
2 Brown University (pvh@cs.brown.edu)

Abstract. Adaptive Randomized Decompositions (ARDs) have been
instrumental in finding high-quality solutions to large-scale routing prob-
lems and flexible jobshop scheduling problems. This paper studies how
ARDs behave on jobshop scheduling. Experimental results on bench-
marks involving up to 2000 activities show that ARDs provide a simple
and e↵ective approach to produce high-quality results.

1 Introduction

Adaptive Randomized Decompositions (ARDs) have been proposed in [5, 6] to
find high-quality solutions to large scale vehicle routing problems. It was shown
to find high-quality solutions under time constraints and to improve many upper
bounds to a wide variety of benchmarks when given more time. Recently, it was
also shown to be e↵ective on flexible shop problems, once again producing high-
quality solutions quickly and finding new best solutions [11].

This paper aims at studying how ARDs behave on jobshop scheduling. It
shows that simple ARDs produce solutions comparable in quality to the best
constraint-based scheduling algorithms [4, 3] and outperform Large Neighbor-
hood Search (LNS), when using the same search procedure, on many instance
sets and, in particular, the hardest and largest instances. It significantly outper-
forms the model in [8], which was proposed as a simple and e↵ective method.

The rest of the paper is organized as follows. Section 2 specifies the problem
and discusses prior work. Section 3 presents the ARD algorithms. Section 4
presents the experimental results and Section 5 concludes the paper.

2 Problem Specification, Prior Work, and the CP Model

Specification A jobshop is specified by a set of jobs, each of which consists of
a sequence of activities. Each activity must be executed on a specific machine,
and has a fixed duration. No two activities can execute on the same machine at
the same time and the goal is to minimize the makespan. Formally, each activity
a is associated with a machine m(a) on which it must execute for a duration
d(a). Every job defined by a sequence of activities ha1, ..., ani generates a set
of precedence constraints (ai�1, ai) for i � 2. We use A to denote the set of

73

activities, P the set of precedence constraints, and M the set of machines. The
time horizon H for the schedule is given by

⇥
0,
P

a2A d(a)
⇤
. A solution to the

jobshop is an assignment �, where � : A 7! H assigns a starting date �(a) to
each activity a. A solution is feasible if it satisfies the precedence and capacity
constraints, i.e.,

8(ai, aj) 2 P : �(aj) � �(ai) + d(ai)
8m 2 M, t 2 H : |A(�, m, t)|  1

where A(�, m, t) is the set of activities associated with machine m at time t. An
optimal solution is a feasible solution � minimizing maxa2A �(a) + d(a).

Prior Work Local Search is often the most e�cient method for pure jobshop
scheduling. Current state-of-the-art local searches, dedicated to the benchmarks
used, are the TSAB [9] and i-TSAB tabu-search algorithms [10], solution-guided
local search [1], and the TS/SA hybrid search [14]. The best results are currently
given by a hybrid Constraint Programming/Local Search algorithm [13, 2] which
alternatively runs a tabu search and a solution-guided constraint programming
algorithm [3]. To our knowledge, the best constraint-based approach is SGMPCS
[3] which uses a texture-based heuristic search [4], solution-guided search, and
solution pools. Reference [8] argued that a very simple algorithm, not using
sophisticated propagators, can be used to achieve comparable results.

3 Adaptive Randomized Decompositions

Adaptive Randomized Decomposition (ARD)’s aim is to find a sequence of de-
couplings, i.e., subproblems that can be independently optimized and whose
solutions can be merged back into an existing solution to produce a better solu-
tion. Formally, given an instance P of a jobshop problem, the current solution
⇡ is used to find a decoupling (Po, Ps) with projected solution ⇡o and ⇡s. The
problem Po is then re-optimized and its solution is merged into ⇡s to obtain a
new solution for P . The ARD thus follows two simple principles:

1. Starting from an initial solution ⇡0 of P , it produces a sequence of solutions
⇡1, ..., ⇡n such that the objective function f(⇡0) � f(⇡1) � ... � f(⇡n).

2. At step i, the solution ⇡i�1 is used to obtain the decoupling (Po, Ps) of
P with solutions ⇡o and ⇡s. The problem Po is then re-optimized and its
solution ⇡⇤

o is used to obtain the new solution of ⇡i = MERGE(⇡⇤
o , ⇡i�1).

Time Decomposition The time decomposition extracts a subproblem consisting
of the activities that lie within a time window hs, ei.
Definition 1. A time decomposition hRd, Pd, ↵, �, �, �i of a solution �o wrt
hs, ei is a jobshop defined over the activities Rd = {a 2 A|�o(a) + d(a) >
s ^ �o(a) < e}, with precedence constraints Pd = {(a, b) 2 P|a 2 Rd ^ b 2 Rd},
with availability constraints on the machines

�(m) = mina2{a2A\Rd|�o(a)�e^m(a)=m} �o(a)

�(m) = maxa2{a2A\Rd|�o(a)+d(a)s} �o(a) + d(a)),

74

and with bounds on the activity starting times

↵(a) =

(
�o(b) + d(a) if 9(b, a) 2 P : b 62 Rd

0 otherwise;

�(a) =

(
�o(b) if 9(a, b) 2 P : b 62 Rd

1 otherwise.

A feasible solution to the time decomposition satisfies all traditional constraints
of the jobshop, as well as the additional constraints:

8a 2 Rd : �(a) � �(m(a))
8a 2 Rd : �(a) + d(a)  �(m(a))
8a 2 Rd : �(a) � ↵(a)
8a 2 Rd : �(a) + d(a)  �(a).

Since the problem is now decoupled, knowledge of how the re-optimized schedule
will a↵ect the overall solution is missing. It is thus more appropriate to use an
objective function that maximizes the distance between each activity and their
completion time bounds, allowing a better left shift of the entire schedule.

Definition 2 (Time Decomposition Objective). The objective of a time
decomposition hRd, Pd, ↵, �, �, �i is defined by

maximize min
a2Rd

min(�(a) � �(a) + d(a), �(m(a)) � �(a) + d(a))

Machine Decomposition The idea behind the machine decomposition is to ex-
tract a subproblem by selecting activities on a subset of the machines Md.

Definition 3. A machine decomposition hRd, Pd, md, ↵, �i of a solution �o wrt
a set Md of machines is a jobshop defined over the activities Rd = {a 2
A|m(a) 2 Md}, with precedence constraints Pd = {(a, b) 2 P|a 2 Rd ^ b 2 Rd},
with bounds on the activity starting times (↵(a) and �(a)). A feasible solution
to a machine decomposition satisfies all constraints of the jobshop, as well as the
additional constraints:

8a 2 Rd : (�(a) � ↵(a)) ^ (�(a) + d(a)  �(a)) .

Since the machine decomposition has full knowledge of the activities within each
machine, minimizing the makespan guarantees the generation of non-degrading
solutions as long as machines on the critical path are in the set Md.

Solution Merging Time and machine decompositions ensure that precedence and
machine availability constraints are satisfied with respect to the original solution.
It is thus possible to follow the machine precedences to merge the solutions.

75

Definition 4. Let �d be a solution from the time decomposition hRd, Pd, ↵, �, �, �i
wrt �o and hs, ei. The merging of �d and �o is the solution �m obtained by as-
signing a start date minimizing the set of precedence constraints:

{(a, b)|m(a) = m(b) ^ a 62 Rd ^ b 2 Rd ^ �d(b) � �o(a) + d(a)} [
{(a, b)|m(a) = m(b) ^ a 2 Rd ^ b 62 Rd ^ �o(b) � �d(a) + d(a)} [
{(a, b)|m(a) = m(b) ^ a 2 Rd ^ b 2 Rd ^ �d(b) � �d(a) + d(a)} [
{(a, b)|m(a) = m(b) ^ a 62 Rd ^ b 62 Rd ^ �o(b) � �o(a) + d(a)}.

The merging is similar for the machine decomposition.

Elite Solution Pool Similarly to TSAB [9] and SGMPCS [3], also ARD uses
the concept of elite solutions. A set of k solutions {�0, �1, ..., �k} is initially
generated and, at each iteration of the algorithm, a random solution is chosen
to be improved. At the end of the search, the best solution �⇤ is returned.

4 Experimental Evaluation

The proposed algorithm was evaluated on the standard jobshop scheduling bench-
mark problem instances of [12]. The algorithm was implemented on top of the
Comet system and run on an Intel 2.8 GHz Xeon processor with 8Gb of RAM.

The algorithm of choice for the ARD is a LNS based on a simple Constraint
Programming (CP) model. LNS, in this case, is used both to generate initial
solutions, where the search is terminated after a few seconds, and to optimize
the decoupled problems. This choice is due to preliminary experiments indicating
that LNS, applied to those subproblems, outperforms a simple CP model.

The CP model states the precedence and disjunctive constraints. The disjunc-
tive constraints are handled through edge-finder and not-first/not-last propaga-
tors. The search procedure is rather naive: It successively ranks the machines,
starting with those with the least slack. The LNS uses temporal, machine and
random neighborhoods in the same fashion as that of [7].

As in [3, 8], average results over 10 runs are reported and expressed in terms
of Mean Relative Error (MRE) from the best-known upper bounds. The LNS and
the decomposition algorithm ARD were compared to the most recent CP-based
models, i.e., SGMPCS [3] and the model in [8] (hereby referred to as MM).

Table 1 presents the experimental results for runs of 60 minutes. It speci-
fies the instance sets, the problem sizes, and the aggregated results of the MM,
SGMPCS, LNS, and ARD algorithms, showing the MRE for both the average
and best run. The bold fonts represents the best and comparable results, “com-
parable” being defined as at-most 0.005 MRE di↵erence. Instances TA21-30 (20
⇥ 20) and TA41-50 (30 ⇥ 20) are widely regarded as the most di�cult JSP
benchmark problems [14]. The results are quite interesting. First, ARD is ex-
tremely competitive with SGMPCS on the instance sets for which SGMPCS
results are given. Second, ARD compares well and often outperforms LNS. In

76

Inst. Size MM SGMPCS LNS ARD
Avg Best Avg Best Avg Best Avg Best

TA11-20 20x15 0.0310 0.0204 0.0125 0.0039 0.0181 0.0089 0.0144 0.0066
TA21-30 20x20 0.0304 0.0231 0.0147 0.0073 0.0187 0.0086 0.0168 0.0105
TA31-40 30x15 0.0727 0.0602 0.0150 0.0053 0.0240 0.0143 0.0164 0.0081
TA41-50 30x20 0.0966 0.0844 - - 0.0423 0.0284 0.0343 0.0256
TA51-60 50x15 - - - - 0.0004 0.0000 0.0101 0.0046
TA61-70 50x20 - - - - 0.0129 0.0050 0.0236 0.0126
TA71-80 100x20 - - - - 0.0241 0.0100 0.0057 0.0027

Table 1. Comparison with State-of-The-Art CP Models in 60 Minute Runs.

inst. LNS LNSt ARD
Avg Best Avg Best Avg Best

TA11-20 0.022 0.010 - 0.013 0.020 0.010
TA21-30 0.025 0.012 - 0.014 0.024 0.014
TA31-40 0.031 0.018 - 0.015 0.027 0.017
TA41-50 0.053 0.039 - 0.031 0.058 0.043
TA51-60 0.012 0.005 - 0.000 0.042 0.028
TA61-70 0.047 0.034 - 0.034 0.055 0.041
TA71-80 0.068 0.060 - 0.020 0.037 0.023

Table 2. Comparison with State-Of-The-Art CP Models in 10 Minutes Runs.

particular, this is the case on the hard TA41-50 instances and the largest TA41-
50 instances. This is promising since it indicates that ARD has the potential to
scale to very large-scale hard scheduling problems and obtain very high-quality
solutions. Finally, MM is completely dominated by other approaches. So the
simplicity advocated in [8] comes at a significant cost, especially given that it is
not clear that MM scales to larger instances due to its memory requirements.
This should be contrasted with the simplicity and performance of the approaches
proposed herein.

Similar results are achieved within 10 minutes, as shown in Table 2. The
algorithms being compared are our simple LNS, a large neighborhood search
using texture-base heuristic (LNSt) [7] (only the best results are given in the
paper) and ARD. These results are surprisingly good, given that LNS and ARD
uses a simple search procedure and require very little development e↵ort on
top of a modern constraint-based scheduler (e.g., LNS adds another 50 lines
of code). ARD could certainly be improved by using texture-based heuristics
[4] or some of the learning techniques used in [7]. Once again, the results seem
to indicate that ARD will be a technique of choice to scale to very large-scale
scheduling problems, as it already dominates LNS on the largest instances under
time constraints when using the same search procedure.

5 Conclusion

This paper has shown that adaptive randomized decompositions (ARDs) are in-
strumental in finding very high-quality solutions to large-scale jobshop schedul-

77

ing problems, producing results comparable to the best existing algorithms and
improving solution quality on hard or very large instances. ARDs thus seem to
be a technique of choice to tackle very large-scale scheduling algorithms. This
research also indicates that there is a strong need to generate new benchmarks
for very large-scale scheduling problems. Possible future work is the application
of ARD to other scheduling problems, such as cumulative scheduling and to
problems with di↵erent objective functions.

References

1. Egon Balas and Alkis Vazacopoulos. Guided local search with shifting bottleneck
for job shop scheduling. Manage. Sci., 44:262–275, February 1998.

2. J. C. Beck, T. K. Feng, and J.-P. Watson. Combining Constraint Programming
and Local Search for Job-Shop Scheduling. INFORMS Journal on Computing,
23(1):1–14, May 2010.

3. J. Christopher Beck. Solution-guided multi-point constructive search for job shop
scheduling. Journal of Artificial Intelligence Research, 29(1):49–77, May 2007.

4. J. Christopher Beck, Andrew J. Davenport, Edward M. Sitarski, and Mark S. Fox.
Texture-based heuristics for scheduling revisited. In Proceedings of the fourteenth
national conference on artificial intelligence and ninth conference on Innovative ap-
plications of artificial intelligence, AAAI’97/IAAI’97, pages 241–248. AAAI Press,
1997.

5. Russell Bent and Pascal Van Hentenryck. Randomized adaptive spatial decoupling
for large-scale vehicle routing with time windows. In Proceedings of the 22nd
national conference on Artificial intelligence, 173–178. AAAI Press, 2007.

6. Russell Bent and Pascal Van Hentenryck. Spatial, Temporal, and Hybrid Decom-
positions for Large-Scale Vehicle Routing with Time Windows. Principles and
Practice of Constraint Programming (CP’2010), 99–113, 2010.

7. Tom Carchrae and J. Christopher Beck. Principles for the Design of Large Neigh-
borhood Search. Journal of Mathematical Modelling and Algorithms, 8(3):245–270,
2009.

8. Diarmuid Grimes, Emmanuel Hebrard, and Arnaud Malapert. Closing the Open
Shop: Contradicting Conventional Wisdom. In Principles and Practice of Con-
straint Programming - CP 2009, 400–408, 2009.

9. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop
problem. Management Science, 797–813, 1996.

10. E. Nowicki and C. Smutnicki. An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling, 8(2):145–159, 2005.

11. Dario Pacino and Pascal Van Hentenryck. Large neighborhood search and adaptive
randomized decompositions for flexiblem jobshop scheduling. In Proceedings of the
22th International Joint Conference on Artifical Intelligence, Barcelona, 2011.

12. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Op-
erational Research, 64(2):278–285, January 1993.

13. Jean-Paul Watson and J. Christopher Beck. A Hybrid Constraint Programming
/ Local Search Approach to the Job-Shop Scheduling Problem. In CPAIOR-08,
263–277, 2008.

14. C. Zhang, P. Li, Y. Rao, and Z. Guan. A very fast TS/SA algorithm for the
job shop scheduling problem. Computers & Operations Research, 35(1):282–294,
January 2008.

78

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 79–84,
Perugia, Italy, 12 September 2011.

Flexible timeline-based planning and its
constraints

Student: Anna Roub́ıčková1

Supervised by: Rosella Gennari1 and Marco Roveri2

1 Free University of Bozen-Bolzano, 39100 Bolzano (BZ), Italy
2 Fondazione Bruno Kessler, 38123 Povo (TN), Italy

Abstract. In our work we suggest a formalisation of the application-
driven research of Cesta et al. [1] that is consistent with the traditional
approach to temporal planning [3]. We revise the definitions of leading
notions of flexible timeline-based planning under uncertainty and iden-
tify constraints stemming from such formalisation. As our research in
this field is not finished yet, we also present few opened problems and
questions to be addressed in the future.

1 Introduction

Our research is motivated by the work of Cesta et al., 2009 [1] on verification of
timeline-based plans under uncertainty. However, we are more interested in the
synthesis of such plans, which is a problem the original paper does not address.

The contribution of this paper is twofold: First, it unifies and formalises
notions used in flexible timeline-based planning applications [1]; second, it shows
how the proposed formalisation matches the more traditional models (e.g., based
on chronicles) to allow plan synthesis by using already known algorithms. In
order to properly define the flexible timeline-based framework, we modified some
of the definitions of Ghallab, Nau an Traverso, 2004 [3] and even introduced some
new definitions consistent with them.

2 Planning Model

The model of a planning system is built around the notion of state variable. The
state variable describes legal evolutions of one property of the planning system
(see Fig. 1 (a)), such as an activity of a space craft or a satellite’s position on
the orbit. Formally, it is a transition system:

Definition 1 (State Variable [1]). A state variable is a tuple x = 〈V , T , D〉,
where V is a set of allowed values for x, that is, its domain; T : V → 2V is a value
transition function defining legal successors for each value and D : V → N ×N is
a value duration function providing a lower and upper bound of value’s duration.

A path in the transition system x describes an evolution of the corresponding
property over time and is referred to as the behaviour of x. The behaviour can
be also understood as a piecewise constant mapping from time to values of x
(see Fig. 1 (b)).

79

2

Apart from state variables, the planning system is described using object con-
stants and variables to refer to values of state variables (i.e., elements of V) as
well as temporal constants and variables to refer to timepoints. As time is con-
sidered to be continuous in this model, the temporal constants are real numbers
and also the temporal variables range over R. All these notions can be brought
together to express propositions about the planning system by means of temporal
assertions.

Definition 2 (Temporal Assertion [3]). Temporal assertions are expressions
of either of the following forms:

a) x@t : (v1, v2), called an event, denotes a change of value of state variable x
at timepoint t from v1 to v2, v1 %= v2, (where a “change of value” refers to a
transition taking place in the transition system x)

b) x@[t1, t2) : v, called a persistence condition, states that the value of variable
x equals to v during the time period [t1, t2), t1 < t2.

Intuitively, the temporal assertions [3] describe the behaviour — an event defines
a transition between two constant parts of the behaviour while a persistence
condition defines a length of a constant part (see Fig. 1 (b)).

v1
[5;10]

v2
[1;10]

v3
[1;5]

time

values

v
2

x = <{v1, v2, v3};
 T(v1)={v2}, T(v2)={v1, v3}, T(v3)={v1};
 D(v1)=[5;10], D(v2)=[1;10], D(v3)=[1;5]>

x@[t1,t2) : v1
x@t2 : (v1,v2)
x@t3 : v2

v
1

t
1

t
2

t
3

Fig. 1. (a) a state variable x; (b) a behaviour of x consistent with the temp. assertions

We believe that we one more kind of temporal assertion is needed to express
initial conditions and even some kinds of goals, because the interval of validity,
as stated by a persistence condition, may be unknown or unimportant while the
preceding or following value, as needed for expressing an event, may be unknown
or not applicable.

Definition 3 (Point Condition). A point condition is a temporal assertion
x@t : v, which states that the value of state variable x at timepoint t equals v.

A point condition restricts the behaviour of x so that a point [t; v] belongs to it.
A behaviour can be captured by a timeline. We suggest the following def-

inition, which matches the traditional meaning of timeline [3] and also allows
for extensions defined in Cesta et al., 2009 [1], such as completely specified or
flexible timelines. These definitions are however meaningful only in the context

80

3

of bounded planning problems, which look for plans of length at most H ∈ R. In
such a case, the planning problem is considered only over finite temporal interval
called a planning horizon H = [0; H).

Definition 4 (Timeline). A timeline [3] for a state variable x is a pair TLx =
〈T , C〉, where T is a set of temporal assertions about x and C is a consistent set
of constraints3 about values and times appearing in T .
A timeline is completely specified if the union of all the persistence conditions
in T covers the planning horizon H.

In case timeline is completely specified, we define Te as a set of events that
cause transitions between the consecutive values of x in correspondence to pairs
of consecutive persistence conditions. A completely specified timeline for state
variable x then becomes a pair TLx = 〈Te, C〉.

The notion of flexible timeline was introduced by Cesta et al., 2009 [1] to
allow modelling uncertainty in timing of some activities. However, the notion
of flexibility is only informally given in their work. To provide a formally sound
definition of flexibility and of flexible timeline, we suggest to extend the definition
of temporal assertions.

We defined a flexible version of the @ operator, denoted @f , which replaces a
crisp timepoint by a temporal interval. The flexible temporal assertion containing
@f [ts, te) are to be interpreted as an existential constraint, i.e., there exists a
timepoint t ∈ [ts, te) such that the (crisp) temporal assertion featuring @t takes
place:

Definition 5 (Flexible Temporal Assertion). Flexible temporal assertions
are expressions of either of the following forms:

a) x@f [t1, t2) : (v1, v2), a flexible event, stands for ∃t ∈ [t1, t2) st. x@t : (v1, v2),

b) x@f [ts1 , ts2 ; te1 , te2) : v, a flexible persistence condition, which stands for
∃ts ∈ [ts1 , ts2), te ∈ [te1 , te2) st. x@[ts, te) : v, ts < te,

c) x@f [t1, t2) : v, a flexible point condition, stands for ∃t ∈ [t1, t2) st. x@t : v.

As noted above, in case of completely specified timeline we do not need to keep
track of the persistence conditions, the events that interleave them are sufficient
to construct the whole timeline and so the persistence conditions are omitted.

This observation, together with the definition of flexible event, gives us an
elegant way to define a flexible timeline in accordance to [1], where ”transition
events are associated to temporal intervals instead of to exact temporal occur-
rences”:

Definition 6 (Flexible Timeline). A flexible timeline for a state variable x
is a pair TL∗

x = 〈T ∗
e , C〉, where TL∗

x is completely specified, T ∗
e is a set of events

about x out of which at least one is flexible, and C is a consistent set of constraints
about values and times of x.

3 Constraints are discussed separately in the following section.

81

4

The last notion to be mentioned here is the one of a goal. A goal can be composed
of several sub-goals, which are specified as temporal assertions in the extended
sense, including also point conditions and flexible assertions. Following the in-
tended meaning of Cesta et al. [1] and the formalism of the textbook [3], we
suggest following definition:

Definition 7 (Goal). A goal is a pair G = 〈T ∗
G , CG〉, where T ∗

G is a set of
possibly flexible temporal assertions g and CG is a consistent set of constraints
over variables from T ∗

G.

Then, a plan [1] is a set of completely specified timelines TLx = 〈Te, C〉 consistent
with CG, one for each state variable, such that ∀g ∈ T ∗

G ∃TLx such that g ∈ Te.
A plan is called flexible if it contains at least one flexible timeline.

3 Constraints

In the previous section, we have mentioned a set of constraints as a part of defini-
tions of timelines and goal. The notion of constraint comes from the textbook [3],
but is not explicitly defined in the flexible timeline-based framework [1]. In this
section, we study constraints implicitly included in their framework, the union of
such constraints forms the previously mentioned set C. Moreover, the constraints
are in fact planning operators in our framework and hence are crucial for the
plan synthesis as their consistent grounding results in a valid plan.

We will start with a review the constraints given by the traditional temporal
planning [3] to compare them to constraints needed to handle the flexible time-
lines [1]. The constraints are over temporal and object variables (not over the
state variables), and are of two corresponding types, temporal and binding. The
temporal constraints impose qualitative restrictions on temporal variables and
are expressed in point algebra [2]. The binding constraints range over the objects4

of the planning domain and can express equality, inequality and belongingness
to some class of objects. Formally,

Definition 8 (Constraint [3]). A constraint is a binary relation of the form
R(x1, x2) that restricts allowed values of variables x1, x2. Depending on the type
of the variables, we distinguish following two types of constraints:

a) temporal: where x1 and x2 are temporal variables and R is a temporal rela-
tion from point algebra, that is, R ∈ {<, =, >}.

b) binding: where x1 is an object and x2 is either an object with R ∈ {=, %=} or
a class of objects, in which case R denotes a belongance (∈).

In the remainder of this section, we will study sources of constraints in the
timeline-based framework of Cesta et al., 2009 [1] and formalize them using
the formalisation provided in previous section, i.e., we will reformulate the con-
straints by means of temporal assertions. For simplicity, we will restrict the
analysis to the crisp temporal assertions, noting that the flexibility only adds
existential quantification over the temporally qualified formulae defining some
of the constraints here.
4 By object we understand either an object constant or an object variable.

82

5

The main source of constraints is the definition of a state variable. It restricts

– values the state variable is allowed to take,
– order of values taken by the state variable,
– durations of values taken by the state variable.

Allowed Values. Definition of state variable x contains a set of allowed val-
ues V for x. This results in a binding constraint over all temporal assertions x
participates in:

∀v such that v appears in temporal assertion about x −→ v ∈ V

Value Transition Function. Definition of state variable x contains a value
transition function T : V → 2V which defines binding constraints over pairs of
consecutive values of variable x. The consecutive values of x are stated by events
and by pairs of persistence conditions that follow each other:

events: ∀t, v1, v2 such that x@t : (v1, v2) −→ v2 ∈ T (v1)
pers. cond.: ∀t1, t2, t3 such that x@[t1, t2) : v1 ∧ x@[t2, t3) : v2 −→ v2 ∈ T (v1)

Value Duration Function. Definition of state variable x also contains a value
duration function D : V → N × N that sets the lower and upper bound of the
length of the duration of value of x. Hence we can define metric [2] temporal
constraints over the endpoints of intervals of persistence conditions:

∀t1, t2 such that x@[t1, t2) : v −→ (t2 − t1) ∈ D(v)

The constraints induced by the value duration functions uses syntax not allowed
by the textbook [3] as they are metric instead of qualitative. Therefore, the un-
derlying structure to resolve the temporal constraints in our framework needs to
be some kind of a Simple Temporal Network.

Synchronisation Rules. Note that the state variable definitions restrict only
values belonging to the same state variable. To correlate values among different
state variables, Cesta et al., 2009 [1] uses synchronisation rules:

Definition 9 (Synchronisation Rule [1]). A synchronisation is an implica-
tion rule 〈TLx, v〉 ⇒ {〈TLxi , vij , rij 〉; i, j ∈ I} that constraints the occurrence of
reference value v on reference timeline TLx with the occurrence of target values
vij on target timelines TLxi so that the timing of v and vij relate through a
metric temporal relation rij .

As we defined a timeline as a set of temporal assertions, we can rewrite the
synchronisation rule to several constraints, depending on the temporal assertions
used to define the synchronisation: The occurrence of a value v on a timeline
TLx means that there exists a temporal assertion (event, point condition or
persistence condition) about x that assigns value v to x, meaning that:

∃t such that x@t : (v, v′) ∨ x@t : v ∨ {t ∈ [t1, t2) ∧ x@[t1, t2) : v}

83

6

Using the above observation, we can rewrite the synchronisation rule as follows:

∀t st. x@t : (v, v′) ∨ x@t : v ∨ {t ∈ [t1, t2) ∧ x@[t1, t2) : v} =⇒
∀i, j ∈ I ∃tij st.

{xi@tij : (vij , v
′
ij

) ∨ x@tij : vij ∨ {tij ∈ [t′1, t
′
2) ∧ xi@[t′1, t

′
2) : vij }} ∧ rij (t, tij)

Note that the synchronisation rule behaves like a logical implication rather than
a constraint, i.e., we quantify ∀t, ∀i, j ∈ I : ∃tij rather than ∃t ∃tij .

Also note that the right-hand side of the implication is in fact a conjunction
of existentially quantified expressions, i.e., there exist several timepoints tij at
which the target values vij appear on corresponding target timelines TLxi .

4 Conclusion and Future Work

In our research we address the problem of synthesis of a temporal plan un-
der uncertainty. Starting from the textbook of Automated Planning [3] and an
application-driven research of Cesta et al. [1], we revised the definitions and
proposed a formalisation of those.

Further we have studied and introduced a formal description of constraints
present in the flexible timeline-based framework [1]. In the future we would like
to compare this new set of constraints with constraints that are considered in
the traditional temporal framework [3] to see whether the algorithms proposed
for the traditional framework can be reused despite the flexibility and need for
metric temporal information present in the flexible timeline-based framework.

Further, we would like to study the complexity issues of such algorithm,
with a focus on the newly introduced temporal assertions and the fact that
now the framework contains also disjunctions of constraints stemming from the
synchronisation rules.

As an alternative approach for the plan synthesis we would like to modify
the timed game automata approach which is used in [1] for the verification of the
plan and compare the formal properties of such an approach to the traditional
one [3], which is based on identifying and repairing flaws of a preliminary plan.

There also remains opened question about the representation of time, as one
approach [1] considers it to be discrete and the other [3] continuous. Clearly
such choice influences expressivity of the framework as well as its computational
properties, so we would like to devote some part of future work to study of
complexity under either of these options.

References

1. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Verifying flexible timeline-
based plans. VVPS-09. Workshop on Verification and Validation of Planning and
Scheduling Systems at ICAPS, Thessaloniki, Greece, September, 2009 (2009)

2. Gennari, R.: Temporal reasoning and constraint programming—a survey. CWI
Quart 11, 163–214 (1998)

3. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA (2004)

84

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 85–90,
Perugia, Italy, 12 September 2011.

Satisfiability Modulo Theory with Cost Optimization

Silvia Tomasi
silvia.tomasi@disi.unitn.it

Advisor: Prof. Roberto Sebastiani
roberto.sebastiani@disi.unitn.it

DISI, University of Trento
Via Sommarive, 14, I-38123 Povo, Trento, Italy

Abstract. Many practical real-world decision problems can be formalized as
Boolean combinations of Boolean propositions and linear expressions over ratio-
nal or integer variables (possibly combined with other theories). These problems
can be encoded into Satisfiability Modulo Theory (SMT) and the modern SMT
procedures can be used to find a solution to them. A quite new research area is
Optimization Modulo Theories (OMT), i.e. a generalization of SMT that aims
at finding an assignment which optimizes a given cost function. OMT captures
and generalizes many optimization problems, including Pseudo-Boolean Opti-
mization and Linear Generalized Disjunctive Programming. To the best of our
knowledge, there exist very few and limited works addressing OMT and they all
focus on pseudo-Boolean cost functions defined over predicates. In this paper
we extend the classic SMT framework with linear cost functions over domain
variables and propose two procedures for addressing optimization problems.

1 Motivations and goals

Many practical real-world decision problems (e.g. formal verification of RTL designs
[5], or Real-Time Systems [1] and software pieces [4], resource planning [21]) can be
encoded into Satisfiability Modulo Theory (SMT) formulas (or T -formulas) which are
Boolean combinations of atomic propositions and ground atomic formulas in a given
first-order theory T ; T can be a combination of theories such that T = LA ∪ Sn

i=0 Ti,
for the linear arithmetic theory LA (either on the rationals, LA(Q), or on the integers,
LA(Z)) and some theory Ti (such as the theory of equality and uninterpreted functions
or the theory of the arrays). These problems can be effectively solved exploiting modern
SMT procedures (see, e.g., [3]).

However, in some applications (e.g. radio link frequency assignment [6], displace-
ment of tools [11], resource planning [12] and job scheduling [16]) we are interested not
only in finding a solution which satisfies the constraints, but also in finding a solution
which also optimizes the usage of certain resources. Although optimization problems
have been deeply addressed in different contexts, such as Satisfiability (SAT) and Math-
ematical Programming, there exist limitations on the constraints set, the cost function
and the background theories that are used for expressing a problem (see section 5). A
quite new research area is Optimization Modulo Theories (OMT). OMT is a generaliza-
tion of SMT that aims at finding an assignment which optimizes a given cost function.

85

To the best of our knowledge only two works [15, 7] deal with OMT, but they focus on
cost functions expressed as Boolean predicates.

Our work aims at extending the classic SMT framework with linear cost functions
over domain (i.e. arithmetical) variables rather than predicates. We focus on the OMT
with Linear Cost Function (LOMT(T)) problem that aims at finding a satisfying assign-
ment that minimizes a linear cost function. We address LOMT as a sequence of SMT
decision problems by implementing two classical approaches: branch and bound and
binary search. LOMT captures and generalizes many optimization problems, including
Pseudo-Boolean Optimization and Linear Generalized Disjunctive Programming.

This paper is structured as follows. Some background is presented in section 2. In
sections 3 and 4 we respectively describe the problem statement and the main guidelines
for addressing SMT optimization procedures. In section 5 we spotlight the differences
between different optimization problems in the contexts of SAT, SMT and Mathemati-
cal Programming. In section 6 we describe ongoing work. Finally, in section 7 we draw
some conclusions and outline directions for future research.

2 Background

Satisfiability Modulo Theory (SMT (T)) is the problem of deciding the satisfiability of
ground formulas wrt. a background theory T (notice that T can be also defined as a
combination of theories, i.e. T =

S
i Ti).

A SMT solver is a procedure able to decide SMT (T). A theory solver for T , or
T -solver, is a procedure able to decide the satisfiability in T of sets/conjunctions of
of atomic formulas and their negations (T -literals). If T -solver is invoked on a T -
inconsistent set µ of T -literals, it returns unsat and the sub-assignment η ⊆ µ which
was found inconsistent in T (hereafter η and ¬η are respectively called T -conflict and
T -conflict clause). Otherwise, T -solver returns sat and a T -model I that satisfies µ
(i.e. I |= µ). This technique is called T -deduction and ¬η ∨ l is called T -deduction
clause.

The standard lazy approach for solving SMT (T) is to use a conflict-driven clause-
learning (CDCL) SAT solver for enumerating truth assignments µ for the Boolean ab-
straction of the input formula ϕ (that maps Boolean variables into themselves and theory
atoms into fresh Boolean variables and distributes with sets and Boolean connectives)
and then invoke one (or more) T -solver (s) for checking the consistency in T of the
set of T -literals corresponding to µ. If the T -solver returns sat, then ϕ is T -consistent,
otherwise the T -solver returns the T -conflict η. The conflict clause ¬η is added to ϕ
(T -learning) and then used to backtrack (T -backjumping). The integration of modern
SAT procedures and T -solvers is enhanced by very effective techniques such as early
pruning. In early pruning the T -solver is invoked also on intermediate assignments µ.
If µ is not T -consistent then all possible extensions of µ are not T -consistent and the
procedure can backtrack pruning lots of search space. For more details we refer the
reader to [3].

2

86

3 Optimization Modulo Theory with Linear Cost Function

We extend the classic SMT framework by adding linear cost functions over domain
variables in order to deal with optimization problems. We focus on problems that can
be formally defined as a tuple �ϕ, cost , lb, ub� such that:

– ϕ is a SMT formula with respect to some background theory T = LA ∪ Ti for
i = 0, . . . , n where LA can be on either LA(Q) or LA(Z). The variables contained
into LA-atoms belong to the domain D;

– cost is a linear function of the form cost =
PN

i=1 aixi where ai are constant
numbers and xi are variables belonging to D;

– lb and ub are constant numbers (possibly −∞ and +∞ respectively) such that
lb ≤ cost < ub and are called respectively lower bound and upper bound (and the
interval [lb, . . . , ub[is called range of the cost function).

Rather than searching for a satisfying assignment, as in SMT, OMT with Linear Cost
Function (LOMT) consists in finding an assignment satisfying ϕ whose value of cost
is minimum and within the range of the cost function.

4 Addressing the LOMT problem

We address the LOMT problem by extending a state-of-the-art CDCL-based SMT
solver in order to implement two procedures based on the following approaches: branch
and bound and binary search. These approaches can exploit CDCL techniques (such as
T -learning and T -backjumping) in order to reduce the space of the possible solutions
by cutting non-optimal solutions off and avoiding redundant search. In the following
we briefly describe such procedures.

4.1 Branch-and-Bound Approach

We propose first a very naive branch-and-bound procedure for solving LOMT(T). First,
it adds the cost function to the input formula and learns bound constraints in order to
restrict the search within the range [lb, ub[resulting in the formula ϕC = ϕ ∧ (cost =P

i=1 aixi) ∧ ¬(cost < lb) ∧ (cost < ub). Then the procedure iteratively explores the
solutions space by invoking an incremental SMT solver1. If the SMT solver proves the
satisfiability of ϕC , then it returns sat and a satisfiable truth assignment µ for ϕC . The
procedure invokes minimize()2 that minimizes the cost function cost subject to µ and
returns the current optimal value mincost. The constraint (cost < mincost) is added to
ϕC so that the current solution becomes the new upper bound for the cost function. This
process is performed until either ϕC is found unsatisfiable or the problem is unbounded
(i.e. the optimal solution found so far is equal to −∞). In the former case the last

1 A SMT solver is incremental if it allows to prune the search by reusing clauses (both Boolean
and theory ones) learned from previous calls.

2 We implemented the procedure minimize() by extended a LA-solver proposed by Dutertre
and de Moura [8] to support (a variant of) the Simplex method.

3

87

solution found is the optimal one. Notice that the procedure works also if lb = −∞, or
ub = +∞, or both.

A much more sophisticated version is implemented by embedding the minimization
loop inside the Boolean search performed by the CDCL-based SMT solver. When a sat-
isfying assignment µ is found T -consistent by the T -solver, µ is also fed to minimize();
the latter returns the minimum cost of µ, which becomes the new value of mincost, and
the subset η of LA-atoms in µ involved in the minimum. Then the clauses (cost <
mincost) and ¬η are learned and used for driving the backjumping mechanism. Notice
that every partial assignment µ contains the atom (cost < mincost). Thus, if a partial
assignment µ is generated which cannot be expanded into a total one whose cost is
better than mincost, then µ is found T -inconsistent directly by early-pruning calls to
T -solver. To this extent, in this schema early-pruning plays the role of “bounding” in
branch and bound.

4.2 Binary-Search Approach

The second procedure we present is based on the binary-search schema. A very naive
version starts by adding cost function and bound constraints to the input formula re-
sulting in the formula ϕC . The procedure restricts the search within the interval [lb, ub[
and divides it as a function of the upper and lower bounds by computing the value
pivot

def
= (1− t) · lb+ t ·ub (where t is a parameter in]0, 1]). At each step, the incremen-

tal SMT solver checks the satisfiability of the formula ϕC ∧ (cost < pivot). Notice that
the constraint (cost < pivot) restricts the search in the interval [lb, pivot[. If the SMT
solver finds a satisfiable truth assignment µ for ϕC , the current optimal value mincost is
found by invoking the procedure minimize(). The clause (cost < mincost) is learned
pruning all the solutions greater than mincost so that the search goes on in the interval
[lb, mincost[. If ϕC is unsatisfiable, the search proceeds in the interval [pivot, ub[. The
process terminates when either the search interval is empty (in this case the last solu-
tion found is the optimal one) or the problem is unbounded. Notice that, if t is 1, the
procedure reduces to a variant of the branch-and-bound schema.

As with the branch-and-bound case, a much more sophisticated version can be im-
plemented by embedding the minimization loop inside the Boolean search of a CDCL-
based SMT solver. Every time the search of the CDCL solver is at decision level zero,
the atom (cost < pivot) is assumed at level one (where pivot is defined as above),
ub [resp. lb] being the lowest [resp. highest] value ubi [resp. lbi] such that the atom
(cost < ubi) [resp. ¬(cost < ubi)] is currently assigned at level 0. The procedure
terminates when ub < lb. During the search, when a satisfying assignment µ is found
T -consistent by the T -solver, µ is also fed to minimize(); the latter returns the mini-
mum cost of µ, which becomes the new value of mincost, and the subset η of LA-atoms
in µ involved in the minimum. Then the clauses (cost < mincost) and ¬η are learned
and used for driving the T -backjumping mechanism. Also the atom (cost < pivot) is
learned in order to activate the clauses in the form ¬(cost < pivot) ∨ ... which have
been learned during previous steps in the search.

Since the above schema can be applied only if the cost function is bounded, we
propose a procedure that tries to find the bounds when they are infinite. If it fails, the
branch-and-bound search is invoked instead.

4

88

5 Related Work

With respect to existing works related to optimization in SAT [13, 17] and SMT [15,
7], we express cost functions as linear functions over domain variables rather than as
purely pseudo-Boolean functions.

In the context of Mathematical Programming we can consider the following op-
timization paradigms: Mixed-Integer Linear Programming (MILP), Disjunctive Pro-
gramming (DP) and Linear Generalized Disjunctive Programming (LGDP). All of them
have some limitations concerning the set of constraints and the background theories
that are used for expressing a problem. In particular, MILP aims at optimizing a linear
function subject to a set of linear constraints over rationals and integer variables [14].
Notice that MILP is a subcase of LOMT(T) where T = LA(Q) ∪ LA(Z) and the
formula ϕ is a conjunction of literals. DP and LGDP are close in spirit to LOMT(T).
The former focuses on optimizing a linear function subject to Boolean combination of
linear constraints [2] and the latter extends DP by involving Boolean variables and logic
propositions [18]. Unlike DP and LGDP, we do not impose any restriction on the back-
ground theory and we can also handle combinations of theories, such as Equality and
Uninterpreted Functions, the theories of bit-vectors and arrays.

Mathematical Programming paradigms and LOMT also differ in the solution ap-
proach. While the first ones use arithmetical approaches that integrate branch-and-
bound search with cutting plane methods [14, 2], we adopt a logic approach where the
Boolean search guides the analysis of the solutions space as described in section 4.

6 Ongoing Work

We have implemented the “more sophisticated” versions of the optimization procedures
described in section 4 and we are currently testing them on benchmarks in the SMT-LIB
(augmented with randomly generated linear cost functions) and LGDP problems taken
from [19]. We are also comparing our optimization procedures against two solvers,
LogMIP [20] and EMP [9].

7 Conclusions and Future Work

Our work aims at addressing the problem of Optimization Modulo Theories with linear
cost functions (LOMT) that involves finding a satisfying assignment for a SMT formula
that minimizes a given a linear cost function.

In the future, we expect to develop efficient implementations of the two proposed
procedures and compare them against other techniques on restricted problems (e.g. Dis-
junctive Programming and Linear Generalized Disjunctive Programming). Notice that
efficient implementations will benefit from effective techniques for integrating theory
and Boolean search and combining branch and bound with binary search and smarter
heuristics (e.g. adaptive mechanisms and variable selection heuristics). We also plan
to extend LOMT(T) to linear arithmetic on integers LA(Z) and convex non-linear
cost function, if feasible. Finally, we would like to investigate the possibility of using
Stochastic Local Search for solving LOMT(T) by continuing and extending the work
we did in [10].

5

89

References
1. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking for

timed systems. In FORTE, pages 243–259, 2002.
2. E. Balas. Disjunctive programming. In M. Junger, T. M. Liebling, D. Naddef, G. L.

Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years
of Integer Programming 1958-2008, pages 283–340. Springer Berlin Heidelberg, 2010.

3. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In
Handbook of Satisfiability, pages 825–885. 2009.

4. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model
checking via large-block encoding. In FMCAD, pages 25–32, 2009.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzen, Z. Hanna, Z. Khasidashvili, A. Palti,
and R. Sebastiani. Encoding RTL Constructs for MathSAT: a Preliminary Report. Electron.
Notes Theor. Comput. Sci., 144:3–14, January 2006.

6. B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners. Radio link frequency assign-
ment. Constraints, 4(1):79–89, 1999.

7. A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Satisfiability modulo the
theory of costs: Foundations and applications. In TACAS, pages 99–113, 2010.

8. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In CAV, volume
4144 of LNCS, 2006.

9. M. C. Ferris, S. P. Dirkse, J.-H. Jagla, and A. Meeraus. An Extended Mathematical Program-
ming Framework , 2009.

10. A. Griggio, Q. S. Phan, R. Sebastiani, and S. Tomasi. Stochastic Local Search for SMT:
Combining Theory Solvers with WalkSAT. In FroCoS, 2011.

11. M. Hifi. Exact algorithms for the guillotine strip cutting/packing problem. Computers & OR,
25(11):925–940, 1998.

12. J. R. Jackson and I. E. Grossmann. High level optimization model for the retrofit planning
of process networks. Ind. Eng. Chem. Res, 41:41–3762, 2002.

13. C. M. Li and F. Manyà. MaxSAT, Hard and Soft Constraints, volume 185, chapter 19, pages
613–631. IOS Press, 2009.

14. A. Lodi. Mixed Integer Programming Computation. In M. Junger, T. M. Liebling, D. Naddef,
G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50
Years of Integer Programming 1958-2008, pages 619–645. Springer-Verlag, 2009.

15. R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization Problems. In
A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and Applications
of Satisfiability Testing, SAT’06, volume 4121 of Lecture Notes in Computer Science, pages
156–169. Springer, 2006.

16. R. R. and G. I.E. Modeling and computational techniques for logic based integer program-
ming. Computers and Chemical Engineering, 18 (7):563–578, 1994.

17. O. Roussel and V. M. Manquinho. Pseudo-boolean and cardinality constraints. In A. Biere,
M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185,
chapter 22, pages 695–733. IOS Press, 2009.

18. N. Sawaya and I. Grossmann. Reformulations, relaxations and cutting planes for linear
generalized disjunctive programming.

19. N. W. Sawaya and I. E. Grossmann. A cutting plane method for solving linear generalized
disjunctive programming problems. Computers and Chemical Engineering, 29:1891–1913,
2005.

20. A. Vecchietti and I. E. Grossmann. Computational experience with logmip solving linear
and nonlinear disjunctive programming problems.

21. S. A. Wolfman and D. S. Weld. The lpsat engine & its application to resource planning. In
IJCAI, pages 310–317, 1999.

6

90

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, pages 91–96,
Perugia, Italy, 12 September 2011.

Genetic Based Automatic Configurator for
Minion

Hu Xu, Karen Petrie, and Keith Edwards

Computing School,
QMB 1.10, University of Dundee, Dundee, UK

{huxu,karenpetrie,kedwards}@computing.dundee.ac.uk

Abstract. The e�cient choice of a preprocessing level can reduce the
searching time of a constraint solver to find a solution to a constraint
program. Currently the parameters in constraint solver are often picked
by hand by experts in the field. Genetic algorithms are a robust technol-
ogy for problem optimization, such as function optimization. In this pa-
per Genetic algorithms are applied to create an automatic configuration
mechanism for Minion[2], which is a popular general purpose constraint
solver. The experiments in the paper are a proof of concept for the idea
of combining Genetic algorithm with constraint programming to aid in
the parameter selection problem.

Keywords: Genetic Algorithm, Constraint Programming, Minion, Au-
tomatic Configurator, Parameter Tuning

1 Introduction

Problems often consist of choices. Making an optimal choice which is compat-
ible with all other choices made is di�cult. Constraint programming (CP) is
the branch of Artificial Intelligence, where computers help us to make these
choices.Constraint programming applies constraints to trim and reduce the search
space. According to the requirements of the problem, it can find just one or all
the solutions.

In general a constraint solver is responsible for finding the solution(s) follow-
ing the modeling of constraint satisfaction problem. Minion is a free, open source
and general-purpose constraint solver, with an expressive input language based
on the common constraint modelling device of matrix models. The selection of
suitable preprocessing levels for a given constraint problem is an important part
of constraint programming. E�ciently tuning a constraint solver will shorten the
search time and reduce the running cost. One of the keys to increase the search
speed for a constraint solver is tuning the solvers parameters. Currently the job
of tuning parameters is done by hand. It’s unfair for researcher using algorithm
with perfect setting compare the e�ciency with their competitors. The learning
curve involved can be a barrier to a novice user in learning how to e�ciently use
a CP solver.

91

2 Hu Xu, Karen Petrie, Keith Edwards

Genetic algorithm is a classic global optimization method, which proposed
by John Holland and colleague [3]. Genetic algorithms are usually implemented
in a computer simulation in which a population of abstract representations of
candidate solutions to an optimization problem evolves toward better solutions.
Genetic algorithms can find an optimal solution very quickly in optimization
problems often fater than the traditional CP methods. However genetic algo-
rithms are tend to find good solutions rather than best solution. Therefore the
idea of combining the speed genetic algorithms and the expressive power of con-
straint programming seem worth exploring. Successful attempts have been made
in this area before. In 2002 Kanoh [8] proposed a hybrid search method that
combines the genetic algorithm with min-conflicts hill-climbing in solving con-
straint satisfaction problems. Jorge [9] also applied genetic algorithms to solve
a Constraint Satisfaction Problem- Puzzle Eternity II in 2009.

However the general framework of combining genetic algorithms and con-
straint programming to any problems, has not been achieved. In my research
project I wish to combine the expressive power of constraint programming with
the speed of genetic algorithms and explore deeply the e�ciency of the hybrid
strategy in various problems.

In this paper genetic algorithms are chosen to optimize the tuning of Minion.
There are two main reasons to choose genetic algorithms to optimize parameter
tuning. One is that genetic algorithms have a powerful ability to tackle opti-
mization problems which have a lack of auxiliary information [1]. Another is
that genetic algorithms do parallel search rather than linear search. Each chro-
mosome races against another in each generation. Therefore the idea of creating
automatic configurations with genetic algorithms catches lots of researcher’s at-
tention [4].The automatic configuration will reduce time consuming of solver
user on parameter tuning rather than done by hand.

Ansótegui [1] has posed a gender-based genetic algorithm for the automatic
configuration of algorithms. He uses a variable tree (AND/OR Search Trees) to
divide variables into several parts which can be optimized independently. Au-
tomatic tuning will lead to improvements over manual tuning by researchers
themselves. ParamILS and CALIBRA[6] have also shown the e�ciency and pos-
sibility of automatic configuration for a constraints solver. In this paper genetic
algorithms will help Minion to pick the correct switches in three di↵erent classical
constraint problems.

2 Method

We have created a Genetic Based Automatic Configurator for Minion, named
(GACM). GACM suggests a setting for the Minion parameters for a given CP
problem, the problem is then run through Minion using this setting. The statis-
tics as to how e�ciently MInion solved the problem using these parameters are
then fed back to the genetic algorithm to be used to guide the next iteration.

92

Genetic Based Automatic Configurator for Minion 3

Genetic Algorithm

The first step of a genetic algorithm (GA) is called the encoding which is to con-
struct the suitable chromosome for the optimization problem. In our automatic
genetic configurator, the tuning of four switches is considered. The chromosomes
length depends on the number of those switches’ values. For example varorder
has nine statuses, four binary bits are required to present it.

Fitness describes the ability of an individual to reproduce in biology. In
this project, we focus on the minimum running time to find the solution of
optimization problem with specific switches. GA used to find the maximum
value. Therefore the fitness in this project is Fitness(x) = 1/x, where x is the
running time of finding the solution with relative switches.

The Selection in genetic algorithm is a strategy which allows the perfect par-
ents (with high fitness) to have more of a chance to be selected to generate the
next generation. In our genetic configurator, the selection is the roulette wheel
selection. Roulette wheel selection is a way of choosing individuals from the
population of chromosomes in a way that is proportional to their fitness. The
following is the selection probability formula for each chromosome:

P (Ci) = fi
nP

i=1
fi

Where P (Ci) is the selection probability of each chromosome, Ci is the ith
chromosome in population, fi is the fitness of chromosome Ci and n is the
population number.

Crossover can improve the whole population fitness quickly by mating par-
ents to produce an o↵spring. It is a very important operator in genetic algo-
rithms.Mutations which change one or more genes in an individual is another
operator used in GA. Mutation can help genetic algorithm escape the local
maximum state by creating a new gene string. This paper only choose one point
crossover and on point mutation in [3].

Fig. 1. The Framework of Genetic Algorithms Configurator for Minion

GACM Interface Design

The communication interface is a data bridge between the automatic configu-
rator and Minion. The interface will send the suggested parameters to Minion

93

4 Hu Xu, Karen Petrie, Keith Edwards

and get the running cost of optimizing the problem back to our configurator
to evaluate the evolutionary result. Figure 1 shows that some set of switches
will be randomly generated and sent to Minion. Minion will gain the running
cost back of each set of switches and feed back them to genetic based automatic
configurator.

Experiment Design

To prove the e�ciency of our genetic configurator, the optimized tuning results of
GACM will be compare with the random selection. In this paper we consider the,
N-queen problem, the open stack problem and the Landford’s number problem.
These three classical constraint problems were chosen as optimization problem
in Minion. We hope genetic based automatic configurator could be applicable
to di↵erent constraint satisfaction problem. Meanwhile for each optimization
problems we tested two di↵erent instances,for example the n was both 26 and
28 in N-queens. In Goldberg’s book [3], it said that the parameter setting of
genetic algorithms itself is very hard to control. A proper genetic algorithm
parameter setting will lead to a great searching speed and vice versa. Following
the David’s MicroGA Settings [5], the crossover rate is 0.5 and the mutation
rate is 0.04 in all experiments. Since the search space of all the Minion switches
is not large, we only considered 10 generations of the GA and the population
size of GA was set to 6 and 8. Each trial was run 10 times and we observe the
average of the minimums. In the random selection testing, we ran Minion with
all the possible switch settings. After the comparison of GACM and random
selection, the parameter sensitivity of genetic algorithm will be explored as well.
The crossover rate and mutation rate in genetic algorithm are range from 0 to
0.9. Because the GACM will can’t find good parameter at all when the crossover
rate or the mutation is 1.

Fig. 2. The E�ciency of Solving Optimization Problems with Di↵erent Population Size
by GACM

94

Genetic Based Automatic Configurator for Minion 5

3 Experimental Results

From Figure 2, we can see the e�ciency of solving optimization problems with
GACM. The curves in Fig 2 illustrate that GACM will gained a satisfied pa-
rameter setting for Minion after just four generations whatever the population
size or problem. The evolutionary speed of the genetic algorithm approached the
minimum running cost after a few generations of the N-Queen problem (n=28).
In the N-Queen problem the evolutionary speed of the genetic algorithm with
population size 8 is better than the one with population size 6 from the left
graph in figure 2. The wave situation of curves keeps the same when the queen
size changes to 26 in N-Queen problem. The evolutionary result by using eight
chromosomes is better than using six chromosomes. We gained the similar result
when we using GACM to optimize the Minion tuning in the langford’s number
problem.

However the running cost curves in solving the N-queen and the Langford’s
number problem decrease comparatively gently compared to the one describing
the running cost for solving the Open Stack problem. In the graph describing
solving the Langford’s number problem, it can be seen that the evolutionary
speed will collapse after four generations when the population size is 8. The curve
always stays level for a few generations and then descends when the population
size is 6. In the open stack problem the figure shows a di↵erent result from the
other two problems in that the final optimized value by 6 is greater than the one
by 8.

To convince us of the e�ciency of GACM, it is useful to compare the con-
figuration result with the random selection in table 1. In table 1 there are three
problems and two instances for each problem in the experiment. The data statis-
tic on random selection are presented in the first 4 columns. The default solution
in the first column of table 1 is the running cost of finding the solution by using
Minion without using any switches turned on (default parameters). The optimal
solution is the number of all Minion switches which provide a shorter running
cost than without any switches. The average in table 1 means the running cost
average of optimized solution which the minion can gain shorter running cost
than using Minion default switch setting. The minimum solution is the minimum
value of the running cost of using all the switch settings possibie.

According to the number and the value range of switches in Minion, the
search space of GACM is 648. Table 1 shows that for all the problems nearly
two-thirds of the switches lead Minion to less e�cient performance than the
default (no switches on). Although the GACM can’t find the best switch setting
for Minion in 10 generation, it can get a better switch setting than the random
selection.

4 Future work

The result of this experiment, shows the e�ciency of our GACM in Minion
tuning. However there are a few challenges we need to face in the future. The

95

6 Hu Xu, Karen Petrie, Keith Edwards

Question Default Optimal Average Minimum Population Population
Solution Solution solution Size=6 Size=8

N-Queen 2.1 212 1.87 0.0313 0.52 0.31
(n=26)

N-Queen 17.9 222 7.03 0.0313 0.73 0.47
(n=28)

Open Stack 2.4 142 2.3 0.48 1.61 1.03

Open Stack 19.8 160 15.18 1.91 8.3 11.6
(new)

Lanford 3.4 290 3.25 1.54 2.3 1.83
(2,10)

Lanford 13.2 209 6.829 0.125 2.51 1.67
(3,17)

Table 1. The E�ciency of GACM in Solving Di↵erent Problems by comparing the
Random Selection

GACM can definitely find a good parameter setting in a few generations, but
we are unconvinced it can find the best setting. The genetic operator, crossover
rate and mutation rate will be adapted to try to find this best setting. Di↵erent
population sizes lead to di↵erent evolution for various problems. Can these con-
straint problems be classified into several categories? The parameter sensitivity
of GA in GACM will also be explored further.

References

1. Ansótegui, Carlos and Sellmann, Meinolf and Tierney, Kevin, M. Sellmann and
K. Tierney. A Gender-Based Genetic Algorithm for the Automatic Configuration
of Algorithms. In Proceedings of 15th International Conference on Principles and
Practice of Constraint Programming pp. 142-157(2009)

2. http://minion.sourceforge.net/
3. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning.

Addison Wesley (1989)
4. Lars Kottho↵, Ian Miguel and Peter Nightingale. Ensemble classification for con-

straint solver configuration.In Proceedings of 16th International Conference on Prin-
ciples and Practice of Constraint Programming, pp. 321-329(2010).

5. Carroll, D. L., Chemical Laser Modeling with Genetic Algorithms,AIAA J., Vol. 34,
2, pp. 338-346(1996)

6. Hutter, F., Hoos, H.H., Stutzle, T.: Automatic Algorithm Configuration based on
Local Search. In: AAAI, pp. 1152C1157 (2007)

7. Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms using Fractional Experi-
mental Design and Local Search. Operations Research 54(1), 99C114(2006)

8. Kanoh, H. and Matsumoto, M. and Nishihara, S.Systems, Man and Cybernetics,
Genetic algorithms for constraint satisfaction problems. Intelligent Systems for the
21st Century. IEEE International Conference. pp 626-631. (2002)

9. Munoz, Jorge and Gutierrez, German and Sanchis, Araceli. Evolutionary Genetic
Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II. Bio-Inspired
Systems: Computational and Ambient Intelligence, vol 5517, pp720-727.(2009)

96

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 97,
Perugia, Italy, 12 September 2011.

A constraint based approach to cyclic RCPSP

Alessio Bonfietti, Michele Lombardi, Luca Benini, and Michela Milano

DEIS, University of Bologna,
Viale del Risorgimento 2, 40136 Bologna, Italy

{alessio.bonfietti,michele.lombardi2,michela.milano,luca.benini}@unibo.it

Abstract. A cyclic scheduling problem is specified by a set of activities
that are executed an infinite number of times subject to precedence and
resource constraints. The cyclic scheduling problem has many applica-
tions in manufacturing, production systems, embedded systems, compiler
design and chemical systems. This paper proposes a Constraint Program-
ming approach based on Modular Arithmetic, taking into account tem-
poral resource constraints. In particular, we propose an original modular
precedence constraint along with its filtering algorithm. Classical ”mod-
ular” approaches fix the modulus and solve an integer linear sub-problem
in a generate-and-test fashion. Conversely, our technique is based on a
non-linear model that faces the problem as a whole: the modulus do-
main bounds are inferred from the activity-related and iteration-related
variables. The method has been extensively tested on a number of non-
trivial synthetic instances and on a set of realistic industrial instances.
Both the time to compute a solution and its quality have been assessed.
The method is extremely fast to find close to optimal solutions in a very
short time also for large instances. In addition, we have found a solution
for one instance that was previously unsolved and improved the bound
of another of a factor of 11.5%.

Keywords: Constraint Resource Constrained Cyclic Scheduling

1 Introduction

The cyclic scheduling problem concerns setting times for a set of activities, to
be indefinitely repeated, subject to precedence and resource constraints. It can
be found in many application areas. For instance, it arises in compiler design
implementing loops on parallel architecture, and on data-flow computations in
embedded applications. Moreover, cyclic scheduling can be found in mass pro-
duction, such as cyclic shop or Hoist scheduling problems.

In cyclic scheduling often the notion of optimality is related to the period of
the schedule. A minimal period corresponds to the highest number of activities
carried out on average over a large time window.

Optimal cyclic schedulers are lately in great demand, as streaming paradigms
are gaining momentum across a wide spectrum of computing platforms, ranging
from multi-media encoding and decoding in mobile and consumer devices, to
advanced packet processing in network appliances, to high-quality rendering in

97

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 98,
Perugia, Italy, 12 September 2011.

Solving MAXSAT by Solving a Sequence of
Simpler SAT Instances

Jessica Davies and Fahiem Bacchus

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, M5S 3H5
{jdavies,fbacchus}@cs.toronto.edu

Abstract. maxsat is an optimization version of Satisfiability aimed at
finding a truth assignment that maximizes the satisfaction of the theory.
The technique of solving a sequence of SAT decision problems has been
quite successful for solving larger, more industrially focused maxsat in-
stances, particularly when only a small number of clauses need to be
falsified. The SAT decision problems, however, become more and more
complicated as the minimal number of clauses that must be falsified in-
creases. This can significantly degrade the performance of the approach.
This technique also has more di�culty with the important generalization
where each clause is given a weight: the weights generate SAT decision
problems that are harder for SAT solvers to solve. In this paper we intro-
duce a new maxsat algorithm that avoids these problems. Our algorithm
also solves a sequence of SAT instances. However, these SAT instances
are always simplifications of the initial maxsat formula, and thus are
relatively easy for modern SAT solvers. This is accomplished by moving
all of the arithmetic reasoning into a separate hitting set problem which
can then be solved with techniques better suited to numeric reasoning,
e.g., techniques from mathematical programming. As a result the perfor-
mance of our algorithm is una↵ected by the addition of clause weights.
Our algorithm can, however, require solving more SAT instances than
previous approaches. Nevertheless, the approach is simpler than previous
methods and displays superior performance on some benchmarks.

1 Introduction

maxsat is an optimization version of Satisfiability (SAT) that is defined for
formulas expressed in Conjunctive Normal Form (CNF). Whereas SAT tries to
determine whether or not a satisfying truth assignment exists, maxsat tries
to find a truth assignment that maximizes the satisfaction of the formula. In
particular, if each clause of the CNF formula is given a weight, maxsat tries to
find a truth assignment that maximizes the sum of the weights of the clauses it
satisfies (or equivalently minimizes the weight of the clauses it falsifies).

Various special cases can be defined. With only unit weights, maxsat be-
comes the problem of maximizing the number of satisfied clauses. If some of the
clauses must be satisfied (hard clauses) they can be given infinite weight, while

98

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 99,
Perugia, Italy, 12 September 2011.

Filtering Algorithms for Discrete Cumulative

Problems with Overloads of Resource

Alexis De Clercq, Thierry Petit, Nicolas Beldiceanu, and Narendra Jussien

École des Mines de Nantes, LINA UMR CNRS 6241, 4, rue Alfred Kastler,
FR-44307 Nantes, France.

{ADeClerc, TPetit, NBeldice, NJussien}@mines-nantes.fr

Abstract. Many cumulative problems are such that the horizon is fixed
and cannot be delayed. In this situation, it often occurs that all the
activities cannot be scheduled without exceeding the capacity at some
points in time. Moreover, this capacity is not necessarily always the same
during the scheduling period. This article introduces a new constraint for
solving this class of problems. We adapt two filtering algorithms to our
context: Sweep and P. Viĺım’s Edge-Finding algorithm. We emphasize
that in some problems violations are imposed. We design a new filtering
procedure specific to this kind of events. We introduce a search heuristic
specific to our constraint. We successfully experiment our constraint.

1 Introduction

Scheduling problems consist of ordering activities. In cumulative scheduling, each
activity has a duration and requires for its execution the availability of a certain
amount of a renewable resource, its consumption (or capacity demand). Usually
the objective is to minimize the horizon (maximum due date of an activity in the
schedule), while at any point in time the cumulated consumption of activities
should not exceed a limit on the available resource, the capacity.

Three intervals with capacities 3, 2 and 3

t=mt=0 1 2 3 4 5 6 7 8

Over−loads of capacity

Fixed horizon

Fig. 1: A cumulative problem with a fixed horizon (m = 9) and 3 intervals with capac-
ities respectively equal to 3, 2 and 3. Each activity requires 2 units of resource. The
first one starts at t = 0 and ends at t = 3, the second one starts at t = 2 and ends
at t = 7, the third one starts at t = 5 and ends at t = 7. There are two overloads of
capacity: one in the first interval at time 2, one in the third interval at times 5 and 6.

99

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 100,
Perugia, Italy, 12 September 2011.

Synthesis of Search Algorithms from High-level
CP Models?

Samir A. Mohamed Elsayed??, Laurent Michel

Computer Science Department, University of Connecticut.

Abstract. The ability to specify CP programs in terms of a declara-
tive model and a search procedure is instrumental to the industrial CP
successes. Yet, writing search procedures is often di�cult for novices or
people accustomed to model & run approaches. The viewpoint adopted in
this paper argues for the synthesis of a search from the declarative model
to exploit the problem instance structures. The intent is not to eliminate
the search. Instead, it is to have a default that performs adequately in the
majority of cases while retaining the ability to write full-fledged proce-
dures. Empirical results demonstrate that the approach is viable, yielding
procedures approaching and sometimes rivaling hand-crafted searches.

1 Introduction

Constraint programming (CP) techniques are successfully used in various in-
dustries and quite successful when confronted with hard constraint satisfaction
problems. Parts of this success can be attributed to the considerable amount of
flexibility that arises from the ability to write completely tailored search proce-
dures. The main drive is based on the belief that

CP = Model + Search

where the model provides a declarative specification of the constraints, while
the search specifies how to explore the search space. In some CP languages, the
search can be quite sophisticated. It can concisely specify variable and value se-
lection heuristics, search phases [14], restarting strategies [9], large neighborhood
search [1], exploration strategies like depth-first-search, best-first search, or lim-
ited discrepancy search [12] to name just a few. This flexibility is mostly absent
in mathematical programming where the so-called black-box search is controlled
through a collection of parameters a↵ecting pre-processing, cut generation, or
the selection of predefined global heuristics. Users of mathematical programming
solely rely on modeling techniques and reformulations to indirectly influence and
hopefully strengthen the search process e↵ectiveness.

Newcomers discovering CP often overlook the true potential of open (i.e.,
white-box) search specification and fail to exploit it. The observation prompted

? This work is partially supported through NSF award IIS-0642906.
?? The author is partially supported by Helwan University, Cairo, Egypt.

100

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 101,
Perugia, Italy, 12 September 2011.

Revisiting the tree Constraint

Jean-Guillaume Fages and Xavier Lorca

École des Mines de Nantes, INRIA, LINA UMR CNRS 6241,
FR-44307 Nantes Cedex 3, France

{Jean-guillaume.Fages,Xavier.Lorca}@mines-nantes.fr

Abstract. This paper revisits the tree constraint introduced in [2]
which partitions the nodes of a n-nodes, m-arcs directed graph into a
set of node-disjoint anti-arborescences for which only certain nodes can
be tree roots. We introduce a new filtering algorithm that enforces gen-
eralized arc-consistency in O(n + m) time while the original filtering
algorithm reaches O(nm) time. This result allows to tackle larger scale
problems involving graph partitioning.

1 Introduction

In the recent history of constraint programming, global constraints constitute a
powerful tool for both modeling and resolution. Today still, the most commonly
used global constraints are based on an intensive use of concepts stemming from
graph theory. Of these, the most important are cardinality constraints [12, 13]
and automaton based constraints [8, 9, 7]. More generally, the reader should refer
to the catalogue of constraints [1] to gain a more complete idea of the graph
properties used in global constraints. In the same way, difficult problems modeled
and solved thanks to graph theory have been successfully tackled in constraint
programming and, more particularly, thanks to global constraints. This mainly
consists of constraints around graph and subgraph isomorphism [17, 19], search
paths in graphs [11, 10, 16], even minimum cost spanning trees [14] and graph
partitioning constraints like the tree constraint [2] Such a constraint is mainly
involved in practical applications like vehicle routing, mission planning, DNA
sequencing, or phylogeny.

The tree constraint enforces the partitioning of a directed graph G = (V, E)
into a set of L node-disjoint anti-arborescences, where |V | = n, |E| = m and L is
an integer variable. In [2], it is shown that Generalized Arc-Consistency (GAC)
can be enforced in O(nm) time, while feasibility can be checked in O(n + m)
time. The bottleneck of the filtering algorithm relies on the computation of
strong articulation points which, at this moment, could not be performed in
linear time. However, based on the works of [15, 3], Italiano et. al. [5] solved
this open problem by giving an O(n + m) time algorithm for computing strong
articulation points of a directed graph G. Their main contribution is the link
they made between the concept of strong articulation point in a directed graph
and the concept of dominator in a directed flow graph. This recent improvement

101

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 102,
Perugia, Italy, 12 September 2011.

Grid-Based SAT Solving with Iterative Partitioning and
Clause Learning

Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä

Aalto University
Department of Information and Computer Science
PO Box 15400, FI-00076 AALTO, Finland

{Antti.Hyvarinen,Tommi.Junttila,Ilkka.Niemela}@aalto.fi

Abstract. This work studies the solving of challenging SAT problem instances
in distributed computing environments that have massive amounts of parallel
resources but place limits on individual computations. We present an abstract
framework which extends a previously presented iterative partitioning approach
with clause learning, a key technique applied in modern SAT solvers. In addition
we present two techniques that alter the clause learning of modern SAT solvers
to fit the framework. An implementation of the proposed framework is then ana-
lyzed experimentally using a well-known set of benchmark instances. The results
are very encouraging. For example, the implementation is able to solve challeng-
ing SAT instances not solvable in reasonable time by state-of-the-art sequential
and parallel SAT solvers.

1 Introduction

This work studies the solving of hard instances of the propositional satisfiability prob-
lem (SAT) using a massively parallel master-worker environment such as a grid or a
cloud where several clusters are scattered around a large geographical area. Grids and
clouds typically provide large amounts of computing power at a relatively low cost
making them increasingly appealing for users.

This work considers a grid computing model where each worker executes a job
for a limited amount of time and can communicate the results only to the master. The
run time limits are typically quite low, in this work approximately one hour. Jobs with
modest computing requirements are in many ways beneficial in practice. For example,
a job requiring a single CPU core for a relatively short time can often be scheduled
to a time slot unsuitable for jobs requiring several CPUs for an extended time period.
Furthermore, should a job fail, e.g., due to a service break in a cluster, the cost of
recovering from the failure is at most the duration of the job.

Most approaches to parallel SAT solving fall into the following two categories:

– In the portfolio approach the speed-up results from running slightly varied solvers
with the same input simultaneously and obtaining the result from the first finishing
solver (see, e.g., [10]). The idea generalizes to many related algorithms [18, 12].

– In the guiding path approach the instance is constrained to several solution disjoint
subproblems solved in parallel, usually aided with load balancing for dealing with
unequally sized subproblems [25, 27, 22].

102

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 103,
Perugia, Italy, 12 September 2011.

Constraint Reasoning and Kernel Clustering
for Pattern Decomposition With Scaling

Ronan LeBras1, Theodoros Damoulas1, John M. Gregoire2

Ashish Sabharwal3, Carla P. Gomes1, and R. Bruce van Dover4

1 Dept. of Computer Science, Cornell University, Ithaca, NY 14853, USA
2 School of Engr. and Applied Sciences, Harvard University, Cambridge, MA 02138

3 IBM Watson Research Center, Yorktown Heights, NY 10598, USA
4 Dept. of Materials Science and Engr., Cornell University, Ithaca, NY 14853, USA

Abstract. Motivated by an important and challenging task encountered
in material discovery, we consider the problem of finding K basis patterns
of numbers that jointly compose N observed patterns while enforcing
additional spatial and scaling constraints. We propose a Constraint Pro-
gramming (CP) model which captures the exact problem structure yet
fails to scale in the presence of noisy data about the patterns. We allevi-
ate this issue by employing Machine Learning (ML) techniques, namely
kernel methods and clustering, to decompose the problem into smaller
ones based on a global data-driven view, and then stitch the partial solu-
tions together using a global CP model. Combining the complementary
strengths of CP and ML techniques yields a more accurate and scalable
method than the few found in the literature for this complex problem.

1 Introduction

Consider a setting where our goal is to infer properties of a system by observing
patterns of numbers (e.g., discretized waveforms, locations of peak intensities in
a signal, etc.) at N sample points. Suppose these N patterns are a combination
of K unobserved basis patterns. The pattern decomposition problem seeks to
identify, given patterns at the N sample points as input, K basis patterns that
generate the observed patterns and which of these basis patterns appear at any
given sample point. The sample points are often embedded in the Euclidean
space, enforcing a constraint that points near each other should generally be
explained by a similar subset of patterns (except for a few transition boundaries).

Variants of this problem arise in a number of scenarios. For example, in the
well-known cocktail party problem, the observed patterns are mixtures of voices
of people as recorded by various microphones and the task is to decompose the
signal at each microphone into the voices of individuals – the basis patterns –
contributing to that signal. The microphones observe a spatial correlation, in
the sense that if person’s voice is heard at a microphone, it is likely that it is
also heard at a neighboring microphone but not at a far away one.

Problems such as these fall under the category of source separation problems.
Typically, purely data-driven methods are used for these, relying heavily on pat-
tern recognition from a global analysis of the available data. A limitation of this

103

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 104,
Perugia, Italy, 12 September 2011.

An Efficient Light Solver for
Querying the Semantic Web

Vianney le Clément de Saint-Marcq1,2, Yves Deville1, and Christine Solnon2

1 ICTEAM Research Institute, Université catholique de Louvain,
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve (Belgium)
{vianney.leclement,yves.deville}@uclouvain.be

2 Université de Lyon, Université Lyon 1, LIRIS, CNRS UMR5205, 69622 Villeurbanne
(France)

christine.solnon@liris.cnrs.fr

Abstract. The Semantic Web aims at building cross-domain and distributed data-
bases across the Internet. SPARQL is a standard query language for such data-
bases. Evaluating such queries is however NP-hard. We model SPARQL queries
in a declarative way, by means of CSPs. A CP operational semantics is proposed.
It can be used for a direct implementation in existing CP solvers. To handle large
databases, we introduce a specialized and efficient light solver, Castor. Bench-
marks show the feasibility and efficiency of the approach.

1 Introduction

The Internet has become the privileged means of looking for information in everyday’s
life. While the information abundantly available on the Web is increasingly accessible
for human users, computers still have trouble making sense out of it. Developers have to
rely on fuzzy machine learning techniques [5] or site-specific APIs (e.g., Google APIs),
or resort to writing a specialized parser that has to be updated on every site layout
change.

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) to
enable sites to publish computer-readable data aside of the human-readable documents.
Merging all published Semantic Web data results in one large global database. The
global nature of the Semantic Web implies a much looser structure than traditional
relational databases. A loose structure provides the needed flexibility to store unrelated
data, but makes querying the database harder. SPARQL [16] is a query language for the
Semantic Web that has been standardized by the W3C. Evaluating SPARQL queries is
known to be NP-hard [15].

The execution model of current SPARQL engines (e.g., Sesame [4], 4store [10] or
Virtuoso [7]) is based on relational algebra. A query is subdivided in many small parts
that are computed separately. The answer sets are then joined together. User-specified
filters are often processed after such join operations. Constraint Programming (CP), on
the other hand, is able to exploit filters as constraints during the search. A constraint-
based query engine is thus well suited for the Semantic Web.

104

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 105,
Perugia, Italy, 12 September 2011.

Boolean Equi-propagation
for Optimized SAT Encoding

Amit Metodi1, Michael Codish1, Vitaly Lagoon2, and Peter J. Stuckey3

1 Department of Computer Science, Ben Gurion University of the Negev, Israel
2 Cadence Design Systems, USA

3 Department of Computer Science and Software Engineering, and
NICTA Victoria Laboratory, The University of Melbourne, Australia

Abstract. We present an approach to propagation based SAT encoding,
Boolean equi-propagation, where constraints are modelled as Boolean
functions which propagate information about equalities between Boolean
literals. This information is then applied as a form of partial evaluation
to simplify constraints prior to their encoding as CNF formulae. We
demonstrate for a variety of benchmarks that our approach leads to
a considerable reduction in the size of CNF encodings and subsequent
speed-ups in SAT solving times.

1 Introduction

In recent years, Boolean SAT solving techniques have improved dramatically.
Today’s SAT solvers are considerably faster and able to manage far larger in-
stances than yesterday’s. Moreover, encoding and modeling techniques are better
understood and increasingly innovative. SAT is currently applied to solve a wide
variety of hard and practical combinatorial problems, often outperforming ded-
icated algorithms. The general idea is to encode a (typically, NP) hard problem
instance, P , to a Boolean formula, 'P , such that the solutions of P correspond
to the satisfying assignments of 'P . Given an encoding from problem instances
to Boolean formula, a SAT solver is then applied to solve the problem instances.

Tailgating the success of SAT technology are a variety of tools which can
be applied to specify and then compile problem instances to corresponding SAT
instances. Typically, a constraint based modelling language is introduced and
used to model instances. Then encoding techniques are applied to compile con-
straints to the language of an underlying solver such as SAT, SMT, or others.
Some examples follow: In [5], Cadoli and Schaerf introduce NP-SPEC, a logic-
based specification language which allows to specify combinatorial problems in a
declarative way. At the core of this system is a compiler which translates specifi-
cations to CNF formula. Sugar [20], is a SAT-based constraint solver. To solve a
finite domain linear constraint satisfaction problem it is first encoded to a CNF
formula by Sugar, and then solved using the MiniSat solver [8]. MiniZinc [15], is
a constraint modeling language which is compiled by a variety of solvers to the
low-level target language FlatZinc. FlatZinc instances are solved by fzntini [13]
by encoding them to CNF and in fzn2smt by encoding to SMT-LIB [2].

105

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 106,
Perugia, Italy, 12 September 2011.

Incorporating Variance in Impact-Based Search

Serdar Kadioglu1, Eoin O’Mahony2, Philippe Refalo3, and Meinolf Sellmann4

1 Brown University, Dept. of Computer Science, Providence, RI 02912, USA
serdark@cs.brown.edu

2 Cornell University, Dept. of Computer Science, Ithaca, NY 14850, USA
eoin@cs.cornell.edu

3 IBM, 1681 route des Dolines, 06560 Sophia-Antipolis, France
philippe.refalo@fr.ibm.com

4 IBM Watson Research Center, Yorktown Heights, NY 10598, USA
meinolf@us.ibm.com

Abstract. We present a simple modification to the idea of impact-based search
which has proven highly effective for several applications. Impacts measure the
average reduction in search space due to propagation after a variable assignment
has been committed. Rather than considering the mean reduction only, we con-
sider the idea of incorporating the variance in reduction. Experimental results
show that using variance can result in improved search performance.

Keywords: Search Strategies, Impact-based Search, Robust Search

1 Introduction

Impact-based search strategies give efficient variable and value ordering heuristics to
solve decision problems in constraint programming [12]. This method learns informa-
tion about the importance of variables and values choices by averaging the observed
search space reduction due to constraint propagation after an assignment. It’s a simple
way to exploit parts of the search tree that are apparently not useful because they do not
lead to a solution.

Other impact measures have been designed and subjected to experimental valida-
tion. They refine or take into account more information in order to obtain better strate-
gies. In [14] the solution density of constraints and occurrences of values in constraints’
feasible assignments are used to guide search. In [1] the measure of the impact of an
assignment is based on explanations provided by the constraint programming solver.
These approaches can be more effective than regular impacts on some problems.

We propose in this paper a new way to refine the classical averaging of impact
observations by taking into account the variance of the observations. In practice, when
one needs to choose between two variables that have the same average impact, one can
break this tie by taking into account the distribution of the observed impacts. Assuming
that the two distributions have different variances, a risk-free choice will choose the
variable with the smallest variance, while an optimistic choice will choose the variable
with the largest variance.

Incorporating variance in impact based search is rather natural since impacts are
based on taking the mean of observed domain reductions. Moreover, in practice, impact

106

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 107,
Perugia, Italy, 12 September 2011.

Octagonal Domains for Continuous Constraints

Marie Pelleau, Charlotte Truchet, Frédéric Benhamou

LINA, UMR CNRS 6241
Université de Nantes, France

firstName.lastName@univ-nantes.fr

Abstract. Domains in Continuous Constraint Programming (CP) are
generally represented with intervals whose n-ary Cartesian product (box)
approximates the solution space. This paper proposes a new representa-
tion for continuous variable domains based on octagons. We generalize
local consistency and split to this octagon representation, and we propose
an octagonal-based branch and prune algorithm. Preliminary experimen-
tal results show promising performance improvements on several classical
benchmarks.

1 Introduction

Continuous Constraint Programming (CP) relies on interval representation of
the variables domains. Filtering and solution set approximations are based on
Cartesian products of intervals, called boxes. In this paper, we propose to im-
prove the Cartesian representation precision by introducing an n-ary octagonal
representation of domains in order to improve filtering accuracy.

By introducing non-Cartesian representations for domains, we do not mod-
ify the basic principles of constraint solving. The main idea remains to reduce
domains by applying constraint propagators that locally approximate constraint
and domains intersections (filtering), by computing fixpoints of these operators
(propagation) and by splitting the domains to search the solution space. Never-
theless, each of these steps has to be redesigned in depth to take the new domains
into account, since we lose the convenient correspondence between approximate
intersections and domain projections.

While shifting from a Cartesian to a relational approach, the resolution pro-
cess is very similar. In the interval case, one starts with the Cartesian product
of the initial domains and propagators reduce this global box until reaching a
fixpoint. In the octagonal case, the Cartesian product of the initial domains is
itself an octagon and each constraint propagator computes in turn the smallest
octagon containing the intersection of the global octagon and the constraint it-
self, until reaching an octagonal fixpoint. In both cases, splitting operators drive
the search space exploration, alternating with global domain reduction.

The octagon are chosen for di↵erent reasons: they represent a reasonable
tradeo↵ between boxes and more complex approximation shapes (e.g. polyhe-
dron, ellipsoids) and they have been studied in another context to approximate
numerical computations in static analysis of programs. More importantly, we

107

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 108,
Perugia, Italy, 12 September 2011.

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 108,
Perugia, Italy, 12 September 2011.

A Quadratic Edge-Finding Filtering Algorithm

for Cumulative Resource Constraints

Roger Kameugne1,2, Laure Pauline Fotso3,
Joseph Scott4, and Youcheu Ngo-Kateu3

1 University of Maroua, Higher Teachers’ Training College, Dept. of Mathematics,
P.O Box 55 Maroua-Cameroon

2 University of Yaoundé I, Faculty of Sciences, Dept. of Mathematics, PO Box 812,
Yaoundé, Cameroon, rkameugne@yahoo.fr, rkameugne@gmail.com

3 University of Yaoundé I, Faculty of Sciences, Dept. of Computer Sciences, PO Box
812, Yaoundé, Cameroon, lpfotso@ballstate.bsu.edu,

mireille youcheu@yahoo.fr
4 Uppsala University, Dept. of Information Technology, Computing Science Division,

Box 337, SE-751 05 Uppsala Sweden joseph.scott@it.uu.se

Abstract. The cumulative scheduling constraint, which enforces the
sharing of a finite resource by several tasks, is widely used in constraint-
based scheduling applications. Propagation of the cumulative constraint
can be performed by several different filtering algorithms, often used in
combination. One of the most important and successful of these filter-
ing algorithms is edge-finding. Recent work by Viĺım has resulted in a
O(kn log n) algorithm for cumulative edge-finding, where n is the num-
ber of tasks and k is the number of distinct capacity requirements. In this
paper, we present a sound O(n2) cumulative edge-finder. This algorithm
reaches the same fixpoint as previous edge-finding algorithms, although
it may take additional iterations to do so. While the complexity of this
new algorithm does not strictly dominate Viĺım’s for small k, experimen-
tal results on benchmarks from the Project Scheduling Problem Library
suggest that it typically has a substantially reduced runtime. Further-
more, the results demonstrate that in practice the new algorithm rarely
requires more propagations than previous edge-finders.

1 Introduction

Edge-finding is a filtering technique commonly used in solving resource-constrained
project scheduling problems (RCPSP). An RCPSP consists of a set of resources
of finite capacities, a set of tasks of given processing times, an acyclic network
of precedence constraints between tasks, and a horizon (a deadline for all tasks).
Each task requires a fixed amount of each resource over its execution time. The
problem is to find a start time assignment for every task satisfying the prece-
dence and resource capacity constraints, with a makespan (i.e., the time at which
all tasks are completed) equal at most to the horizon. Edge-finding reduces the
range of possible start times by deducing new ordering relations between the
tasks: for a task i, an edge-finder searches for a set of tasks Ω that must end

108

Doctoral Program at the Interational Conference on Principles and Practice of Constraint Programming, CP 2011, page 109,
Perugia, Italy, 12 September 2011.

Pruning Rules for Constrained Optimisation for
Conditional Preferences

Nic Wilson and Walid Trabelsi

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

n.wilson@4c.ucc.ie, w.trabelsi@4c.ucc.ie

Abstract. A depth-first search algorithm can be used to find optimal
solutions of a Constraint Satisfaction Problem (CSP) with respect to a
set of conditional preferences statements (e.g., a CP-net). This involves
checking at each leaf node if the corresponding solution of the CSP is
dominated by any of the optimal solutions found so far; if not, then we
add this solution to the set of optimal solutions. This kind of algorithm
can clearly be computationally expensive if the number of solutions is
large. At a node N of the search tree, with associated assignment b to a
subset of the variables B, it may happen that, for some previously found
solution ↵, either (a) ↵ dominates all extensions of b; or (b) ↵ does not
dominate any extension of b. The algorithm can be significantly improved
if we can find su�cient conditions for (a) and (b) that can be e�ciently
checked. In case (a), we can backtrack since we need not continue the
search below N ; in case (b), ↵ does not need to be considered in any node
below the current node N . We derive a su�cient condition for (b), and
three su�cient conditions for (a). Our experimental testing indicates
that this can make a major di↵erence to the e�ciency of constrained
optimisation for conditional preference theories including CP-nets.

1 Introduction

Conditional preference languages, such as CP-nets and more general formalisms
[4, 9, 6, 15, 2], can give a natural way for the user of a decision support system
to express their preferences over multivariate options. A basic problem is: given
a set of outcomes, determine which are the undominated ones, i.e., which are
not considered worse than another outcome. For example, in a recommender
system, one can use preference deduction techniques to infer, from the previous
user inputs, which products may be preferred over others, and hence which are
the undominated ones [11].

As shown in [5], one can use a depth-first search algorithm to find optimal
solutions of a Constraint Satisfaction Problem (CSP) with respect to a set of
conditional preferences statements (e.g., a CP-net). The algorithm in [5], as
well as related algorithms in [14, 15], involve using appropriate variable and
value orderings so that solutions are generated in an order compatible with

109

Author Index

Aschinger, Markus, 1

Bonfietti, Alessio, 97

Campagna, Dario, 7

Davies, Jessica, 98
De Clercq, Alexis, 99
Downing, Nicholas, 13

Elsayed, Samir A. Mohamed, 100
Escamocher, Guillaume, 19

Fages, Jean-Guillaume, 101
Flerova, Natalia, 25
Francisco, Maria, 31

Gwynne, Matthew, 37

Hyvärinen, Antti, 102

Kameugne, Roger, 108

Lai, Katherine, 43
Le Bras, Ronan, 103
Le Clément De Saint-Marcq, Vianney, 104
Letort, Arnaud, 49

Mairy, Jean-Baptiste, 55
Massen, Florence, 61
Metodi, Amit, 105

Nabli, Faten, 67

O’Mahony, Eoin, 106

Pacino, Dario, 73
Pelleau, Marie, 107

Roubickova, Anna, 79

Scott, Joseph, 108

Tomasi, Silvia, 85
Trabelsi, Walid, 109

Xu, Hu, 91

111

	Preface
	Doctoral Program Organization
	Doctoral Program Participants
	Table of Contents
	A new logic-based formalism for Configuration problems
	A CLP-based System For Custom Product Manufacturing
	Explaining flow-based propagation
	Mapping Out the Tractability of 3-Variable Forbidden Patterns
	Bucket and Mini-bucket Schemes for M Best Solutions over Graphical Models
	Consistency of Constraint Networks Induced by Automaton-Based Constraint Specifications
	Towards a better understanding of hardness
	The Min Average Latency Steiner Multigraph Problem: Budget-Constrained Wildlife Corridor Design for Multiple Species
	cumulatives_trajectories: a Constraint for Modelling Preemptive Reassignable Tasks with Momenterily Resource Consumption
	Reinforced Adaptive Large Neighborhood Search
	A Relaxation-Guided Approach for Vehicle Routing Problems with Black Box Feasibility
	Finding minimal siphons and traps as a Constraint satisfaction Problem
	Adaptive Randomized Decompositions for Jobshop Scheduling
	Flexible timeline-based planning and its constraints
	Satisfiability Modulo Theory with Cost Optimization
	Genetic Based Automatic Congurator for Minion
	A constraint based approach to cyclic RCPSP
	Solving MAXSAT by Solving a Sequence of Simpler SAT Instances
	Filtering Algorithms for Discrete Cumulative Problems with Over-loads of Resource
	Synthesis of Search Algorithms from High-level CP Models
	Revisiting the tree Constraint
	Grid-Based SAT Solving with Iterative Partitioning and Clause Learning
	Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling
	An Efficient Light Solver for Querying the Semantic Web
	Boolean Equi-propagation for Optimized SAT Encoding
	Incorporating Variance in Impact-Based Search
	Octagonal Domains for Continuous constraints
	A Quadratic Edge-Finding Filtering Algorithm for Cumulative Resource Constraints
	Pruning Rules for Constrained Optimisation for Conditional Preferences

