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Abstract

In this paper we study the relationship between Constraint Programming (CP) and Shortest Path (SP) problems. In
particular, we show that classical, multicriteria, partially ordered, and modality-based SP problems can be naturally
modeled and solved within the Soft Constraint Logic Programming (SCLP) framework, where logic programming
is coupled with soft constraints. In this way we provide this large class of SP problems with a high-level and
declarative linguistic support whose semantics takes care of both finding the cost of the shortest path(s) and also
of actually finding the path(s). On the other hand, some efficient algorithms for certain classes of SP problems can
be exploited to provide some classes of SCLP programs with an efficient way to compute their semantics.
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1. Introduction

Shortest Path (SP) problems (Dreyfus, 1969; Leiserson, Cormen and Rivest, 1990) are
among the most studied network optimization problems. They are mainly used to represent
and solve transportation problems, where the optimization may involve different criteria,
says cost, time, resources, etc. Most interesting is the multi-criteria case, where the opti-
mization involves a set of criteria to be all optimized (Pallottino and Scutellà, 1988).

In this paper, we propose the Soft Constraint Logic Programming (SCLP) framework
(Bistarelli, Montanari and Rossi, 1997; Georget and Codognet, 1998) as a linguistic sup-
port and a high-level and flexible programming environment where to model SP problems
naturally and solve them efficiently.

SCLP programs are logic programs (Lloyd, 1987) where each ground atom can be seen
as an instantiated soft constraint (Bistarelli, Montanari and Rossi, 1995, 1997b) and it can
be associated with an element taken from a set. Formally, this set is a semiring, that is,
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a set plus two operations, + and ×, which basically say how to combine constraints and
how to compare them. The presence of these two operations allows to replace the usual
boolean algebra for logic programming with a more general algebra where logical and and
logical or are replaced by the two semiring operations. In this way, the underlying logic
programming engine provides a natural tool to specify and solve combinatorial problems
(like SP problems), while the soft constraint machinery provides greater expressivity and
flexibility. In particular, the flexibility comes from the fact that the same SCLP programming
environment, and operational semantic engine, can be used with different semirings (thus
using different kinds of soft constraints), as we will see later in this paper.

Here we consider several versions of SP problems, from the classical one to the multi-
criteria case, from partially ordered SP problems to those that are based on modalities,
and we show how to model and solve them via SCLP programs. The basic idea is that
soft constraints allow to faithfully represent the optimization criteria, and CLP provides
a declarative way to describe the given SP problem. Moreover, this way of modeling and
solving SP problems allows to associate with such problems both a declarative and an
operational semantics.

The main results of the paper are as follows:

• Both classical, multi-criteria, partially-ordered, and modality-based SP problems are
given a modelization as SCLP programs; such programs are able to both find the cost of
the shortest path(s) and also a shortest path itself.

• A general methodology is provided to find a non-dominated path for both multi-criteria
and partially-ordered SP problems; this methodology is based on a change of semiring,
but does not require any change in the underlying SCLP syntax and semantics.

• A new algorithm to obtain the semantics for a particular class of SCLP programs is given,
which is obtained by using a generalized version of the Floyd-Warshall algorithm (Floyd,
1962) for SP problems.

The paper is organized as follows: Section 2 gives the basic notions of soft constraints and
SCLP programs, Section 3 shows the construction to pass from a classical SP problem to a
CLP program, while Section 4 considers multi-criteria and partially-ordered SP problems,
and Section 5 deals with modality-based SP problems. Then, in Section 6 we provide a
class of SCLP programs with an efficient algorithm to compute their semantics, and finally
Section 7 concludes the paper by summarizing its contributions and hinting at interesting
directions for future work.

2. Soft constraint logic programming

In this section we describe the soft constraint logic programming (SCLP) framework, which
we will later use to to describe SP problems in a declarative fashion. All the formal details
that are skipped here can be found in Bistarelli, Montanari and Rossi (1997a, 1997b).

The SCLP framework is based on the notion of c-semiring introduced in Bistarelli,
Montanari and Rossi (1995, 1997b). A c-semiring S is a tuple 〈A, +, ×, 0, 1〉 where A is
a set with two special elements (0, 1 ∈ A) and with two operations + and × that satisfy
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Figure 1. A fuzzy CSP.

certain properties: + is closed, commutative, associative, idempotent, 0 is its unit element
and 1 is its absorbing element; × is closed, associative, commutative, distributes over +, 1
is its unit element, and 0 is its absorbing element.

The + operation defines a partial order ≤S over A such that a ≤S b iff a + b = b; when
a ≤S b holds, we say that b is better than a. Other properties related to the two operations are:
+ and ∗ are monotone on ≤S; 0 is its minimum and 1 its maximum; 〈A, ≤S〉 is a complete
lattice and + is its lub. Finally, if × is idempotent then: + distribute over ×; 〈A, ≤S〉 is a
complete distributive lattice and × its glb.

Semiring-based constraint satisfaction problems (SCSPs) are constraint problems where
each variable instantiation is associated with an element of a c-semiring A (to be inter-
preted as a cost, level of preference, . . . ), and constraints are combined via the × oper-
ation and compared via the ≤S ordering. Varying the set A and the meaning of the +
and × operations, we can represent many different kinds of problems, having features
like fuzziness (using the semiring SFCSP = 〈{x | x ∈ [0, 1]}, max, min, 0, 1〉), probability
(Sprob = 〈{x | x ∈ [0, 1]}, max, ×, 0, 1〉), and optimization (SWCSP = 〈R+, min, +, +∞, 0〉).
Moreover, the Cartesian product of two c-semirings is another c-semiring, and this can be
fruitfully used to describe multi-criteria constraint satisfaction and optimization problems.

Figure 1 shows an example of a fuzzy SCSP. In this figure, variables are circles, constraints
are arcs, and semiring values are written to the right of the corresponding tuples. The
solutions of this SCSP are pairs of values (that is, a value for each of the two variables) and,
according to the c-semiring SFCSP = 〈{x | x ∈ [0, 1]}, max, min, 0, 1〉, their semiring value
is obtained by looking at the smallest value for all the subtuples (as many as the constraints)
forming the pair.

The SCLP framework (Bistarelli, Montanari and Rossi, 1997a) extends the classical con-
straint logic programming formalism (Jaffar and Lassez, 1987) in order to handle also
SCSP (Bistarelli, Montanari and Rossi, 1995, 1997b) problems. In passing from CLP
to SCLP languages, we replaced classical constraints with the more general SCSP con-
straints where we are able to assign a level of preference to each instantiated constraint
(i.e. a ground atom). To do this, we also modified the notions of interpretation, model,
model intersection, and others, since we had to take into account the semiring opera-
tions and not the usual CLP operations. For example, while CLP interpretations asso-
ciate a truth value (either true or false) with each ground atom, in SCLP ground atoms
must be given one of the elements of the semiring. Also, while in CLP the value as-
sociated with an existentially quantified atom is the logical or among the truth values
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Table 1. A simple example of an SCLP program.

s(X) :- p(X,Y).

p(a,b) :- q(a).

p(a,c) :- r(a).

q(a) :- t(a).

t(a) :- 2.

r(a) :- 3.

associated with each of its instantiations, here we had to replace the or with another op-
eration which refers to one of the semiring operations (the +). The combination of atoms,
which in CLP is modeled via logical and, in SCLP is instead handled via the × operation of
the semiring.

Besides the model-theoretic semantics based on models and interpretations, SCLP pro-
grams come also with a fixpoint and an operational semantics. These semantics are conser-
vative extensions of the corresponding ones for logic programming (LP), since by choosing
a particular semiring (the one with just two elements, true and false, and the logical and
and or as the two semiring operations) we get exactly the LP semantics.

The three semantics have been shown to be equivalent. In particular, we have proven
that, given the set of all refutations starting from a given goal, it is possible to derive the
declarative meaning of both the existential closure of the goal and its universal closure.

A simple example of an SCLP program over the semiring 〈N , min, +, +∞, 0〉, where N
is the set of non-negative integers and D = {a, b, c}, is represented in Table 1. The choice
of this semiring allows to represent constraint optimization problems where the semiring
elements are the costs for the instantiated atoms. Note that the ordering ≤S in this semiring
coincides with the ≥ ordering over integers. The intuitive meaning of a semiring value like 3
associated with the atom r(a) is that r(a) costs 3 units. Thus the set N contains all possible
costs, and the choice of the two operations min and + implies that we intend to minimize
the sum of the costs. This gives us the possibility to select the atom instantiation which
gives the minimum cost overall.

Given a goal like s(x) to this program, the semantics collects both a substitution for
x (in this case, x = a) and also a semiring value (in this case, 2) which represents the
minimum cost among the costs for all refutations for s(x). Figure 2 shows the tree structure
representing the two possible refutations for the goal s(x). Each node in the tree represents
a state of the computation, and the root represents the initial state. Each computation state
contains both the current goal and a semiring value. At the beginning, the semiring value
is the best one (0 in this example). Then, at each step, one clause or fact is used, and this
changes the current goal, accumulates a substitution (written on the links of the tree), and
combines the current semiring value with a new value given by the used clause. If a clause
has no semiring value (like the first four clauses of the example), the associated value is
assumed to be the best one. The combination of these two semiring values is achieved via the
multiplicative operation of the semiring, which in this example is the sum. All the semiring
values obtained by the refutations of the same goal (and with the same substitution) are
then combined together via the additive operation of the semiring, which in this example
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Figure 2. The SCLP refutation tree for goal s(X).

is the min operation. Therefore the two refutations in Figure 2 produce the semiring value
min(2, 3) = 2. The formal definition of the operational semantics of SCLP programs can be
found in Bistarelli, Montanari and Rossi (1997a).

The presence of a possibly partial order among the elements of the semiring makes the
operational semantics more complex to compute. In fact, there could be several refutations
for a goal which lead to different semiring elements which are not comparable in the
partial order. In this case, these elements have to be combined in order to get the solution
corresponding to the given goal, and their combination could be not reachable by any
refutation path in the search tree.

The fact that we have to combine several refutation paths when we have a partial order
(instead of a total one) can be fruitfully used in the context of this paper when we have an SP
problem with incomparable costs in the arcs. In fact, in the case of a partial order, the solution
of an SP problem should consists of all those paths which are not “dominated” by others.

SCLP programming has been implemented. Its implementation has been described in
Georget and Codognet (1998), and the system clp(FD,S) is available for free. More infor-
mation about theclp(FD,S) system, including also the instructions on how to down-load it,
can be found at the URL http://pauillac.inria.fr/~georget/clpfds.html.

3. Classical SP problems

A shortest path (SP) problem can be represented as a directed graph G = (N , E), where
each arc e ∈ E from node p to node q (p, q ∈ N ) has associated a label representing the
cost of the arc from p to q .

There are four versions of the problem: the single pair problem, the single source problem,
the single sink problem, and the all pair problem. However, the single source and the single
sink problems are directional duals of each other, the single pair problem at least partially
solves the single source/sink problem, and one way to solve the all pair problem is to solve



30 BISTARELLI, MONTANARI AND ROSSI

n single source/sink problems. For these reasons, the single sink (source) is fundamental
and we concentrate on it. Given a set S of nodes and any node v in S (the sink), a solution
of the problem consists of finding a path (or a set of paths) between any node of S and v,
whose cost is minimal.

Consider for example the SP problem represented in figure 3: each arc has associated a
label representing the cost (in money, time, space, . . . ) of that arc. In this example node v

is the sink. Thus, given any node, we want to find a path from this node to the sink v (if it
exists) that minimizes the cost.

To represent the classical version of SP problems, we consider SCLP programs over the
semiring S = 〈N , min, +, +∞, 0〉, which, as noted above, is an appropriated framework
to represent constraint problems where one wants to minimize the sum of the costs of the
solutions.

From any SP problem we can build an SCLP program as follows. For each arc we have
two clauses: one describes the arc and the other one its cost. More precisely, the head of
the first clause represents the starting node, and its body contains both the final node and a
predicate, say c, representing the cost of the arc. Then, the second clause is a fact associating
to predicate c its cost (which is a semiring element). For example, if we consider the arc
from p to q with cost 2, we have the clause

p :- cpq, q.

and the fact

cpq :- 2.

Finally, we must code that we want v to be the final node of the path. This is done by adding
a clause of the form v :- 0. Note also that any node can be required to be the final one,
not just those nodes without outgoing arcs (like v is in this example). The whole program
corresponding to the SP problem in figure 3 can be seen in Table 2.

To compute a solution of the SP problem it is enough to perform a query in the SCLP
framework; for example, if we want to compute the cost of the path from r to v we have to
perform the query :-r. For this query, we obtain the value 6, that represents the cost of the
best path(s) from r to v.

Notice that to represent classical SP problems in SCLP, we do not need any variable.
Thus the resulting program is propositional. However, this program, while giving us the

Figure 3. An SP problem.
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Table 2. The SCLP program representing
the SP problem in figure 3.

p :- cpq, q. cpq :- 2.

p :- cpr, r. cpr :- 3.

q :- cqs, s. cqs :- 3.

r :- crq, q. crq :- 7.

r :- crt, t. crt :- 1.

r :- cru, u. cru :- 3.

s :- csp, p. csp :- 1.

s :- csr, r. csr :- 2.

s :- csv, v. csv :- 2.

t :- cts, s. cts :- 3.

u :- cup, p. cup :- 3.

u :- cut, t. cut :- 2.

u :- cuv, v. cuv :- 3.

v :- 0.

Figure 4. An SP problem with labeled arcs.

cost of the shortest paths, does not give us any information about the arcs which form such
paths. This information could be obtained by providing each predicate with an argument,
which represents the arc chosen at each step.

Figure 4 shows the same SP problem of figure 3 where the arcs outgoing each node
have been labeled with different labels to distinguish them. Such labels can then be coded
into the corresponding SCLP program to “remember” the arcs traversed during the path
corresponding to a solution. For example, clause

p :- cpq, q.

would be rewritten as

p(a):- cpq, q(X).

Here constant a represents one of the arcs going out of p: the one which goes to q. If
all clauses are rewritten similarly, then the answer to a goal like :-r(X) will be both a
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semiring value (in our case 6) and a substitution for X . This substitution will identify the
first arc of a shortest path from r to v. For example, if we have X = b, it means that the
first arc is the one that goes from r to t . To find a complete shortest path, we just need
to compare the semiring values associated with each instantiated goal, starting from r and
following the path. For example, in our case (of the goal ∃X.r(X)) we have that the answer
to the goal will be X = c with semiring value 6. Thus we know that a shortest path from r
to v can start with the arc from r to u. To find the following arc of this path, we compare
the semiring values of u(a), u(b), and u(c). The result is that u(c) has the smallest value,
which is 3. Thus the second arc of the shortest path we are constructing is the one from u
to v. The path is now finished because we reached v which is our sink.

Notice that a shortest path could be found even if variables are not allowed in the program,
but more work is needed. In fact, instead of comparing different instantiations of a predicate,
we need to compare the values associated with the predicates that represent nodes reachable
by alternative arcs starting from a certain node, and sum them to the cost of such arcs. For
example, instead of comparing the values of p(a) and p(b) (figure 4), we have to compare
the values of q + 2 and of r + 3 (figure 3).

A third alternative to compute a shortest path, and not only its cost, is to use lists: by
replacing each clause of the form

p :- cxy, q.

with the clause

p([a |T]):-cxy, q(T).

during the computation we also build the list containing all arcs which constitute the corre-
sponding path. Thus, by giving the goal :-p(L)., we would get both the cost of a shortest
path and also the shortest path itself, represented by the list L .

An alternative representation, probably more familiar for CLP-ers, of SP problems in
SCLP is one where there are facts of the form

c(p,q):-2.
...

c(u,v):-3.

to model the graph, and the two clauses

path(X,Y):-c(X,Y).

path(X,Y):-c(X,Z), path(Z,Y).

to model paths of length one or more. In this representation the goal to be given to find the
cost of the shortest path from p to v is :-path(p,v). This representation is obviously
more compact than the one in Table 2, and has equivalent results and properties. However,
in this paper we will use with the simpler representation, used in Table 2, where all clauses
have at most one predicate in the body. The possibility of representing SP problems with
SCLP programs containing only such a kind of clauses is important, since it will allow us
to use efficient algorithms to compute the semantics of such programs (see Section 6 for
more details).
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Figure 5. A multi-criteria SP problem.

4. Partially-ordered SP problems

Sometimes, the costs of the arcs are not elements of a totally ordered set. A typical example
is obtained when we consider multi-criteria SP problems.

For example, if an arc represents a piece of highway between two cities, then we can
label each arc both with the cost and with the time needed to follow this piece. Then, we
want to find the paths which have both the minimum overall cost and the minimum overall
time. In this example, there may be cases in which the labels of two arcs are not compatible,
like 〈$5, 20′〉 and 〈$7, 15′〉. In general, when we have a partially ordered set of costs, it may
be possible to have several paths, all of which are not dominated by others, but which have
different incomparable costs.

Consider for example the multi-criteria SP problem shown in figure 5: each arc has
associated a pair representing the weight of the arc in terms of cost and time. Given any
node, we want to find a path from this node to v (if it exists) that minimizes both criteria.

We can translate this SP problem into the SCLP program in Table 3. This program works
over the semiring

〈N 2, min’, +′, 〈+∞, +∞〉, 〈0, 0〉〉,
where min′ and +′ are classical min and +, suitably extended to pairs. In practice, this
semiring is obtained by putting together, via the Cartesian product, two instances of the
semiring 〈N , min, +, +∞, 0〉 (we recall that the Cartesian product of two c-semirings is a
c-semiring as well (Bistarelli, Montanari and Rossi, 1997b)). On of the instances is used
to deal with the cost criteria, the other one is for the time criteria. By working on the
combined semiring, we can deal with both criteria simultaneously: the partial order will
tell us when a pair 〈cost, time〉 is preferable to another one, and also when they are not
comparable.

To give an idea of another practical application of partially ordered SP problems, just
think of network routing problems where we need to optimize according to the following
criteria: minimize the time, minimize the cost, minimize the number of arcs traversed,
and maximize the bandwidth. The first three criteria correspond to the same semiring,
which is 〈N , min, +, +∞, 0〉, while the fourth criteria can be characterized by the semiring



34 BISTARELLI, MONTANARI AND ROSSI

Table 3. The SCLP program representing the multi-
criteria SP problem in figure 5.

p :- cpq, q. cpq :- < 2,4 >.

p :- cpr, r. cpr :- < 3,1 >.

q :- cqs, s. cqs :- < 3,3 >.

r :- crq, q. crq :- < 7,3 >.

r :- crt, t. crt :- < 1,3 >.

r :- cru, u. cru :- < 3,4 >.

s :- csp, p. csp :- < 1,1 >.

s :- csr, r. csr :- < 2,2 >.

s :- csv, v. csv :- < 2,1 >.

t :- cts, s. cts :- < 3,2 >.

u :- cup, p. cup :- < 3,3 >.

u :- cut, t. cut :- < 2,1 >.

u :- cuv, v. cuv :- < 3,4 >.

v :- < 0,0 >.

〈[0, U ], max, min, 0, U 〉, where U is the maximal bandwidth in an arc. In this example,
we have to work on a semiring which is obtained by vectorizing all these four semirings.
Each of the semirings is totally ordered but the resulting semiring, whose elements are
four-tuples, is partially ordered.

Notice that the only difference between the structure of the program in Table 3 and the one
in the previous section is that here we have costs represented by pairs of values, and, since
we have a partial order, two such pairs may possibly be incomparable. This may lead to a
strange situation while computing the semantics of a given goal. For example, if we want to
compute the cost and time of a best path from p to v, by giving the query :-p., the resulting
answer in this case is the value 〈7, 7〉. While the semiring value obtained in totally ordered
SCLP programs represented the cost of one of the shortest paths, here it is possible that there
are no paths with this cost: the obtained semiring value is in fact in general the greatest lower
bound of the costs of all the paths from p to v. This behavior comes from the fact that, if
different refutations for the same goal have different semiring values, the SCLP framework
combines them via the + operator of the semiring (which, in the case of our example, is the
min′ operator). If the semiring is partially ordered, it may be that a + b is different from
both a and b. On the contrary, if we have a total order a + b is always either a or b.

This of course is not satisfactory, because usually one does not want to find the greatest
lower bound of the costs of all paths from the given node to the sink, but rather prefers to
have one of the non-dominated paths. To solve this problem, we can add variables to the
SCLP program, as we did in the previous section, and also change the semiring. In fact, we
now need a semiring which allows us to associate with each node the set of the costs of
all non-dominated path from there to the sink. In other words, starting from the semiring
S = 〈A, +, ×, 0, 1〉 (which, we recall, in our case is 〈N 2, min′, +′, 〈+∞, +∞〉, 〈0, 0〉〉),
we now have to work with the semiring P H (S) = 〈P H (A), �, ×∗, ∅, A〉, where:



SOFT CONSTRAINT LOGIC PROGRAMMING 35

• P H (A) is the Hoare Power Domain (Smyth, 1978) of A, that is, P H (A) = {S ⊆ A | x ∈ S,

y ≤S x implies y ∈ S}. In words, P H (A) is the set of all subsets of A which are downward
closed under the ordering ≤S . It is easy to show that such sets are isomorphic to those
containing just the non-dominated values. Thus in the following we will use this more
compact representation for efficiency purposes. In this compact representation, each ele-
ment of P H (A) will represent the costs of all non-dominated paths from a node to the sink;

• the top element of the semiring is the set A (its compact form is {1}, which in our example
is {〈0, 0〉});

• the bottom element is the empty set;
• the additive operation � is the formal union (Smyth, 1978) that takes two sets and obtains

their union;
• the multiplicative operation ×∗ takes two sets and produces another set obtained by mul-

tiplying (using the multiplicative operation × of the original semiring, in our case +′)
each element of the first set with each element of the second one;

• the partial order of this semiring is as follows: a ≤P H (S)b iff a � b = b, that is for each
element of a, there is an element in b which dominates it (in the partial order ≤S of the
original semiring).

From the theoretical results in Smyth (1978), adapted to consider c-semirings, we can
prove that P H (S) and its more compact form are indeed isomorphic. Moreover, we can also
prove that given a c-semiring S, the structure P H (S) is a c-semiring as well.

Theorem 1. [P H (S) is a c-semiring] Given a c-semiring S = 〈A, +, ×, 0, 1〉, the struc-
ture P H (S) = 〈P H (A), �, ×∗, ∅, A〉 obtained using the Power domain of Hoare operator
is a c-semiring.

Proof: It easily follows from the properties of the × operator in the c-semiring S and
from the properties (commutativity, associativity, and idempotence) of the formal union �
in P H (S). ✷

Note that in this theorem we do not need any assumption over the c-semiring S. Thus
the construction of P H (S) can be done for any c-semiring S. Notice also that, if S is totally
ordered, the c-semiring P H (S) does not give any additional information w.r.t. S. In fact, if
we consider together the empty set (with the meaning that there are no paths) and the set
containing only the bottom of A (with the meaning that there exists a path whose cost is 0),
it is possible to build an isomorphism between S and P H (S) by mapping each element p
(a set) of P H (A) onto the element a of A such that a ∈ p and a dominates all elements in
the set p.

The only change we need to make to the program with variables, in order to work with
this new semiring, is that costs now have to be represented as singleton sets. For example,
clause cpq:-<2, 4>. will become cpq:-{<2, 4>}.

Let us now see what happens in our example if we move to this new semiring. First
we give a goal like :-p(X).. As the answer, we get a set of pairs, representing the costs
of all non-dominated paths from p to v. All these costs are non-comparable in the partial
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order, thus the user is requested to make a choice. However, this choice could identify a
single cost or also a set of them. In this second case, it means that the user does not want to
commit to a single path from the beginning and rather prefers to maintain some alternatives.
The choice of one cost of a specific non-dominated path will thus be delayed until later. If
instead the user wants to commit to one specific cost at the beginning, say 〈c1, c2〉, he/she
then proceeds to find a path which costs exactly 〈c1, c2〉. By comparing the answers for all
goals of the form p(a), where a represents one of the arcs out of p, we can see which arc
can start a path with cost 〈c1, c2〉. In fact, such an arc will be labeled 〈c1a, c2a〉 and will lead
to a node with an associated set of costs 〈c3, c4〉 such that 〈c3, c4〉 × 〈c1a, c2a〉 = 〈c1, c2〉.
Suppose it is the arc from p to q , which has cost 〈7, 3〉. Now we do the same with goals of
the form q(a), to see which is the next arc to follow. However, we now have to look for the
presence of a pair 〈c3, c4〉 such that 〈c3, c4〉 × 〈7, 3〉 = 〈c1, c2〉.

Notice that each time we look for the next arc, we choose just one alternative and we
disregard the others. If we used a fixpoint (or any bottom-up) semantics to compute the
answer of the initial goal :- p(X)., then all the other answers we need for this method have
been already computed, thus the method does not require any additional computational
effort to find a non-dominated path.

Notice also that the sets of costs associated with each node are non-dominated. Thus the
size of these sets in the worst case is the size of the maximal “horizontal slice” of the partial
order: if we can have at most N non-dominated element in the partial order, then each of
such sets will have size at most N . Of course in the worst case N could be the size of the
whole semiring (when the partial order is completely “flat”).

Most classical methods to handle multi-criteria SP problems find the shortest paths by
considering each criteria separately, while our method deals with all criteria at once. This
allows to obtain optimal solutions which are not generated by looking at each single criteria.
In fact, some optimal solutions could be non-optimal in each of the single criteria, but still are
incomparable in the overall ordering. Thus we offer the user a greater set of non-comparable
optimal solutions. For example, by using the time-cost multi-criteria scenario, the optimal
solution w.r.t. time could be 1 minute (with cost of 10 dollars), while the optimal solution
w.r.t. cost could be 1 dollar (with time of 10 minutes). By considering both criteria together,
we could also obtain the solution with 2 minutes and 2 dollars!

Finally, this method is applicable not only to the multi-criteria case, but to any partial order,
giving us a general way to find a non-dominated path in a partially-ordered SP problem. It
is important to notice here the flexibility of the semiring approach, which allows us to use
the same syntax and computational engine, but on a different semiring, to compute different
objects.

5. Modality-based SP problems

Until now we have considered situations in which an arc is labeled by its cost, be it one ele-
ment or a tuple of elements as in the multi-criteria case. However, sometimes it may be useful
to associate with each arc also information about the modality to be used to traverse the arc.

For example, interpreting arcs as links between cities, we may want to model the fact that
we can cover such an arc by car, or by train, or by plane. Another example of a modality
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Figure 6. An SP problem with modalities.

could be the time of the day in which we cover the arc, like morning, afternoon, and night.
In all these cases, the cost of an arc may depend on its modality.

An important thing to notice is that a path could be made of arcs which not necessarily are
all covered with the same modality. For example, the path between two cities can be made
of arcs, some of which are covered in the morning and others in the afternoon. Moreover, it
can be that different arcs have different sets of modalities. For example, from city A to city
B we can use both the car or the train, and from city B to city C we can use only the plane.
Thus modalities cannot be simply treated by selecting a subset of arcs (all those with the
same modality).

An example of an SP problem with the three modalities representing car (c), plane (p),
and train (t) can be seen in figure 6. Here the problem is to find a shortest path from any
node to v, and to know both its cost and also the modalities of its arcs.

This SP problem with modalities can be modeled via the SCLP program in Table 4. In
this program, the variables represent the modalities.

If we ask the query :-p(c)., it means that we want to know the smallest cost for a trip
from p to v using the car. The result of this query in our example is p(c) = 9 (using the
path p − r − u − v).

Notice that the formulation shown in figure 4 puts some possibly undesired constraints
on the shortest path to be found. In fact, by using the same variable in all the predicates
of a rule, we make sure that the same modality (in our case the same transport mean) is
used throughout the whole path. If instead we want to allow different modalities in different
arcs of the path, then we just need to change the rules by putting a new variable on the last
predicate of each rule. For example, rule

p(X):-cpq(X), q(X).

would become

p(X):-cpq(X), q(Y).

Now we can use a modality for the arc from p to q, and another one for the next arc. In this
new program, asking the query :-p(c). means that we want to know the smallest cost for
a trip from p to v using the car in the first arc.
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Table 4. The SCLP program representing the SP problem with
modalities.

p(X) :- cpq(X), q(X). cpq(t) :- 2.

p(X) :- cpr(X), r(X). cpq(p) :- 3.

q(X) :- cqs(X), s(X). cpr(c) :- 3.

r(X) :- crq(X), q(X). cqs(p) :- 3.

r(X) :- crt(X), t(X). crq(c) :- 7.

r(X) :- cru(X), u(X). crt(t) :- 1.

s(X) :- csp(X), p(X). cru(c) :- 3.

s(X) :- csr(X), r(X). csp(c) :- 1.

s(X) :- csv(X), v(X). csp(t) :- 7.

t(X) :- cts(X), s(X). csr(t) :- 2.

u(X) :- cup(X), p(X). csv(t) :- 2.

u(X) :- cut(X), t(X). csv(c) :- 3.

u(X) :- cuv(X), v(X). cts(p) :- 3.

v(X) :- 0. cts(t) :- 3.

cup(c) :- 3.

cup(t) :- 1.

cut(t) :- 2.

cuv(t) :- 3.

cuv(c) :- 2.

The same methods used in the previous sections to find a shortest path, or a non-dominated
path in the case of a partial order, can be used in this kind of SCLP programs as well. Thus
we can put additional variables in the predicates to represents alternative arcs outgoing the
corresponding nodes, and we can shift to the semiring containing sets of costs to find a
non-dominated path. In particular, a clause like

p(X):-cpq(X), q(Y).

would be rewritten as

p(X,a):-cpq(X), q(Y,Z).

6. An SP algorithm for a class of SCLP programs

Summarizing what we did in the previous sections, we can say that the general form of
the SCLP programs we use to represent SP problems consists of several clauses for each
predicate pi , where each clause body has one constraint and one other predicate p j , plus
one special clause for the sink predicate (with a 0 in the body), plus the facts defining the
costs of the arcs. Table 5 shows this general form (only the clauses and without variables).
It is important to notice that these are not general SCLP programs, since there is always one
predicate symbol in each clause body (since the constraint can be replaced by its cost). In
the logic programming literature, these programs are called linear, because of the restriction
on the number of predicates in the bodies of the clauses.
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Table 5. The general form of an SCLP
program representing an SP problem.

p1 :- c12, p2.

.

.

.

p1 :- c1n, pn .

p2 :- c12, p1.

p2 :- c13, p3.

.

.

.

p2 :- c2n, pn .

.

.

.

pv :- 0.

.

.

.

pn :- cn1, p1.

.

.

.

pn :- cn,n−1, pn−1.

Table 6. The system of equations corresponding to the SCLP program form of
Table 5.

p1 = c12 × p2 + . . . + c1n × pn

p2 = c21 × p1 + c23 × p3 + . . . + c2n × pn

.

.

.

pv = 0

.

.

.

pn = cn1 × pn + . . . + cnn−1 × pn−1

Given any SCLP program of the form shown in Table 5, its semantics can be obtained
using classical methodologies (for the CLP literature) as described in Section 2. However,
we will now show an additional method, based on a classical algorithm for SP problems,
suitable adapted to c-semirings, to obtain the same semantics. The algorithm we will use
is the one developed by Floyd and Warshall (1962). To put the SCLP program into a shape
which can be handled by this algorithm, we first need to transform it into a system of linear
equations, one for each predicate: the left hand side of the equation is the chosen predicate,
while the right hand side is obtained by combining the bodies of all the clauses defining the
predicates via the + operator, and replacing the comma with the × operator in each body.
The result of this transformation, applied to the program of Table 5, can be seen in Table 6.

From this system of equations we can now build a graph with a node i for each predicate
pi , and where the cost of the arc between nodes i and j is given by predicate ci j . In this
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way, this system of equations can be interpreted also as the matrix showing, for each pair of
nodes, the cost of the arc (if it exists) between such nodes. In fact, each column (and row)
can be associated with one node.

Given this matrix, the algorithm works by selecting each triple of nodes, say i , j and
k, and performing the following assignment: ci j := ci j + (cik × ck j ), where the + and ×
operators in this assignment refer to the operations of the chosen semiring.

The triples are chosen by first selecting a value for index k (which is the intermediate
node in the two-step path), and then varying the indices i and j in all possible ways (to
consider all two-step paths from i to j). After considering all values for k, that is, after n3

steps, the value of the element in row i and column v represents the cost of the shortest
path from node i to v. In terms of SCLP semantics, this is the semantics of predicate
pi .

This method to obtain the semantics of an SCLP program of the form in Table 5 can be
used independently of the semiring underlying the given program. In fact, as noted above,
the version we use of the original Floyd-Warshall algorithm does not depend on the meaning
of the + and × operators. In particular, it can also be used for partially ordered semirings.
However, if the semiring we consider is totally ordered, we can also use any other classical
algorithm for solving SP problems.

Summarizing, this section provides a class of SCLP programs, over any semiring, with a
new method to obtain the semantics whose complexity is cubic in the number of predicates
of the program.

The form of the SCLP program in Table 5 does not contain any variable. However,
our method works also when each predicate (both the pi and the ci j predicates) has some
variables, provided that, in each clause, all the predicates have the same variables in the
same order. Thus, for example, we can admit clauses of the form p(X, Y, Z) : − c(X, Y, Z),

q(X, Y, Z). This kind of clauses can be handled by passing to a more complex semiring,
where each element is a vector (or a matrix) of the elements of the original semiring, and
the two operations are vectorizations of the original ones.

7. Conclusions

We have investigated the relationship between shortest path problems and constraint pro-
gramming, proposing the soft constraint logic programming framework to model and solve
many versions of this problem in a declarative way. In particular, both classical, multi-
criteria, partially-ordered, and modality-based SP problems are shown to be expressible in
this programming formalism.

We also have shown that certain algorithm to solve SP problems can be used to compute
efficiently the semantics of a certain class of SCLP programs. Such a class could be extended
by using structures more complex than semirings, or by considering trees instead of paths.
We plan to investigate these structures in the future.

In particular, we plan to use SCLP programs also to model and solve best tree problems.
We also intend to apply our methodology to specify and solve planning problems, since in
many cases such problems can be cast as best tree problems over the graph describing all
possible moves of the planning scenario.
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