The Monotone Integral - Part II (**).

Sunto. – Utilizzando la rappresentazione di uno spazio vettoriale localmente convesso E come limite proiettivo di spazi di Banach si estendono risultati ottenuti in [7].

Summary. – Using the representation of a lcvs E as the projective limit of Banach spaces we extend the results given in [7].

1. – Introduction.

The aim of this paper is to construct a theory of integration for scalar functions with respect to finitely additive strongly bounded measures with values in a complete locally convex topological vector space. In [6] the Bochner and the monotone integral are compared in nuclear spaces and some relations between them are obtained under suitable conditions concerning the boundedness of the Radon-Nikodym derivative of the measure with respect to any Rybakov control.

Since the definition of the monotone integral is stronger than the definition of Bochner integral, in [7] the authoresses gave another definition of monotone integrability which involves the Mc-Shane integral, in a Banach space X. More precisely, if \(m : \Sigma \rightarrow X \) is a finitely additive bounded measure and \(\lambda \) is the Lebesgue measure, a measurable function

(*) Indirizzo degli Autori: Department of Mathematics, via Vanvitelli 1, 06123 Perugia (Italy). E-mail: matears1@unipg.it
(**) Nota giunta in Redazione il 27-V-1997.
Lavoro svolto nell’ambito dello G.N.A.F.A. del C.N.R.
A.M.S. Classification: 28 A 70.
f : Ω → R^+_0 is integrable in the monotone sense ((*)-integrable) if for every E ∈ Σ, there exists an element w^E ∈ X such that for every ε > 0 there exists a gauge Δ(ε) (which must be the same for every E ∈ Σ) such that

\[\lim_{n → ∞} \sup \left| w^E - \sum_{i=1}^{n} \lambda(T_i) \phi^E(t_i) \right| ≤ ε \]

for every generalized MeShane partition (T_i, t_i) subordinate to Δ(ε) as defined in [7].

This new definition allows us to obtain the equivalence between Bochner and (✱)-integrals when one integrates with respect to measures taking values in Banach spaces. This paper is the natural continuation of [7]; here in fact the measures with respect to which we integrate take their values in complete locally convex topological vector spaces and the equivalence obtained in [7] follows from the representation of a lcvs E as the projective limit of Banach spaces. Moreover we introduce the weakly (✱)-integral and we compare it with the previous integrals. We observe that in this case to obtain the equivalence between L^{1,*}(m) and (w) − L^1(m) we need a definition of Groetendieck integrability, while in [5, 6] the Bochner integrability (in which the defining sequence does not depend on α ∈ I) was necessary.

2. Definitions of the integrals and their properties.

Let E be a complete locally convex space, m : Σ → E a finitely additive strongly bounded measure.

Every complete locally convex space E is isomorphic to the projective limit of a family of Banach spaces; this family can be chosen such that its cardinality equals the cardinality of a given 0-neighbourhood basis in E (see [9]).

Let \{U_α : α ∈ I\} be a basis of convex and circled neighbourhoods of 0 in E. We say that α ≤ β if U_β ⊆ U_α. If p_α is the gauge of U_α, we can form the projective limit E = π_j(E_α, g_α, β), where E_α = E/U_α is the complete Banach space defined as E_α = E/V_α, where V_α = p_α^{-1}(0), and g_α, β is a continuous linear map of E_β into E_α defined by g_α, β([x]_β) = [x]_α, for every α ≤ β, where [x]_α denotes the equivalence class of the element x with respect to ker (p_α). If α ≤ β then p_α ≤ p_β.

We denote by m_α : Σ → E_α the bounded finitely additive measure defined by m_α(B) = [m(B)]_α for every α ∈ I and for every B ∈ Σ. For every α ∈ I, Σ*,α is the σ-algebra generated by Σ and all m_α-null sets.
We refer to [5] for the notations and definitions relative to each m_α and to [7] for the notion of McShane integral.

Note that, since m is bounded, for every $\alpha \in I$ the semivariation $\|m_\alpha\|$ is bounded as well, and for every $\alpha < \beta$ one easily obtains that $\|m_\alpha\| \leq \|m_\beta\|$.

We consider the following definition of integrability:

Definition 2.1. Let $f : \Omega \to \mathbb{R}$ be a Σ-measurable function. Then f is m-integrable iff for every $\alpha \in I$ there exists a sequence of simple functions $(f_n^\alpha)_n$ such that:

1. $(f_n^\alpha)_n\|m_\alpha\|$-converges to f, i.e. f is measurable by seminorms;
2. for every $F \in \Sigma$ there exists a $y_F \in E$ such that $\lim_{n \to \infty} p_\alpha (\int_{F} f_n^\alpha \, dm - y_F) = 0$, for every $\alpha \in I$.

In this case we set

$$y_F = \int_{F} f \, dm.$$

We denote by $L^1(m)$ the space of m-integrable functions.

We observe that if E is a Banach space, f is m-integrable iff f is Bochner integrable. So for every $\alpha \in I$ f is Bochner integrable with respect to m_α.

In [7] we have introduced the following definition in the case of a Banach space:

Definition 2.2. Let Y be a Banach space, $m : \Sigma \to Y$ be a finitely additive bounded measure and λ be the Lebesgue measure. A measurable function $f : \Omega \to \mathbb{R}^+$ is integrable in the monotone sense (\((\ast)\)-integrable) if for every $E \in \Sigma$, there exists an element $w^E \in Y$ such that for every $\varepsilon > 0$ there exists a gauge $\Delta(\varepsilon)$ (which must be the same for every $E \in \Sigma$) such that

$$\lim_{n \to \infty} \sup \left| w^E - \sum_{i=1}^{n} \lambda(T_i) \phi^E(t_i) \right| \leq \varepsilon$$

for every generalized McShane partition (T_i, t_i) subordinate to $\Delta(\varepsilon)$.

We denote by $\int_{E} f \, dm = w^E$ and by $L^1(\cdot ; \mathcal{M})$ the space of all \((\ast)\)-integrable functions.
Since for every $\alpha \in I$, E_α is a Banach space and $m_\alpha \colon \Sigma \to E_\alpha$, defined by $m_\alpha(B) = [m(B)]_\alpha$, is a bounded finitely additive measure we can consider the space $L^{1,\ast}(m_\alpha)$ and we prove that:

Lemma 2.1. If $f \in \bigcap_{\alpha \in I} L^{1,\ast}(m_\alpha)$ then $\left(\int_{F} f dm_\alpha \right)_{\alpha \in I} \in E$.

Proof. If $f \in \bigcap_{\beta \in I} L^{1,\ast}(m_\beta)$, by definition, and Theorem 4.4 of [7], $f \in L^{1,\ast}(m_\beta) = L^1(m_\beta)$, for every $\beta \in I$. We prove that $\left(\int_{F} f dm_\alpha \right)$ is in E, namely, for every $\alpha < \beta$,

$$g_{\alpha, \beta} \left(\int_{F} f dm_\beta \right) = \int_{F} f dm_\alpha.$$

By hypothesis $\int_{F} f dm_\beta = \lim_{n \to \infty} \int_{F} f_n^\beta dm_\beta$. Since $f_n^\beta \| m_\beta \|$-converges to f, f is $\Sigma^{\ast, \beta}$-measurable. So we have

$$\{ x \in E : |f(x) - f_n^\beta(x)| > t \} \in \Sigma^{\ast, \beta} \subset \Sigma^{\ast, \alpha}$$

and

$$\| m_\alpha \| \| f - f_n^\beta \| > t \| m_\beta \| \| f - f_n^\beta \| > t \|.$$

Therefore $f_n^\beta \| m_\alpha \|$-converges to f. Since $(\int_{F} f_n^\beta dm_\beta)_n$ converges in E_β, it is Cauchy in E_β; for every $\varepsilon > 0$ there exists $\bar{n} \in \mathbb{N}$ such that for every $r, s > \bar{n}$

$$p_\beta \left(\int_{F} (f_n^\beta - f_s^\beta) dm_\beta \right) < \varepsilon,$$

and so $(\int_{F} f_n^\beta dm_\alpha)_n$ is Cauchy in E_α, since

$$\left| \int_{F} (f_n^\beta - f_s^\beta) dm_\alpha \right| = p_\alpha \left(\int_{F} (f_n^\beta - f_s^\beta) dm \right) \leq p_\beta \left(\int_{F} (f_n^\beta - f_s^\beta) dm \right) = \left| \int_{F} (f_n^\beta - f_s^\beta) dm_\beta \right|_\beta.$$

Thus f is m_α-integrable since the integral does not depend on the defining sequence $(f_n^\beta)_n$, and we obtain

$$g_{\alpha, \beta} \left(\int_{F} f_n^\beta dm_\beta \right) = \int_{F} f_n^\beta dm_\alpha.$$
and the sequence on the left hand side converges to $\int F dm_a$. Therefore we have

$$g_{a,\beta}\left(\int_F dm_\beta\right) = g_{a,\beta}\left(\lim_{n \to \infty} \int_F f_n^a dm_\beta\right) = \lim_{n \to \infty} g_{a,\beta}\left(\int_F f_n^a dm_\beta\right) = \lim_{n \to \infty} \int_F f_n^a dm_a = \int_F f dm_a.$$

Thus $(\int_F f dm_a)_a \in E$, for every $F \in \Sigma$ and

$$g_{a,\beta}\left(\int_F^{*} dm_\beta\right) = g_{a,\beta}\left(\int_F f dm_\beta\right) = \int_F f dm_a = \int_F^{*} f dm_a.$$

Now, using the projective structure of E we define the (\ast)-integral for a non negative function with respect to a finitely additive strongly bounded measure with values in a complete locally convex space.

Definition 2.3. $f : \Omega \to R_0^+$ is (\ast)-integrable with respect to m iff f is (\ast)-integrable with respect to m_a, for every $a \in I$. In this case we set

$$\int_F f dm = \left(\int_F f dm_a\right)_{a \in I}$$

for every $F \in \Sigma$.

We denote by $L^{1,\ast}(m)$ the space of all (\ast)-integrable functions.

In [8] the following definition is given:

Definition 2.4. $f : \Omega \to R_0^+$ is weakly (\ast)-integrable if $\phi : t \mapsto m(f > t)$ is Pettis-integrable and if $t \mapsto |x^* m|(f > t) \in L^1(R_0^+)$, for every $x^* \in E^*$. Note that if f is weakly (\ast)-integrable, then for every $F \in \Sigma, f \cdot 1_F$ is weakly (\ast)-integrable. In this case we set

$$\int_F f dm = \left(P\right)_{t=0}^{+\infty} m(f \cdot 1_F > t) \, dt.$$

If f is real valued we say that f is weakly (\ast)-integrable iff f^+, f^- are weakly (\ast)-integrable. We denote by $w - L^1(m)$ the space of all weakly (\ast)-integrable functions.
3. Comparison.

Proposition 3.1. Let \(f : \Omega \to \mathbb{R}_0^+ \) be a measurable function. Then \(f \) is \(m \)-integrable iff \(f \) is \(m_\alpha \)-integrable, for every \(\alpha \in I \).

Proof. If \(f \in L^1(m) \) then there exists a sequence of simple functions \((f_n^\alpha)_n\) such that \(f_n^\alpha \| m_\alpha \)-converges to \(f \) and, for every \(F \in \Sigma \), there exists \(y_F \in E \) such that for every \(\alpha \in I \)

\[
\lim_{n \to \infty} p_\alpha \left(\int_F f_n^\alpha \, dm - y_F \right) = 0.
\]

Then,

\[
p_\alpha \left(\int_F f_n^\alpha \, dm - y_F \right) = p_\alpha \left(\left[\int_F f_n^\alpha \, dm - y_F \right]_\alpha \right) = p_\alpha \left(\left[\int_F f_n^\alpha \, dm \right]_\alpha - [y_F]_\alpha \right) = p_\alpha \left(\int_F f_n^\alpha \, dm_\alpha - [y_F]_\alpha \right).
\]

So \(f \in \bigcap_{\alpha \in I} L^1(m_\alpha) \).

Viceversa, if \(f \in \bigcap_{\alpha \in I} L^1(m_\alpha) \), then, for every \(\alpha \in I \), there exists a sequence of simple functions \((f_n^\alpha)_n\) which \(m_\alpha \)-converges to \(f \), and such that, for every \(F \in \Sigma \), \(\left(\int f_n \, dm_\alpha \right)_n \) converges in \(E_\alpha \). Fix \(F \in \Sigma \). By Lemma 2, and by Theorem 4.4 of [7], \(\left(\int f_n \, dm_\alpha \right)_n \) is in \(E \). Let \(y_F \in E \) be such that for every \(\alpha \in I \), \([y_F]_\alpha = \int f \, dm_\alpha \), it only remains to prove that for every \(\alpha \in I, \lim_{n \to \infty} p_\alpha (y_F - \int f_n^\alpha \, dm) = 0 \). But

\[
p_\alpha \left(y_F - \int_F f_n^\alpha \, dm \right) = \left\| \left[y_F - \int_F f_n^\alpha \, dm \right]_\alpha \right\| = \left\| [y_F]_\alpha - \left[\int_F f_n^\alpha \, dm \right]_\alpha \right\| = \left\| \int f \, dm_\alpha - \int f_n^\alpha \, dm_\alpha \right\|_\alpha
\]

and so \(f \in L^1(m) \).

Corollary 3.1. Let \(f : \Omega \to \mathbb{R}_0^+ \) be a measurable function. Then \(f \) is \(m \)-integrable iff \(f \) is \((*) \)-integrable with respect to \(m \) and the two integrals agree.
PROOF. It follows from Definitions 2.1 and 2.4, from Lemma 2.3 and from the projective structure of E.

Now we want to compare the Bochner integral and the (*) integral with the weak (−)-integral. In order to do this we shall need a preliminary Lemma.

LEMMA 3.2. Let $\alpha \in I$ and let $x_\alpha^* \in E_\alpha^*$. Then x^* defined as $x^*(x) = x_\alpha^*([x]_\alpha)$, belongs to E^*.

PROOF. We have only to prove that $x^* = x_\alpha^*pr_\alpha : E \to E_\alpha \to \mathbb{R}$ is continuous at zero. Since $x_\alpha^* \in E_\alpha^*$ then for every $\varepsilon > 0$ there exists $\delta(\varepsilon, \alpha) > 0$ such that for every $y \in E_\alpha$ with $\|y\|_\alpha < \delta$ then $|x_\alpha^*(y)| < \varepsilon$.

Let $V^*_\varepsilon = \{x \in E : p_\alpha(x) \leq \delta(\varepsilon, \alpha)\}$. Let $x \in V^*_\varepsilon$. Then $[x]_\alpha \in E_\alpha$ and $p_\alpha([x]_\alpha) \leq \delta(\varepsilon, \alpha)$. So

$$|x^*(x)| = |x_\alpha^*([x]_\alpha)| < \varepsilon.$$

PROPOSITION 3.2. Let f be weakly (−)-integrable with respect to m. Then f is weakly (−)-integrable with respect to m_α for every $\alpha \in I$.

PROOF. Let $\alpha \in I$ be fixed. Let $x_\alpha^* \in E_\alpha^*$. By Lemma 3.3 $x^* = x_\alpha^*pr_\alpha \in E^*$. Thus we have

$$x^*(m) = x_\alpha^*([m]_\alpha) = x_\alpha^*(m_\alpha).$$

Hence

$$|x^*(m)|(f > t) = |x_\alpha^*(m_\alpha)|(f > t).$$

Fix $F \in \Sigma$ and set $y_F = (w) - \int \limits_{F} f dm \in E$. Then

$$x^*(y_F) = \int \limits_{0}^{\infty} x^*(m)(f \cdot 1_F > t) \, dt = \int \limits_{0}^{\infty} x^*_\alpha(m_\alpha)(f \cdot 1_F > t) \, dt.$$

Therefore f is weakly (−)-integrable with respect to m_α, for every $\alpha \in I$ and

$$\int \limits_{[\cdot]} f dm_\alpha = \left[\int \limits_{[\cdot]} dm \right]_\alpha.$$

Now we want to compare $L^{1,*}(m)$ and $w - \widetilde{L}^1(m)$.

First we compare them in a Banach space. Let Y be a Banach space and let $\mu : \Sigma \to Y$ be a finitely additive strongly bounded measure. We set $\phi^y(t) = \mu(\{x \in E : f(x) > t\})$ and $\phi^\mu_y(t) = \mu(\{x \in E : f_\mu(x) > t\})$.

THEOREM 3.1. If \(f : \Omega \to \mathbb{R}_0^+ \) is a measurable function such that there exists a sequence of simple functions \((f_n)_n\), \(f_n \leq f\) such that

i) \(f_n \|\mu\|\text{-converges to } f\),

ii) \((\omega) - \lim_{n \to \infty} \phi_n^E(t) = \phi^E(t),\)

iii) \(\lim_{n \to \infty} \int_B \phi_n^E(t) \, dt = \int_B \phi^E(t) \, dt\) exists in \(Y\), for the weak topology, for every \(B \in \mathcal{B}\) then \(f\) is \((\ast)\)-integrable with respect to \(\mu\).

PROOF. The proof is the same as in Theorem 4.8 of [7], in fact in order to prove that \(\int \mu(\{x \in E : f_n > t\}) \, dt : \mathcal{B} \to Y\) is countably additive, for every \(E \in \Sigma\), the condition iii) is enough.

THEOREM 3.2. Let \(f : \Omega \to \mathbb{R}_0^+ \) be a measurable function such that \(\lim_{t \to +\infty} \|\mu\|(\{f > t\}) = 0\). Then \(f\) is \((\ast)\)-integrable with respect to \(\mu\) iff \(f\) is weakly \((\ast)\)-integrable with respect to \(\mu\).

PROOF. Suppose that \(f\) is \((\ast)\)-integrable; then for every \(E \in \Sigma\), \(\phi^E(t)\) is McShane-integrable and so by Theorem 1.1 of [4] \(\phi^E(t)\) is Pettis-integrable and the two integrals agree.

It remains to prove that for every \(x^* \in Y^*\) \(|x^* \mu|(\{f > t\}) \in L^1(\mathbb{R}_0^+)\).

Since \(\phi^E(t)\) is Pettis-integrable \(\int_0^{+\infty} |x^* \mu|(\{\omega \in E : f(\omega) > t\}) \, dt < +\infty\) and by Theorems 3.5, 3.6 of [2] \(f\) is integrable with respect to \(|x^* \mu|\).

Suppose now that \(f\) is weakly \((\ast)\)-integrable. By hypothesis for every \(E \in \Sigma\) \(\phi^E\) is Pettis-integrable, namely for every \(E \in \Sigma\) there exists \(w_E \in X\) such that \(\int_0^{+\infty} x^* \mu(\{\omega \in E : f(\omega) > t\}) \, dt = x^* w_E\) and \(|x^* \mu|(f > t) \in L^1(\mathbb{R}_0^+)\).

Since \(f\) is measurable by Proposition 3.2 of [7] \(\phi\) is totally measurable. As in Proposition 3.2 of [7] there exists a sequence of simple functions \((f_n)_n\) with \(f_n \leq f\) for every \(n \in \mathbb{N}\) and \(f_n\) converges to \(f\) \(\mu\)-a.e.

Let \(\phi_n(t) = \mu(\{\omega \in \Omega : f_n(\omega) > t\})\). Then \(\lim_{n \to \infty} \phi_n(t) = \phi(t)\) \(\lambda\)-a.e. and

\[|x^* \mu|(\{\omega \in \Omega : f_n(\omega) > t\}) \leq |x^* \mu|(\{\omega \in \Omega : f(\omega) > t\}).\]

Let \(E \in \Sigma\) be fixed. We shall prove that the limit \(\lim_{n \to \infty} \int_B \phi_n^E(t) \, dt\) exists in \(Y\), for the weak topology, for every \(B \in \mathcal{B}\).
By Proposition 4.2 of [7] ϕ_n^E is Bochner-integrable, for every $n \in \mathbb{N}$ and so $x^* \phi^E_n - x^* \phi_n^E \in L^1(\mathbb{R}^+_0)$. Moreover
\[
| x^* \phi^E_n - x^* \phi_n^E | \leq | x^* \phi^E | + | x^* \phi_n^E | \leq | x^* \mu | \{ \omega \in \Omega : f_n(\omega) > t \} + \\
+ | x^* \mu | \{ \omega \in \Omega : f(\omega) > t \} \leq 2 | x^* \mu | (f > t) \in L^1(\mathbb{R}^+_0)
\]
and so we have
\[
\limsup_{n \to \infty} \int_B | x^* \phi^E_n(t) - x^* \phi_n^E(t) | dt \leq \\
\leq \int_B \limsup_{n \to \infty} | x^* \phi^E_n(t) - x^* \phi_n^E(t) | dt \leq \int_0^{+\infty} | x^* \mu | (f > t) \, dt.
\]
Since $\lim_{n \to \infty} | x^* \phi^E_n(t) - x^* \phi_n^E(t) | = 0$ λ-a.e. it follows that
\[
\lim_{n \to \infty} \int_B | x^* \phi^E_n(t) - x^* \phi_n^E(t) | dt = 0
\]
and so
\[
\lim_{n \to \infty} \int_B | x^* \phi^E_n(t) dt - x^* w_E | = \lim_{n \to \infty} \int_B | x^* \phi^E_n(t) dt - \int_B x^* \phi^E(t) dt | \leq \\
\leq \lim_{n \to \infty} \int_B | x^* \phi^E_n(t) - x^* \phi^E(t) | dt = 0.
\]
Thus we have proved the existence of the limit $\lim_{n \to \infty} \int_B \phi_n^E(t) dt$ in Y, for the weak topology, for every $B \in \mathfrak{B}$.

By Theorem 3.5 f is (\ast)-integrable and the two integrals agree.

Corollary 3.2. Let $f : \Omega \to \mathbb{R}^+_0$ be a measurable function such that $\lim_{t \to \infty} \|m_a\|(f > t) = 0$. Then $L^1(m) = L^1.(\ast)(m) = w - \tilde{L}^1(m)$.

Proof. It follows from Corollary 3.2, Theorem 3.6, where $\mu = m_a$, and Proposition 3.4.

References

