A Radon-Nikodym theorem for the Bartle-Dunford-Schwartz integral with respect to finitely additive measures

Anna Martellotti (amart@dipmat.unipg.it)
Department of Mathematics, University of Perugia, Via Vanvitelli 1, Perugia 06123, Italy

Kazimier Musial (musial@math.uni.wroc.pl)
Department of Mathematics, University of Wroclaw, Poland

Anna Rita Sambucini (matears1@unipg.it)
Department of Mathematics, University of Perugia, Via Vanvitelli 1, Perugia 06123, Italy

AMS subject classification: 28B25

1. Introduction

One the most recent development in vector integration is directed toward defining the integral in a locally convex space. This generalization is not artificial, but follows the current investigation concerning, for example, Stochastic Processes. The existence of a density is indeed a fundamental tool for the decomposition theorems that allow to single out the "good" integrators in the theory of Stochastic Integration. The

This paper has been partially supported by G.N.A.F.A. of the C.N.R.
setting of locally convex spaces thus makes it possible to develop a theory of Stochastic integration e.g. in nuclear spaces as the space of distributions ([2]).

The integral of a scalar function with respect to a vector finitely additive measure μ can be defined in several different ways (see [7]). In particular, one can consider the Bartle–Dunford–Schwartz integral defined in the following way: let X be a locally convex topological vector space, (Ω, Σ) a measurable space, $\mu : \Sigma \rightarrow X$ a finitely additive measure, f a scalar valued function such that for every $x^* \in X^*$, $f \in L^1(x^* \mu)$; then f is \textit{integrable in the Bartle–Dunford–Schwartz sense} if for every $E \in \Sigma$ there exists $x_E \in X$ such that

$$x^*(x_E) = \int_E f dx^* \mu$$

for every $x^* \in X^*$. For this integral Musia[10] has given a Radon-Nikodym Theorem when μ is countably additive: he obtains the equivalence of the existence of a density with three equivalent conditions expressing the suitable \textit{absolute continuity}.

The aim of this paper is to extend the Radon-Nikodym Theorem of [10] to the case of finitely additive measure’s.

The Radon-Nikodym Theorem here proven makes use of the Moedomo-Uhl kind of assumption [9].

The first complication arises from the fact that the finite additivity, due to the lack of the Radon-Nikodym Theorem even in the scalar setting, does not guarantee under the simple assumption of the absolute continuity the existence of the scalar density $\frac{dx^* \nu}{dx^* \mu}$. Hence one has to assume such existence or some conditions ensuring
it, like those in [4]. Moreover, since the proof in the countably additive case is based upon the existence of a lifting, it cannot be mimicked in the present setting; its role in the proof is somehow replaced by assuming that μ admits a Rybakov control. This condition, which is not necessarily satisfied when X is a locally convex topological vector space even for s-bounded μ (as it is when X is a Banach space), is shortly discussed at the end of the paper.

2. Preliminaries

Throughout the sequel X will be a sequentially complete locally convex topological vector space. Let (Ω, Σ) be a measurable space.

(C1) Let $\nu, \mu : \Sigma \to X$ be two finitely additive measures (f.a.m.'s) such that for every $x^* \in X^*$ the f.a.m.'s $x^*\mu$ and $x^*\nu$ are b.v. Assume also that μ admits a Rybakov control $\lambda = |x_0^*\mu|$. We begin with some definitions.

DEFINITION 1. We shall say that ν is scalarly uniformly absolutely continuous with respect to μ, and write $\nu \ll \mu$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $x^* \in X^*$ and $E \in \Sigma$ $|x^*\mu|(E) < \delta$ yields $|x^*\nu|(E) < \varepsilon$.

DEFINITION 2. We shall say that ν is scalarly dominated by μ if there exists $M > 0$ such that $|x^*\nu|(E) \leq M|x^*\mu|(E)$ for every $E \in \Sigma$ and $x^* \in X^*$.
DEFINITION 3. We shall say that ν is *subordinated to* μ if there exists $N > 0$ such that for every $E \in \Sigma$ $\nu(E) \in \text{aco}\{\mu(F), F \in E \cap \Sigma\}$ where $\text{aco}(A) = \{\sum_{i=1}^{n} \alpha_i x_i, x_i \in A, \sum_{i=1}^{n} |\alpha_i| = 1\}$.

Let \mathcal{P} be the family of seminorms generating the topology of \mathcal{X}.

We shall say that the range of μ $R(\mu)$ is *bounded* if for every $p \in \mathcal{P}$ there exists $\lambda_p > 0$ such that $R(\mu) \subset \lambda_p\{x \in \mathcal{X} : p(x) \leq 1\}$.

If $R(\mu)$ is bounded, we shall set

$$\mathcal{P}_{\mu} = \{\frac{p}{\lambda_p}, p \in \mathcal{P}\}$$

and

$$\mathcal{X}^*_{\mu,p} = \{x^* \in \mathcal{X}^* : x^* \leq p\}.$$

Let

$$G_{1,\mu} = \{f : \Omega \to \mathbb{R} : f \in L^1(|x^*\mu|) \forall x^* \in \bigcup_{p \in \mathcal{P}_{\mu}} \mathcal{X}^*_{\mu,p}\}.$$

DEFINITION 4. Let $f \in G_{1,\mu}$; we shall say that f is *μ-integrable* provided for every $A \in \Sigma$ there exists $v(A) \in \mathcal{X}$ such that

$$x^*v(A) = \int_A fd(x^*\mu)$$

for every $x^* \in \mathcal{X}^*$. Then we shall set $\int_A fd\mu = v(A)$.

We shall need in the sequel the following finitely additive extension of a classical theorem

THEOREM 1. *(Image Law)* Let $m, s : \Sigma \to \mathbb{R}$ be two f.a.m.'s with bounded variation. If $s = \int f dm$ and $h : \Omega \to \mathbb{R}$ is a Σ-measurable bounded function, then $fh \in L^1(|m|)$ and

$$\int hds = \int hf dm.$$

(1)
Proof. As \(h \) is bounded, there exists \(M > 0 \) such that \(|h(\omega)| \leq M \) for every \(\omega \in \Omega \) and thus \(|hf| \leq M |f| \in L^1(|m|) \): hence the \(m \)-integrability of \(hf \) is straightforward. It remains to prove the equality in (1).

Let \(h \) be simple: then (1) is obvious. Assume now that \(h \geq 0 \); then the Lebesgue ladder trick gives a sequence \((h_n)_n\) of simple functions such that

\[
h_n \leq h_{n+1} \leq h \quad \text{for every} \quad n \in \mathbb{N};
\]

\(h_n \) converges uniformly to \(h \).

By the \(m \)-integrability of \(f \) there exists a defining sequence of simple functions \((f_n)_n\) such that \(f_n \rightarrow f \) in \(L^1(|m|) \) ([7]). Let \(s_n(\cdot) = \int f_n \, dm \); then for every \(\varepsilon > 0 \) there exists \(n_0 \in \mathbb{N} \) such that for all \(n > n_0 \)

\[
|s_n - s|(E) = \int_E |f_n - f| \, dm \leq \int_\Omega |f_n - f| \, dm < \varepsilon
\]

for every \(E \in \Sigma \), namely \(|s_n - s|(\cdot) \) converges to 0 uniformly in \(\Sigma \).

Let \(E \in \Sigma \) be fixed and let us put \(a_{i,n}(E) = \int_E h_n \, ds_i \); then, since \(h_n \) and \(f_i \) are simple, \(a_{i,n}(E) = \int_E h_n f_i \, dm \). We shall show that for every \(i \in \mathbb{N} \) there exists \(\lim_{n \to \infty} a_{i,n}(E) \) and that \(\lim_{i \to \infty} a_{i,n}(E) \) exists uniformly in \(n \in \mathbb{N} \). Then it will follow that

\[
\lim_{i \to \infty} \lim_{n \to \infty} a_{i,n}(E) = \lim_{n \to \infty} \lim_{i \to \infty} a_{i,n}(E) = \lim_{i,n \to \infty} a_{i,n}(E).
\]

Let \(i \in \mathbb{N} \) be fixed; from the uniform convergence of \(h_n \) to \(h \) we have that \(h_n \) \(s_i \)-converges to \(h \) and \(\int_E h_n \, ds_i \rightarrow \int_E h \, ds_i \) that is \(\lim_{n \to \infty} a_{i,n}(E) \) exists.

Moreover, if \(n \) is fixed, as \(h_n \) is simple, it is easy to check that

\[
|a_{i,n}(E) - \int_E h_n \, ds| = \left| \int_E h_n \, ds_i - \int_E h_n \, ds \right| \leq M |s_i - s|(E)
\]
and since, as observed, $|s_i - s|(\Omega) \to 0$ it follows that $\lim_{i \to \infty} a_{i,n}(E) = \int_E h_n ds$ uniformly with respect to n.

Then

$$\int_E hf dm = \lim_{i,n \to \infty} \int_E h_n f dm = \int_E h ds.$$

For general bounded h it is enough to decompose $h = h^+ - h^-$.

DEFINITION 5. We shall say that a measurable function $f : \Omega \to \mathbb{R}$ is λ-null if for every $\varepsilon > 0$ it is $\lambda(\{|f| > \varepsilon\}) = 0$.

Observe that if $f = 0$ λ-a.e. then f is λ-null, while the converse is true if λ is σ-additive, or at least λ fulfills the condition

(σ) the ideal of λ-null sets is closed under countable unions.

We list two straightforward properties of λ-null functions that we will need in the sequel:

(p.1) f is λ-null iff $\int_E |f| d\lambda = 0$ for every $E \in \Sigma$;

(p.2) if f is λ-null and g is bounded then fg is λ-null.

3. Radon-Nikodym Theorem

We shall now prove the main theorem.

THEOREM 2. (Radon-Nikodym) Let (Ω, Σ) be a measurable space, and $\nu, \mu : \Sigma \to \mathcal{X}$ be two f.a.m.’s satisfying (C1).

Assume that for every $* \in X^*$ there exists a λ-exhaustion (Ω_n^*) such that for every $n \in \mathbb{N}$ the set

$$S_n^* = \left\{ \frac{x^* \mu(A)}{\lambda(A)} : A \in \Omega_n^* \cap \Sigma, \lambda(A) > 0 \right\}$$
is bounded for every \(x^* \in \mathcal{X}^* \), and for every \(n \in \mathbb{N} \) the ranges \(R(\mu|_{\Omega_n^* \cap \Sigma}) \) and \(R(\nu|_{\Omega_n^* \cap \Sigma}) \) are closed.

Then the following are equivalent:

i) \(\nu \ll \mu \);

ii) \(\nu \) is scalarly dominated by \(\mu \);

iii) there exists \(\vartheta : \Omega \rightarrow \mathbb{R} \) bounded and such that

\[
x^* \nu(E) = \int_E \vartheta \, dx^* \mu
\]

for every \(E \in \Sigma \) and for every \(x^* \in \mathcal{X}^* \);

iv) \(\nu \) is subordinated to \(\mu \).

Proof. The proofs of the implications i) \(\iff \) ii) and iv) \(\implies \) ii) are essentially the same as in [6]; also the implication iii) \(\implies \) iv) can be proven in the same fashion as in the same paper, by making use of the results in [7] that are the extensions in the finitely additive setting of those of Lewis [6]. Hence it only remains to prove the implication ii) \(\implies \) iii).

Claim 1 - For every \(x^* \in \mathcal{X}^* \) there exist \(\frac{dx^* \mu_n}{d\lambda}, \frac{dx^* \nu_n}{d\lambda} \), where \(\mu_n = \mu|_{\Omega_n^* \cap \Sigma} \) and \(\nu_n = \nu|_{\Omega_n^* \cap \Sigma} \).

Proof. We shall show the assertion for \((x^* \mu, \lambda) \) since the proof for \((x^* \nu, \lambda) \) is analogous.

Let \(x^* \in \mathcal{X}^* \) be fixed and let \(n \in \mathbb{N} \). For every \(a, b \in \mathbb{R} \) let \(y^* = ax^* + bx_0^* \); since our assumptions ensure that \(R(y^* \mu_n) \) is closed, the signed measure \(y^* \mu_n \) admits a Hahn decomposition. Then from [3] Lemma 4.3 there
exists \(\frac{dx^* \mu_n}{d|x_0^n\mu|} = \frac{dx^* \mu_n}{d\lambda} \).

We shall denote \(f^{(n)}_{x^*} = \frac{dx^* \nu_n}{d\lambda} \) and \(g^{(n)}_{x^*} = \frac{dx^* \mu_n}{d\lambda} \).

Observe also that, without loss of generality, one can choose a representative of \(g^{(n)}_{x^*} \) such that the set \(\{ g^{(n)}_{x^*} = 0 \} \) is empty, and \(|g^{(n)}_{x^*}| = 1 \).

Claim 2 - \(g^{(n)}_{x^*} \) is essentially bounded on \(\Omega^{x^*}_n \) for every \(n \in \mathbb{N} \).

This follows immediately from the boundedness of \(S^{x^*}_n \).

Then define \(L^{(n)}_{x^*} = \text{supess} |g^{(n)}_{x^*}| \) and let \(\Omega^{(n)}_{0,x^*} \subset \Omega^{x^*}_n \) be such that \(\lambda(\Omega^{(n)}_{0,x^*}) = 0 \) and

\[
|g^{(n)}_{x^*}(\omega)| \leq L^{(n)}_{x^*}
\]

for every \(\omega \not\in \Omega^{(n)}_{0,x^*} \). Since \((\Omega^{x^*}_n)_n \) is a \(\lambda \)-exhaustion, \(\lambda(\bigcup_n \Omega^{(n)}_{0,x^*}) = 0 \).

Define \(\Omega'_{n,x^*} = \Omega^{x^*}_n - \Omega^{(n)}_{0,x^*} \); then \(\lambda(\bigcup_n \Omega'_{n,x^*}) = \lambda(\Omega) \) and \((\Omega'_{n,x^*})_n \) is a \(\lambda \)-exhaustion of \(\Omega \). Since the \(\Omega'_{n,x^*} \)'s are pairwise disjoint, also the \(\Omega'_{n,x^*} \)'s are pairwise disjoint, so we can define \(g_{x^*} = \sum_{n=1}^{\infty} g^{(n)}_{x^*} 1_{\Omega'_{n,x^*}} \) and

\[
f_{x^*} = \sum_{n=1}^{\infty} f^{(n)}_{x^*} 1_{\Omega'_{n,x^*}}.
\]

Let \(x^* \in \mathcal{X}^* \) be fixed and define \(H_{x^*} = \{ g_{x^*} \neq 0 \} \).

Claim 3 - The function \(\frac{f_{x^*}}{g^{(n)}_{x^*} - g_{x^*}} \) is \(\lambda \)-null in \(H_{x^*} \cap \Omega'_{n,x^*} \).

Proof. From the linearity of the maps \(x^* \to f_{x^*} \) and \(x^* \to g_{x^*} \), and from assumption \(\text{ii) for every } E \in \Sigma \) and for every \(\beta_1, \beta_2 \in \mathbb{R} \)

\[
\int_E |\beta_1 f_{x^*} + \beta_2 g_{x^*}| d\lambda \leq M \int_E |\beta_1 f_{x^*} + \beta_2 g_{x^*}| d\lambda
\]

(2) Let \(n \) be fixed and let \(\tilde{\Omega}_{n,x^*} = \Omega'_{n,x^*} \cap H_{x^*} \). Then \(g_{x^*} \) is bounded in \(\tilde{\Omega}_{n,x^*} \) and therefore there exists a sequence of simple functions \((\tilde{\gamma}^{(n)}_{x^*})_k \)
that converges uniformly to $g_x^{(n)}$ in $\tilde{\Omega}_{n,x^*}$; also, since in $\tilde{\Omega}_{n,x^*}$ $g_{x^*} \neq 0$ for k large enough $\gamma^{(n)}_{x^*,k} \neq 0$ in $\tilde{\Omega}_{n,x^*}$.

Since $\gamma^{(n)}_{x^*,k}, g_{x_0^*}$ are simple functions, it is possible to decompose $\tilde{\Omega}_{n,x^*}$ into finitely many subsets where both these functions are constant. Let $(E^{(j)}_n)_{j=1}^{r(x^*,k)}$ be such a decomposition. Taking $\beta_1 = \frac{1}{\gamma^{(n)}_{x^*,k}(E^{(j)}_n)}$ and $\beta_2 = -\frac{1}{g_{x_0^*}(E^{(j)}_n)}$ in (2) we then find

$$\int_{E^{(j)}_n \cap E^{(j)}_n} \frac{f_x^*}{\gamma^{(n)}_{x^*,k}} - \frac{f_{x_0^*}}{g_{x_0^*}} d\lambda \leq M \int_{E^{(j)}_n \cap E^{(j)}_n} \frac{g_{x^*}}{\gamma^{(n)}_{x^*,k}} - 1 d\lambda$$

for every j and since the $E^{(j)}_n$’s are finitely many, for every $E \subset \tilde{\Omega}_{n,x^*}$

$$\int_E \frac{f_x^*}{\gamma^{(n)}_{x^*,k}} - \frac{f_{x_0^*}}{g_{x_0^*}} d\lambda \leq M \int_E \frac{g_{x^*}}{\gamma^{(n)}_{x^*,k}} - 1 d\lambda$$

(3)

By taking the limit for $k \to \infty$ in (3) we then obtain

$$\int_E \frac{f_x^*}{g_{x^*}} - \frac{f_{x_0^*}}{g_{x_0^*}} d\lambda = 0$$

for every $E \subset \tilde{\Omega}_{n,x^*}$. Then (p1) implies Claim 3.

Let $\vartheta = \frac{f_{x_0^*}}{g_{x_0^*}}$. From (p. 2) the function $f_x^* - \vartheta g_{x^*}$ is λ-null in $\tilde{\Omega}_{n,x^*}$.

Claim 4 - For every $\varepsilon > 0$ $|f_x^*| \leq (M + \varepsilon)|g_{x^*}|$ λ-a.e. in Ω_{n,x^*}, where M is that of the scalar domination.

Proof. Indeed from the assumption ii) for every $E \in \Omega_{n,x^*} \cap \Sigma$

$$\int_E |f_x^*| d\lambda \leq M \int_E |g_{x^*}| d\lambda.$$

Hence one can easily prove that for every $\varepsilon > 0$

$$|f_x^*| < (M + \varepsilon)|g_{x^*}|$$
\(\lambda \)-a.e. in \(\Omega'_n^x \).

From Claim 4 it follows that if \(\omega \in \Omega'_n^x - H^x \), namely if \(g^x_\omega = 0 \) then \(\lambda \)-a.s. \(f^x_\omega = 0 \); therefore \(f^x = 0 \) \(\lambda \)-a.e. in \(\Omega'_n^x - H^x \) and then \(f^x - \vartheta g^x = 0 \) \(\lambda \)-a.e. in \(\Omega'_n^x - H^x \).

We can therefore conclude that \(f^x - \vartheta g^x \) is \(\lambda \)-null in \(\Omega'_n^x \).

Claim 5 - For every \(x^* \in X^* \), \(x^* \nu(E) = \int_E \vartheta dx^* \mu \).

Proof. From (p.1) we find
\[
| \int_E f^x d\lambda - \int_E \vartheta g^x d\lambda | \leq \int_E | f^x - \vartheta g^x | d\lambda = 0
\]
for every \(E \subset \Omega'_n^x \) and thus for every \(E \subset \Omega'_n^x \)
\[
\int_E f^x d\lambda = \int_E \vartheta g^x d\lambda.
\]

Observe also that, since \(|g^x_0| = 1 \) from Claim 4 \(|f^x_0| < M + \varepsilon \) \(\lambda \)-a.e. in each \(\Omega'_n^x \) whence \(\vartheta \) is \(\lambda \)-a.e. bounded. From Theorem 1, for every \(E \in \Sigma \) and for \(x^* \in X^* \) fixed
\[
x^* \nu(E \cap \Omega_n^{x^*}) = \int_{E \cap \Omega_n^{x^*}} f^x d\lambda = \int_{E \cap \Omega_n^{x^*}} \vartheta g^x d\lambda = \int_{E \cap \Omega_n^{x^*}} \vartheta dx^* \mu.
\]

Since \((\Omega_n^{x^*})_n \) is a \(\lambda \)-exhaustion of \(\Omega \), for every \(E \in \Sigma \)
\[
x^* \nu(E) = \sum_{i=1}^k x^* \nu(E \cap \Omega_i^{x^*}) + x^* \nu[E \cap (\bigcup_{i=k+1}^{\infty} \Omega_i^{x^*})]
\]
\[
= \sum_{i=1}^k \int_{E \cap \Omega_i^{x^*}} \vartheta dx^* \mu + x^* \nu[E \cap (\bigcup_{i=k+1}^{\infty} \Omega_i^{x^*})],
\]
while
\[
\int_E \vartheta dx^* \mu = \int_{E \cap (\bigcup_{i=1}^k \Omega_i^{x^*})} \vartheta dx^* \mu + \int_{E \cap (\bigcup_{i=k+1}^{\infty} \Omega_i^{x^*})} \vartheta dx^* \mu.
\]
whence

\[|x^\ast \nu(E) - \int_E \vartheta \, dx^\ast \mu| \leq |\int_E \vartheta (E \cap \bigcup_{i=k+1}^{\infty} \Omega_i^+) \, dx^\ast \mu| + |x^\ast \nu(E \cap \bigcup_{i=k+1}^{\infty} \Omega_i^+)\|. \]

Since \(\lim_{k \to \infty} \lambda[E \cap \bigcup_{i=k+1}^{\infty} \Omega_i^+] = 0 \) and \(|x^\ast \nu| \ll \lambda \) and \(|x^\ast \mu| \ll \lambda \), it follows that

\[x^\ast \nu(E) = \int_E \vartheta \, dx^\ast \mu \]

for every \(E \subset \Omega \).

REMARK 1.

1. In [5] Drewnovski studied the existence of a Rybakov control for an \(\mathcal{X} \)-valued countably additive measure. He showed that in general a Rybakov control does not exist in l.c.t.v. spaces unless some further conditions are satisfied. He also gave a quite strong condition for a f.a.m. to admit a Rybakov control.

2. It is easy to mimick the previous proof provided \(\mu \) admits a control \(\lambda \) such that for some \(x^\ast \in \mathcal{X}^\ast \lambda(\{ \frac{dx^\ast \mu}{d\lambda} = 0 \}) = 0 \). It could therefore be of interest to investigate whether a f.a.m. \(\mu \) admitting a control \(\lambda \) always fulfills this condition.

References

2. J. Brook unpublished manuscript.

