

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 6, Issue 2, Article 9, pp. 1-8, 2009

ON THE PRODUCT OF *M***-MEASURES IN** *l***-GROUPS**

A. BOCCUTO, B. RIEČAN, AND A. R. SAMBUCINI

Received ; accepted 18 July, 2008; published December, 2009.

DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA VANVITELLI, 1 I-06123 PERUGIA (ITALY) boccuto@dipmat.unipg.it URL: http://www.dipmat.unipg.it/~boccuto

KATEDRA MATEMATIKY, FAKULTA PRÍRODNÝCH VIED, UNIVERZITA MATEJA BELA, TAJOVSKÉHO, 40 SK-97401 BANSKÁ BYSTRICA (SLOVAKIA) riecan@fpv.umb.sk

DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA VANVITELLI, 1 I-06123 PERUGIA (ITALY) matearsl@unipg.it URL: http://www.unipg.it/~matears1

ABSTRACT. Some extension-type theorems and compactness properties for the product of l-group-valued M-measures are proved.

Key words and phrases: l-group, extension, weak σ -distributivity, product measure, countable compactness.

2000 Mathematics Subject Classification. 28B15.

ISSN (electronic): 1449-5910

^{© 2009} Austral Internet Publishing. All rights reserved.

This paper was supported by project SAS/CNR (Slovak Academy of Sciences/ Italian National Council of Researches) "Integration in abstract structures" 2007/09, grant VEGA 1/0539/08, grant APVV LPP-0046-06 and GNAMPA of CNR..

1. INTRODUCTION

In the study of probability theory, in many applications it is advisable to deal with set functions, which are not necessarily additive, but satisfy other properties: for example, continuity from below and from above for sequences of sets and "compatibility" with respect to the operations of finite suprema and infima. These functions are called *M*-measures (see [7, 12, 21]).

For example, in decision making, this is the case of the theory of intuitionistic fuzzy events (shortly IF-events), which are pairs $A = (\mu_A, \nu_A)$ of measurable functions $\mu_A, \nu_A : \Omega \to [0, 1]$ such that $\mu_A + \nu_A \leq 1$. For a literature about IF-sets, see [1, 2, 5, 6, 12, 13, 17, 18, 19]. Another application is the theory of joint random variables: in this context the *M*-measure extension theorem plays a crucial role in the construction of joint observables. Moreover, to consider lattice-group or Riesz space-valued set functions allows to get applications in stochastic processes and in probabilities depending on the time and/or on the informations of the individual.

In this paper we continue the investigation dealt with in [4] and, starting from an extensiontype existence theorem for M-measures with values in l-groups, we obtain existence results in the countably compact case for M-measures and product of M-measures.

2. PRELIMINARIES AND BASIC RESULTS

We begin with the following

Definition 2.1. An *l*-group (lattice ordered group) *R* is said to be

- (2.1.1): *Dedekind complete* if every nonempty subset of *R*, bounded from above, has supremum in *R*;
- (2.1.2): super Dedekind complete, if it is Dedekind complete and for any nonempty set $A \subseteq R$, bounded from above, there exists a countable subset $A^* \subseteq A$, having the same supremum as A.
- (2.1.3): A bounded double sequence $(a_{i,j})_{i,j}$ in R is called *regulator* or (D)-sequence if, for each $i \in \mathbb{N}$, $a_{i,j} \searrow 0$, that is $a_{i,j} \ge a_{i,j+1}$ for all $j \in \mathbb{N}$ and $\bigwedge_{\mathbb{N}} a_{i,j} = 0$.
- (2.1.4): Given a sequence $(r_n)_n$ in R, we say that $(r_n)_n$ (D)-converges to an element $r \in R$ if there is a regulator $(a_{i,j})_{i,j}$, such that to every map $\varphi \in \mathbb{N}^{\mathbb{N}}$ there corresponds a positive integer k with

$$|r_n - r| \le \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}$$

for all $n \ge k$. In this case, we write $(D) \lim_n r_n = r$ or simply $\lim_n r_n = r$, since no confusion can arise.

Definition 2.2. We say that R is weakly σ -distributive if, for every (D)-sequence $(a_{i,j})_{i,j}$,

$$\bigwedge_{\varphi \in \mathbb{N}^{\mathbb{N}}} \left(\bigvee_{i=1}^{\infty} a_{i,\varphi(i)} \right) = 0.$$

Remark 2.3. Observe that in weakly σ -distributive *l*-groups (*D*)-convergence for sequences coincides with order convergence. An example of a super Dedekind complete weakly σ -distributive *l*-group is the space $L^0(Y, \Sigma, \nu)$, where (Y, Σ, ν) is a measure space with $\nu \sigma$ -additive and σ -finite, see [14].

From now on, let X be a set and W be an algebra of subsets of X.

Definition 2.4. A family \mathcal{A} of subsets of X is called *monotone class* if the following properties hold:

- (a): $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$ for every non-decreasing sequence $(A_n)_{n \in \mathbb{N}}$ in \mathcal{A} , (b): $\bigcap A_n \in \mathcal{A}$ for every non-increasing sequence $(A_n)_{n \in \mathbb{N}}$ in \mathcal{A} .

Definition 2.5. A family \mathcal{K} of subsets of X is called *countably compact class*, if for every

sequence
$$(C_n)_n$$
 of elements of \mathcal{K} we get $\bigcap_{i \in \mathbb{N}} C_i \neq \emptyset$ whenever $\bigcap_{i=1} C_i \neq \emptyset$ for any $n \in \mathbb{N}$.

Definition 2.6. A set function $\lambda : \mathcal{W} \to R$ is said to be *countably compact*, if there is a countably compact class \mathcal{K} with the property that for any $A \in \mathcal{W}$ there corresponds a (D)sequence $(a_{i,j})_{i,j}$ such that to any $\varphi \in \mathbb{N}^{\mathbb{N}}$ two sets $B \in \mathcal{W}, C \in \mathcal{K}$ can be found, with $B \subseteq C \subseteq A \text{ and } \lambda(A \setminus B) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}.$

Lemma 2.7. ([20], Theorem 3.2.3) Let $\{(a_{i,j}^{(n)})_{i,j} : n \in \mathbb{N}\}$ be any countable family of regulators. Then for each fixed element $u \in R$, $u \ge 0$, there exists a regulator $(a_{i,j})_{i,j}$ such that, for every $\varphi \in \mathbb{N}^{\mathbb{N}}$.

$$u \wedge \sum_{n=1}^{\infty} \left(\bigvee_{i=1}^{\infty} a_{i,\varphi(i+n)}^{(n)} \right) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}.$$

Theorem 2.8. ([11], Theorem 1.6.B) If $\mathcal{A} \subseteq \mathcal{P}(X)$ is a monotone class of sets such that (c): $\mathcal{W} \subset \mathcal{A}$,

then \mathcal{A} includes the σ -algebra of subsets of $X \sigma(\mathcal{W})$ generated by \mathcal{W} .

Lemma 2.9. ([10], Lemma 413R) Let \mathcal{K} be a countably compact class of sets. Then there is a countably compact class $\mathcal{K}^* \supseteq \mathcal{K}$ such that $K \cup L \in \mathcal{K}^*$ and $\bigcap K_n \in \mathcal{K}^*$ whenever $K, L \in \mathcal{K}^*$

and $(K_n)_n$ is a sequence in \mathcal{K}^* .

Definition 2.10. A set function $\mu : \mathcal{W} \to R$ is called *M*-measure if it satisfies the following properties:

(2.10.i): $\mu(\emptyset) = 0;$ (2.10.ii): $\mu(A \cup B) = \mu(A) \lor \mu(B) = \sup(\mu(A), \mu(B))$ for all $A, B \in W$; (2.10.iii): $\mu(A \cap B) = \mu(A) \land \mu(B) = \inf(\mu(A), \mu(B))$ for any $A, B \in \mathcal{W}$; (2.10.iv): μ is *continuous* both from below and from above, that is: if $A_n \nearrow A$, (resp. $B_n \searrow B$, A_n , $A(B_n, B) \in \mathcal{W}$, $n \in \mathbb{N}$, then $\mu(A_n) \nearrow \mu(A)$ ($\mu(B_n) \searrow \mu(B)$).

It is known that

Theorem 2.11. ([4], Theorem 3.1) Let R be a super Dedekind complete weakly σ -distributive *l*-group. For every bounded R-valued M-measure μ , defined on a ring W, there is a unique *M*-measure $\overline{\mu}$ defined on the σ -ring $\sigma(W)$ generated by W, extending μ .

The line of the proof of this theorem is the following: at the first step, the M-measure μ is extended to \mathcal{W}^+ , which is the class of all sets A of the type

 $A := \bigcup_{n=1}^{\infty} A_n$, with $A_n \subset A_{n+1}$, $A_n \in \mathcal{W}$ for all $n \in \mathbb{N}$,

by setting $\mu^+(A) = \lim_n \mu(A_n)$ (the limit exists in R and does not depend on the choice of the sequence $(A_n)_n$).

Successively, it is extended to \mathcal{W}^* , which is the ideal generated by \mathcal{W}^+ , by setting $\mu^*(A) = \inf\{\mu^+(B) : B \in \mathcal{W}^+, B \supset A\}$ for every $A \in \mathcal{W}^*$. Then it is proved that $\overline{\mu} := \mu^*_{|\sigma(\mathcal{W})}$ is an M-measure, extending μ . Finally, in order to prove uniqueness, observe that, if $\nu : \sigma(\mathcal{W}) \to R$ is an M-measure with extends μ , then it coincides with $\overline{\mu}$ on a monotone family containing \mathcal{W} , and this concludes the assertion.

We denote by $\overline{\mu} : \sigma(\mathcal{W}) \to R$ this extension. Observe that:

Theorem 2.12. If μ is countably compact, then $\overline{\mu}$ is countably compact too.

Proof: Let \mathcal{K} be the countably compact class related with countable compactness of μ and $\mathcal{K}^* \supseteq \mathcal{K}$ be a countably compact class associated with \mathcal{K} , closed with respect to finite unions and countable intersections, existing by virtue of Lemma 2.9. Set

(2.1)
$$\mathcal{L} = \{A \in \sigma(\mathcal{W}) : \text{ there is a regulator } (a_{i,j}^{(A)})_{i,j} \text{ such that } \forall \varphi \in \mathbb{N}^{\mathbb{N}} \\ \exists B_A \in \sigma(\mathcal{W}), C_A \in \mathcal{K}^* : B_A \subseteq C_A \subseteq A \text{ and } \overline{\mu}(A \setminus B_A) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}^{(A)} \}.$$

It is enough to prove that \mathcal{L} satisfies Theorem 2.8. First of all, the inclusion $\mathcal{W} \subseteq \mathcal{L}$ follows directly from the definition of countably compact measure. We now prove that \mathcal{L} is a monotone class.

If $(A_n)_n$ is a non-decreasing sequence in \mathcal{L} , let $A = \bigcup_{n \in \mathbb{N}} A_n$. Since $\overline{\mu}$ is continuous from below, there is a regulator $(b_{i,j})_{i,j}$ with the property that to every $\varphi \in \mathbb{N}^{\mathbb{N}}$ there corresponds a positive integer k with $\overline{\mu}(A \setminus A_n) \leq \bigvee_{i=1}^{\infty} b_{i,\varphi(i)}$ whenever $n \geq k$. By (2.1), in correspondence with A_k let $(a_{i,j}^{(k)})_{i,j}$ be the associated regulator, $B_k \in \sigma(\mathcal{W})$, $C_k \in \mathcal{K}^*$ be such that $B_k \subseteq C_k \subseteq$ $A_k \subseteq A$ and

$$\overline{\mu}(A_k \setminus B_k) \le \bigvee_{i=1}^{\infty} a_{i,\varphi(i)}^{(k)}$$

Set $c_{i,j}^{(k)} = 2(a_{i,j}^{(k)} + b_{i,j}), i, j \in \mathbb{N}$. The double sequence $(c_{i,j})_{i,j}$ is a regulator. We obtain:

$$\overline{\mu}(A \setminus B_k) \leq \overline{\mu}(A \setminus A_k) + \overline{\mu}(A_k \setminus B_k) \leq \bigvee_{i=1}^{\infty} c_{i,\varphi(i)}^{(k)};$$

moreover, by Lemma 2.7, there exists a (D)-sequence $(f_{i,j})_{i,j}$ such that

$$\overline{\mu}(A \setminus B_k) \le \overline{\mu}(\Omega) \wedge \sum_{n=1}^{\infty} \left(\bigvee_{i=1}^{\infty} c_{i,\varphi(i+n)}^{(n)}\right) \le \bigvee_{i=1}^{\infty} f_{i,\varphi(i)}.$$

Let now $(A_n)_n$ be a non-increasing sequence in \mathcal{L} , and set $A = \bigcap_{n \in \mathbb{N}} A_n$. In correspondence with A_n , let B_n , C_n , $(a_{i,j}^{(n)})_{i,j}$ be as in (2.1). Set $B = \bigcap_{n \in \mathbb{N}} B_n$, $C = \bigcap_{n \in \mathbb{N}} C_n$. Then there is a positive integer p such that

$$\overline{\mu}(A \setminus B) \leq \overline{\mu}(A_p \setminus B_p) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i+p)}^{(p)}$$

and, by Lemma 2.7, there exists a (D)-sequence $(g_{i,j})_{i,j}$ such that

$$\overline{\mu}(A_p \setminus B_p) \leq \overline{\mu}(\Omega) \wedge \sum_{n=1}^{\infty} \left(\bigvee_{i=1}^{\infty} a_{i,\varphi(i+n)}^{(n)} \right) \leq \bigvee_{i=1}^{\infty} g_{i,\varphi(i)}.$$

Moreover $B \subseteq C \subseteq A$, $B \in \sigma(W)$ and $C \in \mathcal{K}^*$, since \mathcal{K}^* is closed with respect to countable intersections. This concludes the proof. \Box

3. EXISTENCE OF PRODUCT MEASURES

Let R be a super Dedekind complete weakly σ -distributive *l*-group, (X, S, μ) , (Y, T, ν) be two measure spaces, where S, T are algebras and μ , ν are R-valued countably compact Mmeasures. We want to define the product measure of μ and ν . By Theorem 2.12 there exist two countably compact M-measures $\overline{\mu} : \sigma(S) \to R, \overline{\nu} : \sigma(T) \to R$, extending μ and ν respectively. Let now S be the family of the elementary sets of the ture

Let now \mathcal{E} be the family of the *elementary sets*, of the type

(3.1)
$$\bigcup_{l=1}^{n} (A_l \times B_l)$$

where $n \in \mathbb{N}$, $A_l \in \sigma(S)$, $B_l \in \sigma(T)$, l = 1, ..., n, and $(A_l \times B_l) \cap (A_s \times B_s) = \emptyset$ whenever $l \neq s$. We prove the following:

Theorem 3.1. Let μ , ν be *R*-valued countably compact *M*-measures as above. Then there is exactly one countably compact *M*-measure $\overline{\kappa} : \sigma(\mathcal{E}) \to R$ with

(3.2)
$$\overline{\kappa}(A \times B) = \overline{\mu}(A) \wedge \overline{\nu}(B) \text{ for all } A \in \sigma(\mathcal{S}), B \in \sigma(\mathcal{T}).$$

n

Proof: Set

$$\kappa(A \times B) = \overline{\mu}(A) \wedge \overline{\nu}(B), \quad A \in \sigma(\mathcal{S}), \ B \in \sigma(\mathcal{T})$$

Let now $E = A \times B$, $F = C \times D \in \sigma(S) \times \sigma(T)$. We get:

$$\begin{split} \kappa(E \cup F) &= \kappa \left((A \times B) \cup (C \times D) \right) \\ &= \kappa [\left((A \setminus C) \times B \right) \cup \left((A \cap C) \times (B \cup D) \right) \cup \left((C \setminus A) \times D \right)] \\ &= \left(\overline{\mu}(A \setminus C) \wedge \overline{\nu}(B) \right) \vee \left(\overline{\mu}(A \cap C) \wedge \overline{\nu}(B \cup D) \right) \vee \left(\overline{\mu}(C \setminus A) \wedge \overline{\nu}(D) \right) \\ &= \left(\overline{\mu}(A \setminus C) \wedge \overline{\nu}(B) \right) \vee \left(\overline{\mu}(A \cap C) \wedge \overline{\nu}(B) \right) \vee \\ &\vee \left(\overline{\mu}(A \cap C) \wedge \overline{\nu}(D) \right) \vee \left(\overline{\mu}(C \setminus A) \wedge \overline{\nu}(D) \right) \\ &= \left(\overline{\mu}(A) \wedge \overline{\nu}(B) \right) \vee \left(\overline{\mu}(C) \wedge \overline{\nu}(D) \right) = \kappa(E) \vee \kappa(F). \end{split}$$

Analogously, it is possible to check that

$$\kappa(E \cap F) = \kappa(E) \wedge \kappa(F) \quad \text{for all } E, F \in \sigma(\mathcal{S}) \times \sigma(\mathcal{T}).$$

If $E, F \in \mathcal{E}$, the analogous results follow by virtue of the distributive laws. So, $\kappa : \mathcal{E} \to R$ can be defined as follows:

$$\kappa\left(\bigcup_{l=1}^n (A_l \times B_l)\right) = \bigvee_{l=1}^n (\overline{\mu}(A_l) \wedge \overline{\nu}(B_l)).$$

Now, in order to prove that κ is countably compact, we show that for each $A \in \mathcal{E}$ a (D)-sequence $(c_{i,j})_{i,j}$ can be found, with the property that:

(3.3)
$$\forall \varphi \in \mathbb{N}^{\mathbb{N}}, \exists B \in \mathcal{E}, \exists C \in \mathcal{K} \text{ with } B \subseteq C \subseteq A \text{ and } \kappa(A \setminus B) \leq \bigvee_{i=1}^{\infty} c_{i,\varphi(i)}.$$

As $\overline{\mu}$ and $\overline{\nu}$ are countably compact measures, there are countably compact classes $\mathcal{K}_1 \subseteq \mathcal{P}(X)$, $\mathcal{K}_2 \subseteq \mathcal{P}(Y)$, with the following property: for all $A \in \sigma(\mathcal{S})$ and $B \in \sigma(\mathcal{T})$ there is a regulator

$$(\alpha_{i,j})_{i,j} \text{ such that } \forall \varphi \in \mathbb{N}^{\mathbb{N}} \exists E \in \sigma(\mathcal{S}), C \in \mathcal{K}_1, F \in \sigma(\mathcal{T}), D \in \mathcal{K}_2, \text{ with } E \subseteq C \subseteq A, F \subseteq D \subseteq B, \\ \sup\{\overline{\mu}(A \setminus E), \overline{\nu}(B \setminus F)\} \leq \bigvee^{\infty} \alpha_{i,\varphi(i)}.$$

Set now

$$\mathcal{H} = \{ E = C \times D : C \in \mathcal{K}_1, \ D \in \mathcal{K}_2 \}.$$

i=1

It is easy to see that \mathcal{H} is countably compact. By [10], Lemma 451H and Lemma 2.9 there exists a countably compact class \mathcal{K} containing \mathcal{H} , and closed with respect to finite unions and countable intersections.

Let A be any element of \mathcal{E} . There exist $n \in \mathbb{N}$, $A_l \in \mathcal{S}$, $B_l \in \mathcal{T}$, l = 1, ..., n such that $A = \bigcup_{l=1}^{n} (A_l \times B_l)$. Since $\overline{\mu}$, $\overline{\nu}$ are countably compact M-measures, then to l = 1, ..., n there correspond two (D)-sequences $(a_{i,j}^{(l)})_{i,j}$, $(b_{i,j}^{(l)})_{i,j}$ and $H_l \in \mathcal{K}_1$, $G_l \in \mathcal{K}_2$, E_l , $F_l \in \mathcal{S}$ with $E_l \subseteq H_l \subseteq A_l$, $F_l \subseteq G_l \subseteq B_l$,

$$\overline{\mu}(A_l \setminus E_l) \le \bigvee_{i=1}^{\infty} a_{i,\varphi(i+l)}^{(l)},$$
$$\overline{\nu}(B_l \setminus F_l) \le \bigvee_{i=1}^{\infty} b_{i,\varphi(i+l)}^{(l)}.$$

By Lemma 2.7, there are two regulators $(a_{i,j})_{i,j}$, $(b_{i,j})_{i,j}$, with

$$[\overline{\mu}(X)] \wedge \sum_{l=1}^{\infty} \left(\bigvee_{i=1}^{\infty} a_{i,\varphi(i+l)}^{(l)} \right) \leq \bigvee_{i=1}^{\infty} a_{i,\varphi(i)},$$
$$[\overline{\nu}(Y)] \wedge \sum_{l=1}^{\infty} \left(\bigvee_{i=1}^{\infty} b_{i,\varphi(i+l)}^{(l)} \right) \leq \bigvee_{i=1}^{\infty} b_{i,\varphi(i)} \quad \text{for all } \varphi \in \mathbb{N}^{\mathbb{N}}$$

Put $c_{i,j} = a_{i,j} \lor b_{i,j}, i, j \in \mathbb{N}$, and

$$C = \bigcup_{l=1}^{n} (H_l \times G_l), \qquad B = \bigcup_{l=1}^{n} (E_l \times F_l):$$

we get $B \subseteq C \subseteq A, C \in \mathcal{K}$, and

$$\kappa(A \setminus B) = \kappa \left(\left[\bigcup_{l=1}^{n} (A_{l} \times B_{l}) \right] \setminus \left[\bigcup_{s=1}^{n} (E_{s} \times F_{s}) \right] \right)$$

$$= \kappa \left(\left[\bigcup_{l=1}^{n} ((A_{l} \setminus E_{l}) \times B_{l}) \right] \cup \left[\bigcup_{s=1}^{n} (A_{s} \times (B_{s} \setminus F_{s})) \right] \right)$$

$$= \left[\bigvee_{l=1}^{n} (\overline{\mu}(A_{l} \setminus E_{l}) \wedge \overline{\nu}(B_{l})) \right] \vee \left[\bigvee_{s=1}^{n} (\overline{\mu}(A_{s}) \wedge \overline{\nu}(B_{s} \setminus F_{s})) \right]$$

$$\leq \left[\bigvee_{l=1}^{n} \overline{\mu}(A_{l} \setminus E_{l}) \right] \vee \left[\bigvee_{s=1}^{n} \overline{\nu}(B_{s} \setminus F_{s}) \right] \leq \bigvee_{i=1}^{\infty} c_{i,\varphi(i)}.$$

Countable compactness of κ follows.

We now prove (2.10.iv), namely that $\kappa(A_n) \searrow 0$ (resp. $\kappa(B_n) \nearrow \kappa(B)$) whenever $(A_n)_n$ is a non-increasing sequence in \mathcal{E} , with $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$ (resp. $B_n \in \mathcal{E}$, $n \in \mathbb{N}$, $B_n \nearrow B$, $B \in \mathcal{E}$). Pick now arbitrarily any sequence $(A_n)_n$ in \mathcal{E} , with $A_n \searrow \emptyset$. Since κ is countably compact, then in correspondence with each positive integer n a (D)-sequence $(d_{i,j}^{(n)})_{i,j}$ and two elements $B_n \in \mathcal{E}, C_n \in \mathcal{K}$ can be found, with $B_n \subseteq C_n \subseteq A_n$ and

$$\kappa(A_n \setminus B_n) \le \bigvee_{i=1}^{\infty} d_{i,\varphi(i+n)}^{(n)}$$

Again by Lemma 2.7, there exists a (D)-sequence $(d_{i,j})_{i,j}$ with the property that

$$[\kappa(X \times Y)] \wedge \sum_{n=1}^{\infty} \left(\bigvee_{i=1}^{\infty} d_{i,\varphi(i+n)}^{(n)}\right) \leq \bigvee_{i=1}^{\infty} d_{i,\varphi(i)}.$$

Set now $D_n = \bigcap_{l=1}^n C_l$. We get

$$\bigcap_{n\in\mathbb{N}} D_n \subseteq \bigcap_{n\in\mathbb{N}} A_n = \emptyset$$

Since \mathcal{K} is a countably compact class, a positive integer m can be found, with

$$\bigcap_{l=1}^{m} B_l \subseteq D_m = \bigcap_{l=1}^{m} C_l = \emptyset.$$

For each $n \ge m$ we obtain

$$\kappa(A_n) \leq \kappa(A_m) = \kappa \left(A_m \setminus \left[\bigcap_{l=1}^m B_l \right] \right) = \kappa \left(\bigcup_{l=1}^m (A_m \setminus B_l) \right)$$
$$\leq \kappa \left(\bigcup_{l=1}^m (A_l \setminus B_l) \right) = \bigvee_{l=1}^m \kappa(A_l \setminus B_l) \leq \bigvee_{i=1}^\infty d_{i,\varphi(i)}$$

and then $\lim_{n \to \infty} \kappa(A_n) = 0$.

Let now $B_n \in \mathcal{E}$ $(n \in \mathbb{N})$, $B_n \nearrow B$, $B \in \mathcal{E}$. Then $B \setminus B_n \searrow \emptyset$, and hence

$$\kappa(B) = \kappa((B \setminus B_n) \cup B_n) = \kappa(B \setminus B_n) \vee \kappa(B_n)$$

$$\leq \kappa(B \setminus B_n) \vee \left(\bigvee_{i=1}^{\infty} \kappa(B_i)\right).$$

Thus we get:

$$\kappa(B) \le \lim_{n} \kappa(B \setminus B_{n}) \lor \left(\bigvee_{i=1}^{\infty} \kappa(B_{i})\right) = \bigvee_{i=1}^{\infty} \kappa(B_{i}) \le \kappa(B),$$

and hence $\kappa(B) = \lim_i \kappa(B_i)$. Furthermore, if $C_n \searrow C$, then $C_n \setminus C \searrow \emptyset$,

$$\kappa(C_n) = \kappa((C_n \setminus C) \cup C) = \kappa(C_n \setminus C) \lor \kappa(C),$$

and

$$\bigwedge_{n=1}^{\infty} \kappa(C_n) = \left(\bigwedge_{n=1}^{\infty} \kappa(C_n \setminus C)\right) \lor \kappa(C) = 0 \lor \kappa(C) = \kappa(C).$$

Thus we proved that κ is an *R*-valued countably compact *M*-measure, defined on \mathcal{E} . By Theorem 2.12 there is a (unique) countably compact *M*-measure $\overline{\kappa}$, defined on $\sigma(\mathcal{E})$ and extending κ . \Box

REFERENCES

- [1] K. ATANASSOV, Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, 1999.
- [2] A. I. BAN, *Intuitionistic fuzzy measures: theory and applications*, Nova Science Publ. Inc, New York, 2006.
- [3] A. BOCCUTO, On Stone-type extensions for group-valued measures, *Math. Slovaca* **45** (1995), pp. 309-315.
- [4] A. BOCCUTO B. RIEČAN, On extension theorems for *M*-measures in *l*-groups, to appear on *Math. Slovaca*, (2008).
- [5] G. DESCHRIJVER E. E. KERRE, Smets-Magrez axioms for *R*-implicators in interval-valued and intuitionistic fuzzy set theory, *Internat. J. Uncertain. Fuzziness Knowledge-Based Systems* 13 (2005), pp. 453-464.
- [6] D. DUBOIS S. GOTTWALD P. HÁJEK J. KACPRZYK H. PRADE, Terminological difficulties in fuzzy set theory - the case of "intuitionistic fuzzy sets", *Fuzzy Sets and Systems* 156 (2005), pp. 485-491.
- [7] D. DUBOIS H. PRADE, Possibility theory, Plenum Press, New York, 1988.
- [8] D. H. FREMLIN, A direct proof of the Matthes-Wright integral extension theorem, J. London Math. Soc. 11 (1975), pp. 276-284.
- [9] D. H. FREMLIN, *Measure Theory, Vol. 1, The Irriducible Minimum*, Torres Fremlin Ed., Colchester, England, 2000.
- [10] D. H. FREMLIN, Measure Theory, Vol. 4, Topological Measure Spaces, Torres Fremlin Ed., Colchester, England, 2003.
- [11] P. R. HALMOS, *Measure Theory*, Springer-Verlag New York Inc., 1974.
- M. KRACHOUNOV, Intuitionistic probability and intuitionistic fuzzy sets. In: *First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engeneering* (E. El-Darzi, R. Atanassov, P. Chountas eds.), Univ. of Westminister, London, 2006, pp. 18-24.
- [13] L. LIN X. H. YUAN Z. Q. XIA, Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets, J. Comput. System Sci. 73 (2007), pp. 84-88.
- [14] W. A. J. LUXEMBURG A. C. ZAANEN, *Riesz Spaces I*, North-Holland Publishing Co., Amsterdam, 1971.
- [15] P. MAZUREKOVÁ J. PETROVIĆOVÁ B. RIEČAN, Product of M-measure preprint (2007).
- [16] P. MAZUREKOVÁ B. RIEČAN, A measure extension theorem. In: Notes on IFS, 12 (4) (2006), pp. 3-8.
- [17] M. PANIGRAHI S. NANDA, A comparison between intuitionistic fuzzy sets and generalized intuitionistic fuzzy sets, *J. Fuzzy Math.* **14** (2006), pp. 407-421.
- [18] B. RIEČAN, A descriptive definition of the probability on intuitionistic fuzzy sets. In: *EUSFLAT* 2003, M. Wagenecht, R. Hampet eds., pp. 263-266 (2003).
- [19] B. RIEČAN, Probability theory on IF-events. In: A volume in honor of Daniele Mundici's 60th birthday. Lecture Notes in Computer Sciences, Springer, Berlin, 2007.
- [20] B. RIEČAN T. NEUBRUNN, Integral, Measure and Ordering, Kluwer Academic Publishers/Ister Science, Bratislava, 1997.
- [21] N. SHILKRET, Maxitive measure and integration, Indag. Math. 33 (1971), pp. 109-116.