The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 6, Issue 2, Article 9, pp. 1-8, 2009

ON THE PRODUCT OF M-MEASURES IN l-GROUPS

A. BOCCUTO, B. RIEČAN, AND A. R. SAMBUCINI

Received; accepted 18 July, 2008; published December, 2009.

Dipartimento di Matematica e Informatica, via Vanvitelli, 1 I-06123 PERUGIA (Italy) boccuto@dipmat.unipg.it
URL: http://www.dipmat.unipg.it/~boccuto
Katedra Matematiky, Fakulta Prírodných Vied, Univerzita Mateja Bela, Tajovského, 40
SK-97401 BANSKÁ BYSTRICA (Slovakia)
riecan@fpv.umb.sk
Dipartimento di Matematica e Informatica, via Vanvitelli, 1 I-06123 PERUGIA (Italy)
matears1@unipg.it
URL:http://www.unipg.it/~matears1

Abstract. Some extension-type theorems and compactness properties for the product of l -group-valued M-measures are proved.

Key words and phrases: l-group, extension, weak σ-distributivity, product measure, countable compactness.
2000 Mathematics Subject Classification 28B15.

[^0]
1. INTRODUCTION

In the study of probability theory, in many applications it is advisable to deal with set functions, which are not necessarily additive, but satisfy other properties: for example, continuity from below and from above for sequences of sets and "compatibility" with respect to the operations of finite suprema and infima. These functions are called M-measures (see [7, 12, 21]).

For example, in decision making, this is the case of the theory of intuitionistic fuzzy events (shortly IF-events), which are pairs $A=\left(\mu_{A}, \nu_{A}\right)$ of measurable functions $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$ such that $\mu_{A}+\nu_{A} \leq 1$. For a literature about IF-sets, see [1, 2, 5, 6, 12, 13, 17, 18, 19]. Another application is the theory of joint random variables: in this context the M-measure extension theorem plays a crucial role in the construction of joint observables. Moreover, to consider latticegroup or Riesz space-valued set functions allows to get applications in stochastic processes and in probabilities depending on the time and/or on the informations of the individual.

In this paper we continue the investigation dealt with in [4] and, starting from an extensiontype existence theorem for M-measures with values in l-groups, we obtain existence results in the countably compact case for M-measures and product of M-measures.

2. Preliminaries and basic results

We begin with the following
Definition 2.1. An l-group (lattice ordered group) R is said to be
2.1.1): Dedekind complete if every nonempty subset of R, bounded from above, has supremum in R;
(2.1.2): super Dedekind complete, if it is Dedekind complete and for any nonempty set $A \subseteq R$, bounded from above, there exists a countable subset $A^{*} \subseteq A$, having the same supremum as A.
2.1.3): A bounded double sequence $\left(a_{i, j}\right)_{i, j}$ in R is called regulator or (D)-sequence if, for each $i \in \mathbb{N}, a_{i, j} \searrow 0$, that is $a_{i, j} \geq a_{i, j+1}$ for all $j \in \mathbb{N}$ and $\bigwedge_{j \in \mathbb{N}} a_{i, j}=0$.
2.1.4): Given a sequence $\left(r_{n}\right)_{n}$ in R, we say that $\left(r_{n}\right)_{n}(D)$-converges to an element $r \in R$ if there is a regulator $\left(a_{i, j}\right)_{i, j}$, such that to every map $\varphi \in \mathbb{N}^{\mathbb{N}}$ there corresponds a positive integer k with

$$
\left|r_{n}-r\right| \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}
$$

for all $n \geq k$. In this case, we write $(D) \lim _{n} r_{n}=r$ or simply $\lim _{n} r_{n}=r$, since no confusion can arise.

Definition 2.2. We say that R is weakly σ-distributive if, for every (D)-sequence $\left(a_{i, j}\right)_{i, j}$,

$$
\bigwedge_{\varphi \in \mathbb{N}^{\mathbb{N}}}\left(\bigvee_{i=1}^{\infty} a_{i, \varphi(i)}\right)=0
$$

Remark 2.3. Observe that in weakly σ-distributive l-groups (D)-convergence for sequences coincides with order convergence. An example of a super Dedekind complete weakly σ distributive l-group is the space $L^{0}(Y, \Sigma, \nu)$, where (Y, Σ, ν) is a measure space with $\nu \sigma$ additive and σ-finite, see [14].

From now on, let X be a set and \mathcal{W} be an algebra of subsets of X.

Definition 2.4. A family \mathcal{A} of subsets of X is called monotone class if the following properties hold:
(a): $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$ for every non-decreasing sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{A},
(b): $\bigcap_{n \in \mathbb{N}} A_{n} \in \mathcal{A}$ for every non-increasing sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{A}.

Definition 2.5. A family \mathcal{K} of subsets of X is called countably compact class, if for every sequence $\left(C_{n}\right)_{n}$ of elements of \mathcal{K} we get $\bigcap_{i \in \mathbb{N}} C_{i} \neq \emptyset$ whenever $\bigcap_{i=1}^{n} C_{i} \neq \emptyset$ for any $n \in \mathbb{N}$.
Definition 2.6. A set function $\lambda: \mathcal{W} \rightarrow R$ is said to be countably compact, if there is a countably compact class \mathcal{K} with the property that for any $A \in \mathcal{W}$ there corresponds a (D)sequence $\left(a_{i, j}\right)_{i, j}$ such that to any $\varphi \in \mathbb{N}^{\mathbb{N}}$ two sets $B \in \mathcal{W}, C \in \mathcal{K}$ can be found, with $B \subseteq C \subseteq A$ and $\lambda(A \backslash B) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}$.

In the sequel we will use the following fundamental results ([8, 9, 10, 20]).
Lemma 2.7. ([20], Theorem 3.2.3) Let $\left\{\left(a_{i, j}^{(n)}\right)_{i, j}: n \in \mathbb{N}\right\}$ be any countable family of regulators. Then for each fixed element $u \in R, u \geq 0$, there exists a regulator $\left(a_{i, j}\right)_{i, j}$ such that, for every $\varphi \in \mathbb{N}^{\mathbb{N}}$,

$$
u \wedge \sum_{n=1}^{\infty}\left(\bigvee_{i=1}^{\infty} a_{i, \varphi(i+n)}^{(n)}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}
$$

Theorem 2.8. ([11], Theorem 1.6.B) If $\mathcal{A} \subseteq \mathcal{P}(X)$ is a monotone class of sets such that
(c): $\mathcal{W} \subseteq \mathcal{A}$,
then \mathcal{A} includes the σ-algebra of subsets of $X \sigma(\mathcal{W})$ generated by \mathcal{W}.
Lemma 2.9. ([10], Lemma 413R) Let \mathcal{K} be a countably compact class of sets. Then there is a countably compact class $\mathcal{K}^{*} \supseteq \mathcal{K}$ such that $K \cup L \in \mathcal{K}^{*}$ and $\bigcap_{n \in \mathbb{N}} K_{n} \in \mathcal{K}^{*}$ whenever $K, L \in \mathcal{K}^{*}$ and $\left(K_{n}\right)_{n}$ is a sequence in \mathcal{K}^{*}.
Definition 2.10. A set function $\mu: \mathcal{W} \rightarrow R$ is called M-measure if it satisfies the following properties:
(2.10,i): $\mu(\emptyset)=0$;
(2.10, ii): $\mu(A \cup B)=\mu(A) \vee \mu(B)=\sup (\mu(A), \mu(B))$ for all $A, B \in \mathcal{W}$;
(2.10,iii): $\mu(A \cap B)=\mu(A) \wedge \mu(B)=\inf (\mu(A), \mu(B))$ for any $A, B \in \mathcal{W}$;
(2.10, iv): μ is continuous both from below and from above, that is: if $A_{n} \nearrow A$, (resp. $\left.B_{n} \searrow B\right), A_{n}, A\left(B_{n}, B\right) \in \mathcal{W}, n \in \mathbb{N}$, then $\mu\left(A_{n}\right) \nearrow \mu(A)\left(\mu\left(B_{n}\right) \searrow \mu(B)\right)$.
It is known that
Theorem 2.11. ([4], Theorem 3.1) Let R be a super Dedekind complete weakly σ-distributive l-group. For every bounded R-valued M-measure μ, defined on a ring \mathcal{W}, there is a unique M-measure $\bar{\mu}$ defined on the σ-ring $\sigma(\mathcal{W})$ generated by \mathcal{W}, extending μ.

The line of the proof of this theorem is the following: at the first step, the M-measure μ is extended to \mathcal{W}^{+}, which is the class of all sets A of the type

$$
A:=\cup_{n=1}^{\infty} A_{n}, \quad \text { with } A_{n} \subset A_{n+1}, \quad A_{n} \in \mathcal{W} \quad \text { for all } n \in \mathbb{N}
$$

by setting $\mu^{+}(A)=\lim _{n} \mu\left(A_{n}\right)$ (the limit exists in R and does not depend on the choice of the sequence $\left.\left(A_{n}\right)_{n}\right)$.

Successively, it is extended to \mathcal{W}^{*}, which is the ideal generated by \mathcal{W}^{+}, by setting $\mu^{*}(A)=$ $\inf \left\{\mu^{+}(B): B \in \mathcal{W}^{+}, B \supset A\right\}$ for every $A \in \mathcal{W}^{*}$. Then it is proved that $\bar{\mu}:=\mu_{\mid \sigma(\mathcal{W})}^{*}$ is an M-measure, extending μ. Finally, in order to prove uniqueness, observe that, if $\nu: \sigma(\mathcal{W}) \rightarrow R$ is an M-measure with extends μ, then it coincides with $\bar{\mu}$ on a monotone family containing \mathcal{W}, and this concludes the assertion.

We denote by $\bar{\mu}: \sigma(\mathcal{W}) \rightarrow R$ this extension. Observe that:
Theorem 2.12. If μ is countably compact, then $\bar{\mu}$ is countably compact too.
Proof: Let \mathcal{K} be the countably compact class related with countable compactness of μ and $\mathcal{K}^{*} \supseteq \mathcal{K}$ be a countably compact class associated with \mathcal{K}, closed with respect to finite unions and countable intersections, existing by virtue of Lemma 2.9. Set
(2.1) $\mathcal{L}=\left\{A \in \sigma(\mathcal{W})\right.$: there is a regulator $\left(a_{i, j}^{(A)}\right)_{i, j}$ such that $\forall \varphi \in \mathbb{N}^{\mathbb{N}}$

$$
\left.\exists B_{A} \in \sigma(\mathcal{W}), C_{A} \in \mathcal{K}^{*}: B_{A} \subseteq C_{A} \subseteq A \text { and } \bar{\mu}\left(A \backslash B_{A}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi}^{(A)}\right\}
$$

It is enough to prove that \mathcal{L} satisfies Theorem 2.8. First of all, the inclusion $\mathcal{W} \subseteq \mathcal{L}$ follows directly from the definition of countably compact measure. We now prove that \mathcal{L} is a monotone class.

If $\left(A_{n}\right)_{n}$ is a non-decreasing sequence in \mathcal{L}, let $A=\bigcup_{n \in \mathbb{N}} A_{n}$. Since $\bar{\mu}$ is continuous from below, there is a regulator $\left(b_{i, j}\right)_{i, j}$ with the property that to every $\varphi \in \mathbb{N}^{\mathbb{N}}$ there corresponds a positive integer k with $\bar{\mu}\left(A \backslash A_{n}\right) \leq \bigvee_{i=1}^{\infty} b_{i, \varphi(i)}$ whenever $n \geq k$. By 2.1, in correspondence with A_{k} let $\left(a_{i, j}^{(k)}\right)_{i, j}$ be the associated regulator, $B_{k} \in \sigma(\mathcal{W}), C_{k} \in \mathcal{K}^{*}$ be such that $B_{k} \subseteq C_{k} \subseteq$ $A_{k} \subseteq A$ and

$$
\bar{\mu}\left(A_{k} \backslash B_{k}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)}^{(k)}
$$

Set $c_{i, j}^{(k)}=2\left(a_{i, j}^{(k)}+b_{i, j}\right), i, j \in \mathbb{N}$. The double sequence $\left(c_{i, j}\right)_{i, j}$ is a regulator. We obtain:

$$
\bar{\mu}\left(A \backslash B_{k}\right) \leq \bar{\mu}\left(A \backslash A_{k}\right)+\bar{\mu}\left(A_{k} \backslash B_{k}\right) \leq \bigvee_{i=1}^{\infty} c_{i, \varphi(i)}^{(k)}
$$

moreover, by Lemma 2.7, there exists a (D)-sequence $\left(f_{i, j}\right)_{i, j}$ such that

$$
\bar{\mu}\left(A \backslash B_{k}\right) \leq \bar{\mu}(\Omega) \wedge \sum_{n=1}^{\infty}\left(\bigvee_{i=1}^{\infty} c_{i, \varphi(i+n)}^{(n)}\right) \leq \bigvee_{i=1}^{\infty} f_{i, \varphi(i)}
$$

Let now $\left(A_{n}\right)_{n}$ be a non-increasing sequence in \mathcal{L}, and set $A=\cap_{n \in \mathbb{N}} A_{n}$. In correspondence with A_{n}, let $B_{n}, C_{n},\left(a_{i, j}^{(n)}\right)_{i, j}$ be as in 2.1). Set $B=\cap_{n \in \mathbb{N}} B_{n}, C=\cap_{n \in \mathbb{N}} C_{n}$. Then there is a positive integer p such that

$$
\bar{\mu}(A \backslash B) \leq \bar{\mu}\left(A_{p} \backslash B_{p}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i+p)}^{(p)}
$$

and, by Lemma 2.7, there exists a (D)-sequence $\left(g_{i, j}\right)_{i, j}$ such that

$$
\bar{\mu}\left(A_{p} \backslash B_{p}\right) \leq \bar{\mu}(\Omega) \wedge \sum_{n=1}^{\infty}\left(\bigvee_{i=1}^{\infty} a_{i, \varphi(i+n)}^{(n)}\right) \leq \bigvee_{i=1}^{\infty} g_{i, \varphi(i)}
$$

Moreover $B \subseteq C \subseteq A, B \in \sigma(\mathcal{W})$ and $C \in \mathcal{K}^{*}$, since \mathcal{K}^{*} is closed with respect to countable intersections. This concludes the proof.

3. Existence of product measures

Let R be a super Dedekind complete weakly σ-distributive l-group, $(X, \mathcal{S}, \mu),(Y, \mathcal{T}, \nu)$ be two measure spaces, where \mathcal{S}, \mathcal{T} are algebras and μ, ν are R-valued countably compact M measures. We want to define the product measure of μ and ν. By Theorem 2.12 there exist two countably compact M-measures $\bar{\mu}: \sigma(\mathcal{S}) \rightarrow R, \bar{\nu}: \sigma(\mathcal{T}) \rightarrow R$, extending μ and ν respectively.

Let now \mathcal{E} be the family of the elementary sets, of the type

$$
\begin{equation*}
\bigcup_{l=1}^{n}\left(A_{l} \times B_{l}\right) \tag{3.1}
\end{equation*}
$$

where $n \in \mathbb{N}, A_{l} \in \sigma(\mathcal{S}), B_{l} \in \sigma(\mathcal{T}), l=1, \ldots, n$, and $\left(A_{l} \times B_{l}\right) \cap\left(A_{s} \times B_{s}\right)=\emptyset$ whenever $l \neq s$. We prove the following:

Theorem 3.1. Let μ, ν be R-valued countably compact M-measures as above. Then there is exactly one countably compact M-measure $\bar{\kappa}: \sigma(\mathcal{E}) \rightarrow R$ with

$$
\begin{equation*}
\bar{\kappa}(A \times B)=\bar{\mu}(A) \wedge \bar{\nu}(B) \quad \text { for all } A \in \sigma(\mathcal{S}), B \in \sigma(\mathcal{T}) \tag{3.2}
\end{equation*}
$$

Proof: Set

$$
\kappa(A \times B)=\bar{\mu}(A) \wedge \bar{\nu}(B), \quad A \in \sigma(\mathcal{S}), B \in \sigma(\mathcal{T})
$$

Let now $E=A \times B, F=C \times D \in \sigma(\mathcal{S}) \times \sigma(\mathcal{T})$. We get:

$$
\begin{aligned}
\kappa(E \cup F) & =\kappa((A \times B) \cup(C \times D)) \\
& =\kappa[((A \backslash C) \times B) \cup((A \cap C) \times(B \cup D)) \cup((C \backslash A) \times D)] \\
& =(\bar{\mu}(A \backslash C) \wedge \bar{\nu}(B)) \vee(\bar{\mu}(A \cap C) \wedge \bar{\nu}(B \cup D)) \vee(\bar{\mu}(C \backslash A) \wedge \bar{\nu}(D)) \\
& =(\bar{\mu}(A \backslash C) \wedge \bar{\nu}(B)) \vee(\bar{\mu}(A \cap C) \wedge \bar{\nu}(B)) \vee \\
& \vee(\bar{\mu}(A \cap C) \wedge \bar{\nu}(D)) \vee(\bar{\mu}(C \backslash A) \wedge \bar{\nu}(D)) \\
& =(\bar{\mu}(A) \wedge \bar{\nu}(B)) \vee(\bar{\mu}(C) \wedge \bar{\nu}(D))=\kappa(E) \vee \kappa(F) .
\end{aligned}
$$

Analogously, it is possible to check that

$$
\kappa(E \cap F)=\kappa(E) \wedge \kappa(F) \quad \text { for all } E, F \in \sigma(\mathcal{S}) \times \sigma(\mathcal{T})
$$

If $E, F \in \mathcal{E}$, the analogous results follow by virtue of the distributive laws. So, $\kappa: \mathcal{E} \rightarrow R$ can be defined as follows:

$$
\kappa\left(\bigcup_{l=1}^{n}\left(A_{l} \times B_{l}\right)\right)=\bigvee_{l=1}^{n}\left(\bar{\mu}\left(A_{l}\right) \wedge \bar{\nu}\left(B_{l}\right)\right)
$$

Now, in order to prove that κ is countably compact, we show that for each $A \in \mathcal{E}$ a (D)sequence $\left(c_{i, j}\right)_{i, j}$ can be found, with the property that:
(3.3) $\forall \varphi \in \mathbb{N}^{\mathbb{N}}, \exists B \in \mathcal{E}, \exists C \in \mathcal{K} \quad$ with $B \subseteq C \subseteq A$ and $\kappa(A \backslash B) \leq \bigvee_{i=1}^{\infty} c_{i, \varphi(i)}$.

As $\bar{\mu}$ and $\bar{\nu}$ are countably compact measures, there are countably compact classes $\mathcal{K}_{1} \subseteq \mathcal{P}(X)$, $\mathcal{K}_{2} \subseteq \mathcal{P}(Y)$, with the following property: for all $A \in \sigma(\mathcal{S})$ and $B \in \sigma(\mathcal{T})$ there is a regulator
$\left(\alpha_{i, j}\right)_{i, j}$ such that $\forall \varphi \in \mathbb{N}^{\mathbb{N}} \exists E \in \sigma(\mathcal{S}), C \in \mathcal{K}_{1}, F \in \sigma(\mathcal{T}), D \in \mathcal{K}_{2}$, with $E \subseteq C \subseteq A$, $F \subseteq D \subseteq B$,

$$
\sup \{\bar{\mu}(A \backslash E), \bar{\nu}(B \backslash F)\} \leq \bigvee_{i=1}^{\infty} \alpha_{i, \varphi(i)}
$$

Set now

$$
\mathcal{H}=\left\{E=C \times D: C \in \mathcal{K}_{1}, D \in \mathcal{K}_{2}\right\}
$$

It is easy to see that \mathcal{H} is countably compact. By [10], Lemma 451 H and Lemma 2.9 there exists a countably compact class \mathcal{K} containing \mathcal{H}, and closed with respect to finite unions and countable intersections.

Let A be any element of \mathcal{E}. There exist $n \in \mathbb{N}, A_{l} \in \mathcal{S}, B_{l} \in \mathcal{T}, l=1, \ldots, n$ such that $A=\cup_{l=1}^{n}\left(A_{l} \times B_{l}\right)$. Since $\bar{\mu}, \bar{\nu}$ are countably compact M-measures, then to $l=1, \ldots, n$ there correspond two (D)-sequences $\left(a_{i, j}^{(l)}\right)_{i, j},\left(b_{i, j}^{(l)}\right)_{i, j}$ and $H_{l} \in \mathcal{K}_{1}, G_{l} \in \mathcal{K}_{2}, E_{l}, F_{l} \in \mathcal{S}$ with $E_{l} \subseteq H_{l} \subseteq A_{l}, F_{l} \subseteq G_{l} \subseteq B_{l}$,

$$
\begin{aligned}
& \bar{\mu}\left(A_{l} \backslash E_{l}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i+l)}^{(l)} \\
& \bar{\nu}\left(B_{l} \backslash F_{l}\right) \leq \bigvee_{i=1}^{\infty} b_{i, \varphi(i+l)}^{(l)}
\end{aligned}
$$

By Lemma 2.7, there are two regulators $\left(a_{i, j}\right)_{i, j},\left(b_{i, j}\right)_{i, j}$, with

$$
\begin{gathered}
{[\bar{\mu}(X)] \wedge \sum_{l=1}^{\infty}\left(\bigvee_{i=1}^{\infty} a_{i, \varphi(i+l)}^{(l)}\right) \leq \bigvee_{i=1}^{\infty} a_{i, \varphi(i)},} \\
{[\bar{\nu}(Y)] \wedge \sum_{l=1}^{\infty}\left(\bigvee_{i=1}^{\infty} b_{i, \varphi(i+l)}^{(l)}\right) \leq \bigvee_{i=1}^{\infty} b_{i, \varphi(i)} \quad \text { for all } \varphi \in \mathbb{N}^{\mathbb{N}} .}
\end{gathered}
$$

Put $c_{i, j}=a_{i, j} \vee b_{i, j}, i, j \in \mathbb{N}$, and

$$
C=\bigcup_{l=1}^{n}\left(H_{l} \times G_{l}\right), \quad B=\bigcup_{l=1}^{n}\left(E_{l} \times F_{l}\right):
$$

we get $B \subseteq C \subseteq A, C \in \mathcal{K}$, and

$$
\begin{aligned}
\kappa(A \backslash B) & =\kappa\left(\left[\bigcup_{l=1}^{n}\left(A_{l} \times B_{l}\right)\right] \backslash\left[\bigcup_{s=1}^{n}\left(E_{s} \times F_{s}\right)\right]\right) \\
& =\kappa\left(\left[\bigcup_{l=1}^{n}\left(\left(A_{l} \backslash E_{l}\right) \times B_{l}\right)\right] \cup\left[\bigcup_{s=1}^{n}\left(A_{s} \times\left(B_{s} \backslash F_{s}\right)\right)\right]\right) \\
& =\left[\bigvee_{l=1}^{n}\left(\bar{\mu}\left(A_{l} \backslash E_{l}\right) \wedge \bar{\nu}\left(B_{l}\right)\right)\right] \vee\left[\bigvee_{s=1}^{n}\left(\bar{\mu}\left(A_{s}\right) \wedge \bar{\nu}\left(B_{s} \backslash F_{s}\right)\right)\right] \\
& \leq\left[\bigvee_{l=1}^{n} \bar{\mu}\left(A_{l} \backslash E_{l}\right)\right] \vee\left[\bigvee_{s=1}^{n} \bar{\nu}\left(B_{s} \backslash F_{s}\right)\right] \leq \bigvee_{i=1}^{\infty} c_{i, \varphi(i)} .
\end{aligned}
$$

Countable compactness of κ follows.
We now prove 2.10,iv), namely that $\kappa\left(A_{n}\right) \searrow 0\left(\right.$ resp. $\left.\kappa\left(B_{n}\right) \nearrow \kappa(B)\right)$ whenever $\left(A_{n}\right)_{n}$ is a non-increasing sequence in \mathcal{E}, with $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$ (resp. $B_{n} \in \mathcal{E}, n \in \mathbb{N}, B_{n} \nearrow B, B \in \mathcal{E}$).

Pick now arbitrarily any sequence $\left(A_{n}\right)_{n}$ in \mathcal{E}, with $A_{n} \searrow \emptyset$. Since κ is countably compact, then in correspondence with each positive integer n a (D)-sequence $\left(d_{i, j}^{(n)}\right)_{i, j}$ and two elements $B_{n} \in \mathcal{E}, C_{n} \in \mathcal{K}$ can be found, with $B_{n} \subseteq C_{n} \subseteq A_{n}$ and

$$
\kappa\left(A_{n} \backslash B_{n}\right) \leq \bigvee_{i=1}^{\infty} d_{i, \varphi(i+n)}^{(n)}
$$

Again by Lemma 2.7, there exists a (D)-sequence $\left(d_{i, j}\right)_{i, j}$ with the property that

$$
[\kappa(X \times Y)] \wedge \sum_{n=1}^{\infty}\left(\bigvee_{i=1}^{\infty} d_{i, \varphi(i+n)}^{(n)}\right) \leq \bigvee_{i=1}^{\infty} d_{i, \varphi(i)}
$$

Set now $D_{n}=\bigcap_{l=1}^{n} C_{l}$. We get

$$
\bigcap_{n \in \mathbb{N}} D_{n} \subseteq \bigcap_{n \in \mathbb{N}} A_{n}=\emptyset .
$$

Since \mathcal{K} is a countably compact class, a positive integer m can be found, with

$$
\bigcap_{l=1}^{m} B_{l} \subseteq D_{m}=\bigcap_{l=1}^{m} C_{l}=\emptyset
$$

For each $n \geq m$ we obtain

$$
\begin{aligned}
\kappa\left(A_{n}\right) & \leq \kappa\left(A_{m}\right)=\kappa\left(A_{m} \backslash\left[\bigcap_{l=1}^{m} B_{l}\right]\right)=\kappa\left(\bigcup_{l=1}^{m}\left(A_{m} \backslash B_{l}\right)\right) \\
& \leq \kappa\left(\bigcup_{l=1}^{m}\left(A_{l} \backslash B_{l}\right)\right)=\bigvee_{l=1}^{m} \kappa\left(A_{l} \backslash B_{l}\right) \leq \bigvee_{i=1}^{\infty} d_{i, \varphi(i)}
\end{aligned}
$$

and then $\lim _{n} \kappa\left(A_{n}\right)=0$.
Let now $B_{n} \in \mathcal{E}(n \in \mathbb{N}), B_{n} \nearrow B, B \in \mathcal{E}$. Then $B \backslash B_{n} \searrow \emptyset$, and hence

$$
\begin{aligned}
\kappa(B) & =\kappa\left(\left(B \backslash B_{n}\right) \cup B_{n}\right)=\kappa\left(B \backslash B_{n}\right) \vee \kappa\left(B_{n}\right) \\
& \leq \kappa\left(B \backslash B_{n}\right) \vee\left(\bigvee_{i=1}^{\infty} \kappa\left(B_{i}\right)\right) .
\end{aligned}
$$

Thus we get:

$$
\kappa(B) \leq \lim _{n} \kappa\left(B \backslash B_{n}\right) \vee\left(\bigvee_{i=1}^{\infty} \kappa\left(B_{i}\right)\right)=\bigvee_{i=1}^{\infty} \kappa\left(B_{i}\right) \leq \kappa(B),
$$

and hence $\kappa(B)=\lim _{i} \kappa\left(B_{i}\right)$. Furthermore, if $C_{n} \searrow C$, then $C_{n} \backslash C \searrow \emptyset$,

$$
\kappa\left(C_{n}\right)=\kappa\left(\left(C_{n} \backslash C\right) \cup C\right)=\kappa\left(C_{n} \backslash C\right) \vee \kappa(C),
$$

and

$$
\bigwedge_{n=1}^{\infty} \kappa\left(C_{n}\right)=\left(\bigwedge_{n=1}^{\infty} \kappa\left(C_{n} \backslash C\right)\right) \vee \kappa(C)=0 \vee \kappa(C)=\kappa(C) .
$$

Thus we proved that κ is an R-valued countably compact M-measure, defined on \mathcal{E}. By Theorem 2.12 there is a (unique) countably compact M-measure $\bar{\kappa}$, defined on $\sigma(\mathcal{E})$ and extending κ.

References

[1] K. ATANASSOV, Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, 1999.
[2] A. I. BAN, Intuitionistic fuzzy measures: theory and applications, Nova Science Publ. Inc, New York, 2006.
[3] A. BOCCUTO, On Stone-type extensions for group-valued measures, Math. Slovaca 45 (1995), pp. 309-315.
[4] A. BOCCUTO - B. RIEČAN, On extension theorems for M-measures in l-groups, to appear on Math. Slovaca, (2008).
[5] G. DESCHRIJVER - E. E. KERRE, Smets-Magrez axioms for R-implicators in interval-valued and intuitionistic fuzzy set theory, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 13 (2005), pp. 453-464.
[6] D. DUBOIS - S. GOTTWALD - P. HÁJEK - J. KACPRZYK - H. PRADE, Terminological difficulties in fuzzy set theory - the case of "intuitionistic fuzzy sets", Fuzzy Sets and Systems 156 (2005), pp. 485-491.
[7] D. DUBOIS - H. PRADE, Possibility theory, Plenum Press, New York, 1988.
[8] D. H. FREMLIN, A direct proof of the Matthes-Wright integral extension theorem, J. London Math. Soc. 11 (1975), pp. 276-284.
[9] D. H. FREMLIN, Measure Theory, Vol. 1, The Irriducible Minimum, Torres Fremlin Ed., Colchester, England, 2000.
[10] D. H. FREMLIN, Measure Theory, Vol. 4, Topological Measure Spaces, Torres Fremlin Ed., Colchester, England, 2003.
[11] P. R. HALMOS, Measure Theory, Springer-Verlag New York Inc., 1974.
[12] M. KRACHOUNOV, Intuitionistic probability and intuitionistic fuzzy sets. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engeneering (E. El-Darzi, R. Atanassov, P. Chountas eds.), Univ. of Westminister, London, 2006, pp. 18-24.
[13] L. LIN - X. H. YUAN - Z. Q. XIA, Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets, J. Comput. System Sci. 73 (2007), pp. 84-88.
[14] W. A. J. LUXEMBURG - A. C. ZAANEN, Riesz Spaces I, North-Holland Publishing Co., Amsterdam, 1971.
[15] P. MAZUREKOVÁ - J. PETROVIĆOVÁ - B. RIEČAN, Product of M-measure preprint (2007).
[16] P. MAZUREKOVÁ - B. RIEČAN, A measure extension theorem. In: Notes on IFS, 12 (4) (2006), pp. 3-8.
[17] M. PANIGRAHI - S. NANDA, A comparison between intuitionistic fuzzy sets and generalized intuitionistic fuzzy sets, J. Fuzzy Math. 14 (2006), pp. 407-421.
[18] B. RIEČAN, A descriptive definition of the probability on intuitionistic fuzzy sets. In: EUSFLAT 2003, M. Wagenecht, R. Hampet eds., pp. 263-266 (2003).
[19] B. RIEČAN, Probability theory on IF-events. In: A volume in honor of Daniele Mundici's 60th birthday. Lecture Notes in Computer Sciences, Springer, Berlin, 2007.
[20] B. RIEČAN - T. NEUBRUNN, Integral, Measure and Ordering, Kluwer Academic Publishers/Ister Science, Bratislava, 1997.
[21] N. SHILKRET, Maxitive measure and integration, Indag. Math. 33 (1971), pp. 109-116.

[^0]: ISSN (electronic): 1449-5910
 (C) 2009 Austral Internet Publishing. All rights reserved

 This paper was supported by project SAS/CNR (Slovak Academy of Sciences/ Italian National Council of Researches) "Integration in abstract structures" 2007/09, grant VEGA 1/0539/08, grant APVV LPP-0046-06 and GNAMPA of CNR..

