The Burkill-Cesari Integral for Riesz spaces *
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SUNTO. Si definisce un integrale del tipo ”Burkill-Cesari” per funzioni d’insieme a valori in spazi di
Riesz Dedekind completi. Si introduce un concetto di quasi-additivita, simile a quello introdotto da L.
Cesari in [5]. Si provano alcuni teoremi analoghi a quelli classici, e si confronta l'integrale introdotto con

quello di Riemann e con quello monotono di cui in [1].

SUMMARY. A definition of ”Burkill-Cesari type integral” is given, for set functions, with values
in Dedekind complete Riesz spaces. A concept of quasi-additivity is introduced, similar to the one
introduced by L. Cesari in [5]. Some theorems analogous to the classical ones are proved. Moreover, we

give a comparison with the ”"Riemann-integral” and the monotone integral” defined in [1].

1 Introduction.

In 1962 ([5]), L. Cesari gave a definition of integral for set functions, with values in a vector
space of finite dimension (the Burkill-Cesari integral ) and introduced the concepts of quasi-
additivity and quasi-subadditivity. He proved that several classical integrals can be viewed as
particular cases of this integral. Subsequently, Warner ([11]) extended this integral to the case
of set functions with values in a locally convex topological vector space (Ictvs). Several authors
investigated this type of integration and its related topics: we mention here [9], [10], [3].

Recently, in [7] a theory of integration was developped for real-valued functions, with respect to
finitely additive measures, taking values in a Ictvs. Moreover, it was proved that this integral

can be interpreted as the Burkill-Cesari integral of a suitable set function. Furthermore, in [4]
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a ”"Riemann-Stieltjes”-type integral was investigated for Dedekind complete Riesz-space-valued
set functions.

In this paper, we introduce a ”Burkill-Cesari”-type integral for set functions, taking values in
a Dedekind complete Riesz space R, and a concept of quasi-additivity and quasi-subadditivity,
similar to the ones in [5]. Moreover, we prove some "main” theorems for this type of integral,
similar to the classical ones of Cesari ([5]) and Breckenridge ([3]). In particular we prove that, if
we introduce a "natural mesh” for a suitable class of intervals, then a bounded R-valued function
f, defined in [a, b], is ” (R)-integrable” (see [1]) if and only if the corresponding ” Mengoli-Cauchy”
interval function

n([avﬂ[) = f(Z)(ﬂ - a)v

where z is an arbitrary point of [« (], is quasi additive (and hence (BC')-integrable), and that
in this case the two involved integrals coincide.

In [1], we introduced a "monotone-type” integral for real-valued functions, defined on an arbi-
trary set X, and with respect to finitely additive R-valued means p.

In this paper, we shall prove that f is integrable (in the monotone sense) if and only if the

”Mengoli-Cauchy” interval function associated with the map
u(t) = p({r € X : f(x) > t}), t € Ry,

is quasi-additive, and therefore (BC)-integrable, and the two integrals coincide.

Our thanks to the referees for their helpful suggestions.

2 Preliminaries.

A Riesz space R is called Archimedean if the following property holds: for every choice of
a,b€ R, na <bforall n € IN, implies that a < 0.

A Riesz space R is said to be Dedekind complete [resp. o-Dedekind complete] if every nonempty
[countable| subset of R, bounded from above, has least upper bound in R. Every o-Dedekind

complete Riesz space is Archimedean.

Definition 2.1 A directed net (74)aez is said to be (o)-convergent to r, if

—li = inf = —liminf ro = inf
(0) imsup o = in 21211; rg = (0) minf ro = sup inf rg

and we will write (o) — lim, 74 = 7.



Definition 2.2 Given an element r € R, we define r* =rv 0, r~ = (-r)VO0, |[r|=rV(-r).
Definition 2.3 A directed net (r4), 1is said to be (0)-Cauchy if

(o) —limsup |rq —7g| =0
(cv,8)

(see also [8]).

Definition 2.4 Given a fixed element £ € =, we indicate with the symbol (0) — limsup,>¢ 7a
[resp. (0) —liminf,>¢ 4] the quantity

inf sup r sup inf 7rg.
a>§ [522 7 [azrg) Bza b ]

3 The Burkill-Cesari integral.

We now introduce a Burkill-Cesari-type integral for set functions, with values in a Dedekind

complete Riesz space R.

Definition 3.1 Let X be any nonempty set, A an arbitrary nonempty subset of P(X), R
a Dedekind complete Riesz space, D = {D} a directed net of collections of pairwise disjoint
subsets of X, belonging to A. Let n : A — R be a set function, and for all D € D, define
S(n,D) = > ;ep n(I). We say that n is Burkill-Cesari integrable ((BC)-integrable ) if there
exists in R the limit

(0) ~ lim S(n, D).
When this limit exists, we denote it by the symbol (BC) — [ 7.

It is easy to prove that, if , § € IR and n; and ny are (BC)-integrable, then « n1 + [ 72 is

/an1+ﬁn2=a/ 771+ﬁ/ n2 .
X X X

Definition 3.2 We say that n : A — R is quasi-additive if

(BC)-integrable too, and

(o) — lim (o) — limsup Z | Z n(J)—=n(I)] =0

DoeD D>Do  1epy JeD, JcI
and
0) — lim (o) — limsu J)| = 0.
( ) A ( ) DZDOp Z ’77( )’

JeD;JZI, ¥ I€Dy



The proof of the following proposition is straightforward.

Proposition 3.3 If 11, 1y are quasi-additive and «, [ are two arbitrary real numbers, then

a m + B n is quasi-additive.

It is easy to check that, if R = IR, and there exists a "mesh” § : D — IR", such that, for
every D1, Dy € D, [Dy > Ds] iff [6(D1) < 6(D2)], then Definition 3.2 is essentially equivalent
to the famous definition of quasi-additivity, proposed by Cesari in [5]:

Ve>0, 30 =o0(e) >0, such that, for every Dy € D with §(Dy) < o, there exists A(e, Dg) > 0
such that, for each D € D with §(D) < A, we have:

o> al) =) <e

IeDy JeD, JCI

and

> n(J)] <e.

JeD;JgI, ¥ IeDyg

The following result holds:
Theorem 3.4 If n is quasi-additive, then n is (BC)-integrable.

Proof: We observe that there exists (pp)p, pp | 0, such that, for all Dy, D1, Dy € D, with
D1 > Do, D2 > DO, one has:

(o) —limsup [S(n, D1) — S(n, D2)| = (0) — lim sup [S(n, D1) = S(n, D2)| <
(D1,D2) (D1,D32),D1>Dqg,D2>Dg
< (o) —limsup Y | Y n(J)—nI)|+ (o) —limsup > In(J)| +
Di2Do  1epy  JeDy,JcI Di2Do  jepy,jgI, v 1€Dg
+ (o)—limsup Y | > n(J)=n(I)|+ (o) —limsup > In(J)| < ppy-
D22Do  1epy  JeDs,JCI D22Do  jep,.igl, v 1€Dg

By arbitrariness of Dy € D, we get:

(0) —limsup [S(n, D1) — S(n, D2)| = 0.
(D1,D2)

So, the net {S(n, D)}pep is Cauchy, and hence it is convergent, by virtue of Dedekind com-
pleteness of R (see also [8]).

Definition 3.5 We say that 7 is quasi-subadditive if

(o) — lim (o) — limsup Z [ Z n(J) —n(l)]” =0.

Do€D D=Do  [cp, JeD,JCI



It is readily seen that, if «, 3 € JRar and 71, 72 are quasi-subadditive, then o 1 + 5 12 is

quasi-subadditive too: indeed, it is enough to recall that

(a+b)” <a +b7; (@a)” =aa ,
Va,b€ Rand a € R (see also [6]).
Theorem 3.6 Let n be positive, quasi-subadditive and such that

(o) —limsup S(n,D)
DeD
exists in R. Then, n is quasi-additive.

Proof: First of all, we prove (BC)-integrability of n. Let D > Dy € D. We have:

S, D) =8, Do) = Y W)= > n)=> 1 >  aJ)—a)]+ > n(J) =

JeD I€Dy IeDy JeD, JCI JeD;JgI, ¥ I€Dgy
> > 0> a0 =aMI==>"1 > a) =n)]” = —pp,,
IeDy JeD, JCI IeDy JeD, JCI

where pp, | 0 (indeed, a > —a™, V a € R), and hence
1 M > S(n,Dy) —pp, , ¥ Do€D,
where I (U = (o) — liminfpep S(n, D). From this, it follows that
(0) —limsup S(n, Do) <1 Y + (o) —limsup pp, =1 V.
Do€eD DoeD

So, there exists in R the quantity [ = (o) — limpep S(n, D), and thus 7 is (BC)-integrable.

Now we shall use the following equalities: |a| =a™+a~, a = a* —a~, and hence |a| = a+2 a".

Pick arbitrarily D, Dg € D, with D > Dy. We have:

0 < > 1> al) —a@)+ > n(J) =

IeDy JeD, JCI JeD; JZI, ¥V I€Dg

= > 0 > o) —a@l+2 > [ > ) —ad)] + > n(J) <
IeDy JeD, JCI IeDy JeD, JCI JeD; JZI, VY 1€Dy

< X D) =U+1Y0 @) —i+2 X [ > ) —aD]” <2pp, +24p,
JeD IeDg IeDy JeD, JCI

for some suitable nets (pp)p, (¢p)p in R, with pp | 0, gp | 0. Taking the (0) — lim sup, we get:

0< (o) ~limsup > [ > n(J) —n(l), (o) —limsup > In(J)| <

D=Do  1ep, JeD, JcI D>2Do  jep. j¢I, Vv I€Dg



<(o)—limsup > | > n(J) —n(l)|+ (o) limsup > In(J)| <

D=Do  1ep, JeD, JcI D>Do  jep. j¢I,V I€Dg

<2 pp, +2qp,-

Thus, it follows that 7 is quasi-additive, that is the assertion. O

Definition 3.7 Given a set function n: A — R, define n*, n~, |n|: A — R as follows:
n" (1) = (D], n~ (1) = ()], lI) = In(D)] .,V I € A.
Theorem 3.8 If n is quasi-additive, then n*, n~ and |n| are quasi-subadditive.

The proof is analogous to the one given in [5].

Definition 3.9 Under the same notations as above, let M C X, and define S(n,M,D) =
Yorep s, M) n(I), where:
LifIcM
s(I,M) =
0,if I ¢ M.
We say that n is Burkill-Cesari integrable ((BC)-integrable ) on M if there exists in R the limit

(0) — lim S(n, M, D).

When this limit exists, we denote it by the symbols (BC) — [y [, M] or (BC)— [, 1 -
The set function n : A — R is quasi-additive on M if

(o) — lim (o) — limsup Z (I, M) In(I)— Z s(J, 1) n(I)|=0

DoED
0€ D2Do  1ep, JebD

and

(o) = lim_ (o) — limsup Z Z s(J,I) s(I,M)]|n(J)] =0

DOGD D>Do  jep IeDy

We say that n is quasi-subadditive on M if

(0) — lim (o) — limsup Z Z s(S,I)n(J)—n(I)]” =0.

DoeD D2Do  jep, JeD

It is easy to check that, if n is quasi-subadditive, then it is quasi-subadditive on each set

M e A.



Theorem 3.10 If n is quasi additive, and [ |n| exists in R, then n is quasi additive on every
set M € A.

Proof: Let M € A. By Theorem 3.8, |n|, nt, n~ are positive and quasi subadditive, and so
they are quasi subadditive on M. So,

o< [t [ <[ <[
M M M X

exist in R, and hence |n|, n*, n~ are quasi-additive on M, by reasoning as in Theorem 3.6.

Thus, n = n* — 1~ is quasi-additive on M, that is the assertion. O

4 Integrals of Riesz-space-valued functions with respect to real-

valued measures

Now we compare the introduced Burkill-Cesari-type integral with other integrals, existing in the
literature.

Let R be a Dedekind complete Riesz space, u : [a,b] — R be a bounded map. In [1], we defined a
Riemann - type integral, which can be defined equivalently as a ” Mengoli-Cauchy” type integral.

Definition 4.1 Given an interval [a, b] C IR, we call division of [a,b] any finite set {zo, x1,..., x5} C
[a,b], where zg = a, z, = b, and x; < zj41, Vi = 0,...,n. We denote by D the class of all
divisions of [a, b].

We call mesh of a division D the quantity §(D) = max; (x; — 1), and say that D; > Ds if
d(D1) < 0(D3).

A division D is identified with the collection of intervals [z;_1,z;|, where

o, B B #D
[, B| =
0. 8] B =b.

We now recall some definitions of integral given in [1].

Definition 4.2 Let R be a Dedekind complete Riesz space, and  : [a,b] — R a bounded map.
We say that a map ¢ : [a,b] — R is a step function with respect to D if there exist n + 1
points g = a < 1 < ... < x, = b, such that g is constant in each interval of the type |x;_1, x;]
(i=1,...,n). If g is a step function, we put f; g(t) dt =37 (zi —xi—1) - 9(&) where & is

an arbitrary point of |z;_1, x;[.



We call upper integral [resp. lower integral | of u the element of R given by

inf ' v(t) dt [sup /b s(t) dt],

veEVY Jq SES
where
V., = {v:visastep function , v(t) > u(t), V1t € [a,b]}
Sy = {s:sisastep function , s(t) <wu(t), Vt € [a,b]}.

We say that a bounded function u : [a,b] — R is Riemann integrable (or (R)-integrable), if its
lower integral coincides with its upper integral, and, in this case, we call integral of u (and write

/! ; u(t) dt) their common value, and we indicate it by

(R) — / ") dt.

Definition 4.3 Let [a,b] C IR, R be as above, and u : [a,b] — R be a map. We say that u is
Mengoli-Cauchy integrable ( (MC)-integrable ) if there exists an element I € R such that

0) — lim |Z —zi—1)—I| =0,

DED
uniformly with respect to z; € [x;—1,2;] (i =1,...,n), and we write (MC) — fa{’ u(t) dt = 1.

Every Mengoli-Cauchy integrable function is bounded. The following results hold (see also [2]):

Theorem 4.4 Let u : [a,b] — R be Mengoli-Cauchy integrable. Then, u is bounded and Rie-

mann integrable, and

b b
(R) — / u(t) dt = (MC) — / u(t) dt.

Theorem 4.5 Let u : [a,b] — R be Riemann integrable. Then, u is Mengoli-Cauchy integrable,

and

(MC) — / " ut) di = (R) - / ") d.

Definition 4.6 A map v : [a,b] — R is called continuous at the point xo € [a, b] if

(0) — lim wu(x) = u(zo).

T—x0
A function u : [a,b] — R is said to be differentiable at x¢ if

. u(x) — u(xo)
()= i =

exists in R.



Remark 4.7 We note that there exist Riemann integrable functions u : [a,b] — R, which are
discontinuous at every x €|a, b|.
Indeed, let [a,b] =[0,1], R = RO u(s) = Xjo,s, V 8 € [0,1]. For each x €]0, 1[, we have:

lim u(t) = X0, Hm u(t) = xpa]

t—azxt t—x—
and hence

. . . 1
limsup wu(t) — h?i};lf u(t) = X2y £ 9

t—x

S
However, u is Riemann integrable. Put I(s) = (R) — / u(t) dt. It is easy to check that
0

0 ifx>s
I(s)(z) =

s—x ifzx<s

with V s,z € [0, 1], and that the "right derivative” of I(s) is u(s), ¥ s € [0,1].
Moreover, it is easy to prove that, if u : [a,b] — R is an (R)-integrable function, then the map
I(s)=(R) — / u(t) dt is differentiable at the points s for which w is continuous, and in such

points I'(s) = u(s).

Now, let A be the collection of all subintervals of [a, b] of the type [« 5|, and set n([a, B]) = u(2) (8 — «),
where z is an arbitrary point of [, 3]. Obviously, a bounded function u € RI%! is (MC)-
integrable if and only if n is (BC)-integrable.

We now prove the following:
Theorem 4.8 If u is (R)-integrable, then n is quasi-additive.

Proof: Without loss of generality, we may assume that u is positive. Indeed, if u is (R)-
integrable, then u' and u™ are (R)-integrable too.

As w is bounded, (0) — limsuppcp S(n, D) exists in R. So, it will be enough to show that 7 is
quasi-subadditive, in view of Theorem 3.6.

Let Do = {[ci—1,¢| :i=1,...,N=1}, D ={[zj_1,25]: j=1,...,n},wherecp =a < ¢1 <... < ecny_1 = b,
ro=a<z1<...<xp=0> (D) <Dyp). Moreover, set

M= sup wu(x); M;= sup  u(z),
z€[a,b] z€[ci—1, ¢
m; = inf  wu(x).

x€[ci—1, ¢l



By virtue of (R)-integrability of u, we have:

SN Y ) =nd) < D> (Mi—mi)(ci—cim) + M > (zj—zj1) <

IeDy JeD, JCI IeDyg JeD, JgI, ¥ I€Dy

for some suitable directed net (pp)p, pp | 0. (We note that N = N(Dy) depends on Dy.) So,
0< (o) =limsup > | >  n(J)=n()] <pp, + inf N(Do)d(D)M =pp,,
DzDo  1ep, JeD, JcI DzDo

and hence

(0) — lim (o) — limsup Z | Z n(J) —n(I)]=0. O
DoeP DzDo  1ep, JeD,JcI

Next, we show that quasi-additivity can be applied in a different problem.

Definition 4.9 A map ¢ : [a,b] — R is said to be of bounded variation if the set
{>_lag(D)|: D € D}
IeD
is bounded in R, where
qq([u,v]) = g(v) — g(u).
In this case, we set

V(g.[a,b]) = sup{)_ lay(I)| : D € D}.
IeD

The following result holds.

Theorem 4.10 If g : [a,b] — R is of bounded variation and continuous in [a,b], then the

function |qqg| is quasi-additive.

Proof: We observe that, in order to prove Theorem 4.10, it is enough to prove quasi-subadditivity
of |gg4|. Indeed, quasi-additivity will follow from Theorem 3.6.

Fix Dy € D, Dy = {[¢i-1,¢| : ¢ = 1,...,N — 1}. By the continuity of g at the points
¢i, 1 =1,..., N — 1, there exists a sequence (p,(¢;))n, pn | 0, such that

lgg([w,v])] < pp,whenever a <u<e¢ <v<b 0<v—u<

S -
<
I
\.H
3

10



Let De D, D ={[zj_1,zj|:j=1,...,k}. with 6(D) <

1
€ Do\ E, then § —a < —). For

— 3|~

Put £E = {I € Dy : 3 j,z; € I} (Note that if [o, [

3

I; = [ci—1, ¢i| € E, define d; = min{x; : ; > ¢;—1} and e; = max{z; : ; < ¢;}. Then

Yo > a(DI=lagg(D) = > (lag(ldis el = lag(T) + > = lgg(Li)] >

IeDy JeD,JCI I,eE I,€Do\E

>3 —(lg(d) = glei)l +lges) = glell] + D (=palc))

LEeE L,EDO\E
So,V Dy € D,

(o) =limsup > [ > |ag(J)| = lag(D)]” =0.

D2Do  1ep, JebD,JjcI

Thus, |g4| is quasi-subadditive. O

We note that ff lgg| = V (g, [a,b]) (see also [4]).
Now, we recall the integral for extended real-valued functions, with respect to R-valued means,

defined in [1].

Definition 4.11 Let X be any set, B C P(X) be an algebra, R be a Dedekind complete Riesz
space, p : B — R be a finitely additive positive set function; assume that f : X — ]Rj is a
measurable function, and u(t) = p({z € X : f(x) > t}). We say that f is integrable if there
exists in R the quantity

(4.11.1) / £) dt = sup,-g /Oau(t) dt = (0) — limg_. o0 /Oau(t) dt

where the integral in (4.11.1) is intended as in Definition 4.2. If f is integrable, we indicate the
element in (4.11.1) by the symbol / [ du.
X

A measurable function f: X — IR is integrable if both f*, f~ are integrable and, in this case,

[ gan= [ rran= [ rdn.

Remark 4.12 It is easy to check that, if f : X — IR is integrable (in the monotone sense),

we set

then
/ f dp =sup Z w(x;)(x; — xi-1) mf Z w(xi—1)(x; — wi—1),
X D =

where D is the class of all finite subsets of [0, +oo[ of the type {zo = 0,z1,...,2,}, n € IN, by

virtue of (decreasing) monotonicity of w.

11



Now, let A = {[a,b]: a,b € RS, a < b}; n(I) = u(zi1) (; —2i1), 6(D) = max"" (x; —x;1) + =

Zn’
V D € D. By proceeding analogously as in the previous case, and by virtue of the properties of

the function u, one can prove that a nonnegative function f € IR is integrable (in the monotone

sense) if and only if 7 is quasi-additive, and the (BC)-integral of 7 coincides with [y f dp.
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