Choreographies Enactment Via Smart Contracts

Andrea Morichetta, Andrea Polini, Barbara Re, Francesco Tiezzi

DLT 2019 - Pisa
February 12, 2019
Modelling Choreographies

BPMN standard is the prominent modelling language to describe **decentralised inter-organisational systems** from the business perspective.

- **Choreography models**, define the **sequence of exchanging messages** between two (or more) **independent participants or processes** by describing how they should **cooperate to reach a shared goal**
 - **Reusability**, the **same choreography** definition is usable by **different participants** operating in **different contexts** (industry, locale, etc) with different software (e.g. application software) and different message formats and standards.
 - **Information Driven**, choreographies maintain their state by recording **mutations caused by exchanges of information** and their reactions between participants.
 - **Heterogeneity**, choreographies can be used in different contexts and at different layers of abstraction.
BPMN 2.0 Choreography

Choreography Elements

- Start Event
- End Event
- Sequence Flow
- Exclusive Gateway
- Parallel Gateway
- Event-Based Gateway

Message name

Initiator
Recipient

Task Name (One-Way)

I want to see the Doctor
Doctor Request
Dr. Office

I feel sick
Handle Symptoms
Dr. Office

I need my medicine
Handle Medicine
Dr. Office

Go see the Doctor
Pickup your medicine, then leave
Here is your medicine

Message name

Initiator
Recipient

Task Name (Two-Way)
Main Objective

Problem:

Choreographies have **not been widely adopted** yet in the industry, mainly due to the **lack of a concrete implementation relying on a decentralized system that can guarantee trust between parties**

Solution:

The aim of our work is to **provide a framework** for the **deployment and enactment** of BPMN choreographies using the **blockchain technology and smart contracts**

The main benefits of our solution are:

- to execute choreographies involving **untrusted parties in a decentralized and autonomous way**
- to **enforce the correct behaviour of each participant** in compliance with the choreography model
- a **completely transparent process** for the final user, it is not required any **blockchain knowledge** since both the deployment and the execution are managed using the framework user interface
Proposed Framework
Proposed Framework

Modeling Tool

Choreographies Repository

Modeler

Publishing
Proposed Framework

Modeling Tool → Publishing → Choreographies Repository → Choreography Discovery
Proposed Framework

Role A

Role B

Modeler

Modeling Tool

Choreographies Repository

Choreography Discovery

New Instance

Existing Instances

Instance ID:1

Instance ID:2
Proposed Framework

Modeling Tool

Choreographies Repository

Choreography Discovery

Publishing

Instance ID:2

Instance ID:1

Role A

Role B

Contract Generation

Solidity Contract

Modeler

New Instance

Existing Instances

Instance ID:1

Instance ID:2

Role A

Role B

Role B

Contract Generation

Solidity Contract
Proposed Framework

Modeling Tool → Publishing → Choreographies Repository → Choreography Discovery

Modeler

New Instance

Instance ID:1

Role A
Role B

Existing Instances

Instance ID:2

Role A
Role B

Contract Generation

Deploy

Solidity Contract

0xca35b7d915458ef54e2f44e8fa733c
Proposed Framework

Modeling Tool

Choreographies Repository

Publishing

Choreography Discovery

New Instance

Instance ID: 1

Instance ID: 2

Modeler

Role A

Role B

Contract Generation

Deploy

0xca35b7d915458ef54e2f44e8fa733c

Role A

Role B

Role A

Role B

Role A

Role B

Soliddity Contract
Feasibility of the Approach

```solidity
contract Choreography{
    enum State {DISABLED, ENABLED, DONE} State s;

    struct Element { string ID; State status; }

    struct StateMemory { string [] product_list }

    Element [] chorElements;
    StateMemory currentMemory;

    mapping ( string => uint ) position;

    string [] elementsID = ["sid-b014d0d4", ..."sid-ECB8C20"];

    mapping ( string => address ) roles;
    string [] roleList = [ "Seller", "Buyer" ];
}
```

```
function QUOTATION_Request(string [] product_list)
    public
    checkRole(roleList[1]) {
        require(chorElements[position["sid-b014d0d4"]).status==State.ENABLED);
        currentMemory.product_list=product_list;
        ...
        done("sid-b014d0d4");
        enable("sid-ECB8C20");
        next_parallelGateway();
    }
```
Concluding Remarks

The proposed framework aims at:

- **facilitating the enactment of choreographies** in a secure and trustable environment
- **eliminating third parties governing authorities** for ensuring the respect of the agreements/laws
- guaranteeing the **integrity and the immutability of data**
- bringing together **supply and demand** between unknown parties
- **facilitating to non-domain experts** the deployment and execution of choreographies into a complex platform like blockchain
Thank you!

Andrea Morichetta
andrea.morichetta@unicam.it

PROS Lab - http://pros.unicam.it

Computer Science Department - https://computerscience.unicam.it

University of Camerino - http://www.unicam.it