Blockchain for Public Administrations

Part I: Bitcoin and beyond

Massimo Bartoletti

University of Cagliari
blockchain.unica.it
Plan of the tutorial

1. The archetypal blockchain: Bitcoin
2. Bitcoin problems
3. Post-Bitcoin blockchains
4. Blockchain for Public Administrations
 (Prof. Andrea Vitaletti, Univ. Roma “La Sapienza”)
The archetypal blockchain: Bitcoin
Payments with banks

Bank is a **trusted authority** (can drop transactions, steal money, ...)

Despite the centralization, **anonymous** payments are possible:

D. Chaum. Blind signatures for untraceable payments. CRYPTO, 1982

+ many other works on cryptography in the 1990s

Basic **cryptography**:
- asymmetric ciphers (1977)
- digital signatures
- secure channels

Basic cryptography:
- asymmetric ciphers (1977)
- digital signatures
- secure channels
Payments without banks: a naïve attempt

Alice

I want to transfer 1 coin to Bob

Bob

\[x, \sigma \]

\[x = \text{“send 1 coin to Bob”} \]

\[\sigma = \text{sig}_{\text{Alice}}(x) \]

By verifying the signature \(\sigma \), Bob can be sure about the authenticity of the message \(x \): it’s Alice who signed it!

What is the problem?
Payments without banks: a naïve attempt

Alice

Bob

x, σ

$x = \text{“send 1 coin to Bob”}$

x

$x_2 = \text{copy}(x)$

Now I own 2 coins

Problem

If Bob is dishonest, he can forge coins!
Payments without banks: using a public ledger

I want to transfer 1 coin to Bob

The **transaction** T_0 certifies that Alice owns 1 coin.

This coin can be transferred to another transaction, that provides a witness satisfying the predicate $\text{out}(x)$
Payments without banks: using a public ledger

Alice

Bob

Bob cannot forge coins! He can only transfer his coin

Cryptographic hash of the predecessor

T0

in: -

wit: -

out(x): \text{ver}_{\text{Alice}}(x)

val: 1 coin

T1

in: T0

wit: \text{sig}_{\text{Alice}}(T1)

out(x): \text{ver}_{\text{Bob}}(x)

val: 1 coin

Now I own 1 coin
The Bitcoin blockchain

Blockchain = sequence of transactions (grouped into blocks)

Alice → Bob

1 BTC ~ 3000 EUR

(February 2019)
The Bitcoin blockchain

Blockchain = sequence of transactions (grouped into blocks)

The blockchain is:
- **permissionless**: anyone can add transactions
- **public**: anyone can read it (and compute the balance of each user)

What is the problem?

1 BTC ~ 3000 EUR (February 2019)
The Bitcoin blockchain

Problem #1 who owns the blockchain?

❌ central authority
✅ a peer-to-peer network (nodes do not trust each other)

Problem #2 how is the blockchain updated?

❌ remove / edit existing transactions
✅ only append transactions

Problem #3 how can we guarantee consistency?
Blockchain consistency
Blockchain consistency

Mallory → Bob : 1 BTC

Mallory → Bob : 1 BTC

Mallory → Bob : 1 BTC
Blockchain consistency

Mallory → Bob: 1 BTC
Consistency “by majority”

Mallory → Bob : 1 BTC

D
33.3%

H
66.7%
Consistency “by majority”: Sybil attacks!

Mallory → Bob: 1 BTC

Creating nodes is cheap!
Consistency by “proof-of-work”
Consistency by “proof-of-work”

Miners can freely set r bits within T_2.

The protocol fixes a constant c (difficulty).
Consistency by "proof-of-work"

Proof-of-work:
T2 can be appended only if $\text{hash}(T2) < c$

~10’ to find suitable r
Consistency by “proof-of-work”

The miner who solves the puzzle wins some coins (and the transaction fees)
Beyond currency transfers: embedding metadata

Transactions can store 80 bytes of arbitrary data:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>in: ...</td>
<td></td>
</tr>
<tr>
<td>wit: ...</td>
<td></td>
</tr>
<tr>
<td>out(x): OP_RETURN <80 bytes></td>
<td></td>
</tr>
<tr>
<td>val: 0 BTC</td>
<td></td>
</tr>
</tbody>
</table>

T can be appended to the blockchain, but its output can *not* be spent by *any* transaction.
Beyond currency transfers: embedding metadata

June 20, 2018 12:20 AM

Dear blockchain, please let me quit smoking.

June 1, 2018 3:28 PM

ciao mamma

Source: https://eternitywall.it/
Beyond currency transfers: embedding metadata

Select a document and have it certified in the Bitcoin blockchain

Click here or drag and drop your document in the box. The file will NOT be uploaded. The cryptographic proof is calculated client-side.

Congratulations!

This document's digest was successfully embedded in the Bitcoin blockchain. It is now permanently certified and proven to exist since the transaction was confirmed.

Transaction b37d3533e55c4d54075dc7e71d698c8196fd55b77a94d0a06e4d515606cb53b1

Source: https://proofofexistence.com
Beyond currency transfers: embedding metadata

TRANSACTION INFORMATION

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Amount</th>
<th>Asset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1HwgN6KkWj5CUq6...</td>
<td>0.0003</td>
<td>BTC</td>
</tr>
<tr>
<td>3.86031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1HwgN6KkWj5CUq6...</td>
<td>0.0043</td>
<td>BTC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Amount</th>
<th>Asset</th>
</tr>
</thead>
<tbody>
<tr>
<td>18B6kkLRAMbJdTN...</td>
<td>0.0003</td>
<td>BTC</td>
</tr>
<tr>
<td>3.86031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>0</td>
<td>BTC</td>
</tr>
<tr>
<td>1HwgN6KkWj5CUq6...</td>
<td>0.0003</td>
<td>BTC</td>
</tr>
</tbody>
</table>

Source: http://coloredcoins.org/explorer/
Beyond currency transfers: smart contracts

Bitcoin contracts are cryptographic protocols to transfer BTC. The consensus protocol of the blockchain guarantees their secure execution.
Beyond currency transfers: smart contracts

- Oracles (feeds of external data to the blockchain)
- Escrow and arbitration
- Crowdfunding
- Micropayments channels ("Lighting network")
- Lotteries & other gambling games (Poker, ...)
- ...

More complex contracts are possible using off-chain cryptographic protocols (ZK proofs)
Bitcoin problems

a non-exhaustive list
Issue #1: too much anonymity

I want to transfer 1 BTC to myself, anonymously

<table>
<thead>
<tr>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>in: ...</td>
</tr>
<tr>
<td>wit: ...</td>
</tr>
<tr>
<td>out(x): $\text{ver}_{\text{carl}}(x)$</td>
</tr>
<tr>
<td>val: 1 BTC</td>
</tr>
</tbody>
</table>
Issue #1: too much anonymity

Who am I?
... just a key pair
$K = (K_s, K_p)$

<table>
<thead>
<tr>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>in: ...</td>
</tr>
<tr>
<td>wit: ...</td>
</tr>
<tr>
<td>out(x): $\text{ver}_{K_p}(x)$</td>
</tr>
<tr>
<td>val: 1 BTC</td>
</tr>
</tbody>
</table>
Issue #1: too much anonymity

I generate a fresh key pair $K' = (K's, K'p)$

<table>
<thead>
<tr>
<th>T</th>
<th>T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>in: -</td>
<td>in: T</td>
</tr>
<tr>
<td>wit: -</td>
<td>wit: $\text{sig}_Kp(T')$</td>
</tr>
<tr>
<td>out(x): $\text{ver}_Kp(x)$</td>
<td>out(x): $\text{ver}_{K'p}(x)$</td>
</tr>
<tr>
<td>val: 1 BTC</td>
<td>val: 1 BTC</td>
</tr>
</tbody>
</table>

Bitcoin address = pseudonym = hash of public key
Issue #1: too much anonymity

“Killer” criminal applications: Ponzi schemes, money laundering, crypto-lockers, …
Issue #2: not enough anonymity (criminals’ point of view)

Address clustering techniques try to group addresses controlled by the same entity.

Multi-input heuristics: inputs of T are controlled by the same entity.
Issue #3: unpredictable transaction fees

- Fees depend on Bitcoin market
- dApps built upon Bitcoin must take fees (and their variability) into account
Issue #4: forks

Two miners may solve the puzzle almost simultaneously
Issue #4: forks

The **longest** chain always wins
Issue #5: low throughput & high latency

A new block is added to the blockchain every 10 minutes.

The price of removing a block B from the blockchain grows exponentially in the number of blocks appended after B.

Usually, a transaction is considered confirmed if it has been published in a block with at least 5 subsequent blocks.

\[
\text{latency} = \sim 60 \text{ m}
\]

Each block contains ~ 2000 transactions.

\[
\text{throughput} = \sim 3 \text{ tx/s} \quad \text{(VISA: ~ 2700 tx/s)}
\]
Issue #6: speculation

Main use case of Bitcoin: **speculative investment**

This has several drawbacks:

1. Fees may grow with speculation
2. Governance issues ⇒ resilience to innovation
3. Bitcoin may cease to exist when the bubble pops
4. ...
Issue #7: limited expressiveness of smart contracts

1. Bitcoin allows for simple (yet useful) smart contracts

2. Successful Ethereum contracts tend to be complex:
 a. Decentralized exchanges (Idex, Forkdelta, Bancor, …)
 b. Pseudo-Ponzi games (CryptoKitties, PowH3D, Fomo3D,…)
 c. …

3. A few extensions of the scripting language would be enough to enhance expressiveness of contracts

4. Little hope that proposals for extensions will be accepted!
Issue #8: centralization (!)
Issue #9: energy consumption / pollution

1. Singapore: ~48 TWh per year (~ BTC)
2. Italy: ~300 TWh per year
3. World: ~17K TWh per year (BTC ~ 0.3% world)

Source: https://digiconomist.net/bitcoin-energy-consumption
Issue #10: immutability (!)

Since Bitcoin transactions can embed arbitrary data, they can also contain **illegal** data (Matzutt et al., FC 18):

1. Child pornography
2. Blasphemous material
3. Non GDPR-compliant data
4. ...

It is **impossible** to remove illegal data once they are on the blockchain!
Post-Bitcoin blockchains
Different applications require different blockchains

1. Who can write? (anyone, predefined set of nodes, …)
2. Who can read? (anyone, restricted set of nodes)
3. Consensus (PoW, PoS, BFT, …)
4. Latency / throughput
5. Privacy
6. Expressiveness of the scripting language
7. Transaction fees
Bitcoin

1. Who can write? anyone ⇒ permissionless
2. Who can read? anyone ⇒ public
3. Consensus: PoW
4. Latency / throughput: high / low
5. Privacy: pseudonymity
6. Expressiveness of scripting: low
7. Transaction fees: high
Zcash

1. Who can write?
2. Who can read?
3. Consensus
4. Latency / throughput
5. Privacy: anonymity
6. Expressiveness of scripting: low
7. Transaction fees: high

same as Bitcoin (piggy-back on the Bitcoin blockchain)
Ethereum

1. Who can write? anyone ⇒ permissionless
2. Who can read? anyone ⇒ public
3. Consensus: PoW (switching to Proof-of-Stake?)
4. Latency / throughput: high / low (but better than BTC)
5. Privacy: pseudonymity
6. Expressiveness of scripting: ~ Turing-complete
7. Transaction fees: high
HyperLedger Fabric

1. Who can write? predefined nodes ⇒ permissioned
2. Who can read? custom ⇒ public / private
3. Consensus: custom (PBFT)
4. Latency / throughput: low / high
5. Privacy: none (all writers are known)
6. Expressiveness of scripting: Turing-complete
7. Transaction fees: 0 (no cryptocurrency)
1. Who can write? anyone \(\Rightarrow \) permissionless
2. Who can read? anyone \(\Rightarrow \) public
3. Consensus: Proof-of-Stake (NO FORKS)
4. Latency / throughput: low / high
5. Privacy: pseudonymity
6. Expressiveness of scripting: ??
7. Transaction fees: 0??
Do you really need a blockchain?

What can be done with a blockchain that cannot be done with a centralized database?

NOTHING

it’s all a matter of TRUST

blockchains = trust the crowd, not the single
Thank you

Blockchain Summer School @ Pula (CA), 10-14 June 2019
(max 30 students, free, funded by Sardegna Ricerche)

Gruppo di lavoro CINI su DLT: http://dltgroup.dmi.unipg.it/