# Giornate di Algebra Lineare Numerica e Applicazioni

#### ELABORAZIONE DIGITALE DI IMMAGINI A COLORI

Ivan Gerace, Francesca Martinelli e Alfredo Milani

Perugia, 17 febbraio 2009

Dipartimento di Matematica e Informatica Università degli Studi di Perugia



Ivan Gerace (Università di Perugia)

Immagini Digitali a Colori

#### LA LUCE

La luce è una forma di energia raggiante che si propaga nell'aria e nel vuoto sotto forma di onda elettromagnetica.

#### LA LUCE

La luce è una forma di energia raggiante che si propaga nell'aria e nel vuoto sotto forma di onda elettromagnetica.

Esistono diversi tipi di onde elettromagnetiche (onde radio, raggi infrarossi, ultravioletti, ecc...) ma la luce si diversifica da queste per il fatto di essere percepita dall'occhio umano.

Ma cosa c'è di fisicamente diverso tra le radiazioni visibili e tutte le altre?



#### LA LUCE

La luce è una forma di energia raggiante che si propaga nell'aria e nel vuoto sotto forma di onda elettromagnetica.

Esistono diversi tipi di onde elettromagnetiche (onde radio, raggi infrarossi, ultravioletti, ecc...) ma la luce si diversifica da queste per il fatto di essere percepita dall'occhio umano.

Ma cosa c'è di fisicamente diverso tra le radiazioni visibili e tutte le altre? La lunghezza d'onda.



# I COLORI



L'occhio umano è sensibile ad una porzione assai piccola dell'intero spettro delle onde elettromagnetiche (tra i 380 e i 760 nm).

Ands



# I COLORI



L'occhio umano è sensibile ad una porzione assai piccola dell'intero spettro delle onde elettromagnetiche (tra i 380 e i 760 nm).

Quando ci si limita a tale regione, ogni variazione di lunghezza d'onda al nostro occhio appare come una variazione di colore.

Ivan Gerace (Università di Perugia)

Immagini Digitali a Colori

## LA RIFRAZIONE

La luce bianca contiene contemporaneamente tutte le lunghezze d'onda che il nostro occhio può vedere. Quando passa attraverso un prisma si scinde in tutte le sue componenti cromatiche.



## LA **R**IFRAZIONE

La luce bianca contiene contemporaneamente tutte le lunghezze d'onda che il nostro occhio può vedere. Quando passa attraverso un prisma si scinde in tutte le sue componenti cromatiche.

Ogni colore subisce una deviazione della propria direzione propagazione pro porzionale alla sua lunghezza d'onda.

#### PERCEZIONE DEI COLORI

Le cellule nervose che nell'occhio permettono la percezione della luce sono dette coni (per la visione in condizioni di forte esposizione alla luce) e bastoncelli (per la visione in condizioni di bassa esposizione alla luce).

#### PERCEZIONE DEI COLORI

Le cellule nervose che nell'occhio permettono la percezione della luce sono dette coni (per la visione in condizioni di forte esposizione alla luce) e bastoncelli (per la visione in condizioni di bassa esposizione alla luce).

Esistono tre tipi di coni:

- il primo è più sensibile al rosso;
- il secondo è più sensibile al verde;
- il terzo è più sensibile al blu.

# SINTESI ADDITIVA

Sintesi additiva

La percezione dei colori è data da una sintesi additiva di rosso, verde e blu.



# SINTESI ADDITIVA

Sintesi additiva

La percezione dei colori è data da una sintesi additiva di rosso, verde e blu.

Esperimenti di David Wright and John Guild:



## SPAZIO RGB



Le tre coordinate di colore possono essere disposte su tre assi ottenendo così un modello tridimensionale. L'insieme dei colori rappresentabili è detto gamut.



# SPAZIO RGB



Le tre coordinate di colore possono essere disposte su tre assi ottenendo così un modello tridimensionale. L'insieme dei colori rappresentabili è detto gamut.





Ivan Gerace (Università di Perugia)

#### Spazio XYZ

#### Esperimenti della CIE (Commission International d'Eclairage):



Funzione di accoppiamento dei colori



#### SPAZIO XYZ

#### Esperimenti della CIE (Commission International d'Eclairage):









Il colore di un oggetto è frutto invece di una sintesi sottrattiva: ogni oggetto assorbe determinate lunghezze d'onda della luce e ne riflette delle altre.

Il colore di un oggetto è frutto invece di una sintesi sottrattiva: ogni oggetto assorbe determinate lunghezze d'onda della luce e ne riflette delle altre.

La mela ci appare gialla perchè la sua buccia assorbe la radiazione blu e riflette quella rossa e quella verde.

bianco - blu = rosso + verde = giallo

Il colore di un oggetto è frutto invece di una sintesi sottrattiva: ogni oggetto assorbe determinate lunghezze d'onda della luce e ne riflette delle altre.

La mela ci appare rossa perchè la sua buccia assorbe la radiazione blu e la radiazione verde e riflette quella rossa.



## UNIFORMITÀ DI UN SPAZIO DI COLORE

Un spazio di colore è detto uniforme se colori vicini corrispondono a colori simili all'occhio umano.

# UNIFORMITÀ DI UN SPAZIO DI COLORE

Un spazio di colore è detto uniforme se colori vicini corrispondono a colori simili all'occhio umano.



# UNIFORMITÀ DI UN SPAZIO DI COLORE

Un spazio di colore è detto uniforme se colori vicini corrispondono a colori simili all'occhio umano.



Una sensazione cromatica può essere descritta anche senza utilizzare una somma o una sottrazione di colori primari.

Una sensazione cromatica può essere descritta anche senza utilizzare una somma o una sottrazione di colori primari.

Ogni colore è caratterizzato infatti da due fattori principali:

 luminanza: esprime l'intensità della luce e caratterizza quindi la brillantezza dell'immagine;



Una sensazione cromatica può essere descritta anche senza utilizzare una somma o una sottrazione di colori primari.

Ogni colore è caratterizzato infatti da due fattori principali:

 luminanza: esprime l'intensità della luce e caratterizza quindi la brillantezza dell'immagine;

#### 2 crominanza:

• tinta: indica un colore puro, cioè caratterizzato da una singola lunghezza d'onda;



Una sensazione cromatica può essere descritta anche senza utilizzare una somma o una sottrazione di colori primari.

Ogni colore è caratterizzato infatti da due fattori principali:

 luminanza: esprime l'intensità della luce e caratterizza quindi la brillantezza dell'immagine;

#### 2 crominanza:

- tinta: indica un colore puro, cioè caratterizzato da una singola lunghezza d'onda;
- saturazione: indica la quantità di tinta rispetto al grigio acromatico.



#### Spazio L\*a\*b



### MODELLIZZAZIONE DI IMMAGINI A COLORI

un immagine a colori dove  $\mathbf{x}^{(r)}, \mathbf{x}^{(g)}, \mathbf{x}^{(b)} \in \mathbb{R}^{n \cdot m}$  sono rispettivamente il canale rosso, verde e blu in notazione lessicografica.

 $oldsymbol{x} = \left(egin{array}{c} oldsymbol{x}^{(\prime)} \ oldsymbol{x}^{(g)} \ oldsymbol{x}^{(b)} \end{array}
ight) \in \mathbb{R}^{3n \cdot m},$ 



Sia

La distorsione di una immagine a colori può essere così modellizzata



dove

La distorsione di una immagine a colori può essere così modellizzata

y = Ax + n,

dove

 $\boldsymbol{x} \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;



La distorsione di una immagine a colori può essere così modellizzata

y = Ax + n,

dove

 $\boldsymbol{x} \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;

 $n \in \mathbb{R}^{3n \cdot m}$  è il rumore su ogni componente che viene assunto essere Gaussiano, bianco indipendente con media nulla e varianza data  $\sigma^2$ ;



La distorsione di una immagine a colori può essere così modellizzata

y = Ax + n,

#### dove

- $x \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;
- $n \in \mathbb{R}^{3n \cdot m}$  è il rumore su ogni componente che viene assunto essere Gaussiano, bianco indipendente con media nulla e varianza data  $\sigma^2$ ;
- $\mathbf{y} \in \mathbb{R}^{3n \cdot m}$  l'immagine mosaicata;



La distorsione di una immagine a colori può essere così modellizzata

y = Ax + n,

#### dove

- $x \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;
- $n \in \mathbb{R}^{3n \cdot m}$  è il rumore su ogni componente che viene assunto essere Gaussiano, bianco indipendente con media nulla e varianza data  $\sigma^2$ ;
- $\mathbf{y} \in \mathbb{R}^{3n \cdot m}$  l'immagine mosaicata;
- $A \in \mathbb{R}^{(3n \cdot m) \times (3n \cdot m)}$  è un operatore lineare che è strutturato come segue:



Ands

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix}$$

dove  $A_{i,j} \in \mathbb{R}^{(n \cdot m) \times (n \cdot m)}$ , con i, j = 1, 2, 3, sono matrici di sfocatura.


$$A = \left(egin{array}{cccc} A_{1,1} & A_{1,2} & A_{1,3} \ A_{2,1} & A_{2,2} & A_{2,3} \ A_{3,1} & A_{3,2} & A_{3,3} \end{array}
ight)$$

dove  $A_{i,j} \in \mathbb{R}^{(n \cdot m) \times (n \cdot m)}$ , con i, j = 1, 2, 3, sono matrici di sfocatura.



Immagine ideale



$$A = \left(\begin{array}{ccc} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{array}\right)$$

dove  $A_{i,j} \in \mathbb{R}^{(n \cdot m) \times (n \cdot m)}$ , con i, j = 1, 2, 3, sono matrici di sfocatura.



**Immagine distorta** 



$$A = \left(\begin{array}{ccc} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{array}\right)$$

dove  $A_{i,j} \in \mathbb{R}^{(n \cdot m) \times (n \cdot m)}$ , con i, j = 1, 2, 3, sono matrici di sfocatura.





$$A = \begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix}$$

dove  $A_{i,j} \in \mathbb{R}^{(n \cdot m) \times (n \cdot m)}$ , con i, j = 1, 2, 3, sono matrici di sfocatura.





# Restauro di Immagini a Colori

#### SOLUZIONE REGOLARIZZATA

La soluzione del problema inverso viene definita come l'argomento del minimo della seguente funzione energia duale

$$E_d(oldsymbol{x}) = \|Aoldsymbol{x} - oldsymbol{y}\|_2^2 + \lambda_k^2 \sum_{c \in C_k} g^{(i)}\left(N_c^k oldsymbol{x}
ight),$$

dove k = 1, 2, 3

# Restauro di Immagini a Colori

#### SOLUZIONE REGOLARIZZATA

La soluzione del problema inverso viene definita come l'argomento del minimo della seguente funzione energia duale

$$E_d(\boldsymbol{x}) = \|A\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \lambda_k^2 \sum_{c \in C_k} g^{(i)} \left(N_c^k \boldsymbol{x}\right),$$

dove k = 1, 2, 3 e

$$N_c^k \boldsymbol{x} = \left\| \begin{pmatrix} D_c^k \boldsymbol{x}^{(r)} & D_c^k \boldsymbol{x}^{(g)} & D_c^k \boldsymbol{x}^{(g)} \end{pmatrix}^T \right\|_2$$

#### Primo ordine:



Immagine osservata

#### Primo ordine:



Immagine ricostruita

#### Primo ordine:



Immagine osservata

Ivan Gerace (Università di Perugia)

#### Primo ordine:



Immagine ricostruita



#### Primo ordine:



Immagine osservata



#### Primo ordine:



Immagine ricostruita



#### Secondo ordine:



Immagine osservata



#### Secondo ordine:



Immagine ricostruita



Ivan Gerace (Università di Perugia)

#### Secondo ordine:



Immagine osservata



#### Secondo ordine:



Immagine ricostruita

# STIMA DEI PARAMETRI

#### Si stimano $(\lambda, \kappa)$ tali che:

I'immagine ricostruita sia planare a tratti e senza tripli bordi;



# STIMA DEI PARAMETRI

#### Si stimano $(\lambda, \kappa)$ tali che:

l'immagine ricostruita sia planare a tratti e senza tripli bordi;
 il rumore stimato abbia una varianza pari ad una valore σ<sup>2</sup> fissato.





| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106  |
|----|----|----|----|-----|-----|-----|------|
| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106. |
| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102 | 104 | 106  |
|    |    |    |    |     | . H |     |      |

 $\tau = 10$ 

 $|D_c^2 \mathbf{x}| = 45 > \tau,$ 

and s



A.

| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106  |
|----|----|----|----|-----|------|-----|------|
| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106. |
| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106  |
| 50 | 51 | 52 | 53 | 100 | 102  | 104 | 106  |
|    |    |    |    |     | . 11 |     |      |

 $\tau = 10$ 

 $\begin{array}{rcl} |D_c^2 \pmb{x}| &=& 45 > \tau, \\ |D_{c-1}^2 \pmb{x}| &=& 46 > \tau, \end{array}$ 



ANIX DAVE

| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106  |
|----|----|----|-----|-----|----------|-----|------|
| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106  |
| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106  |
| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106. |
| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106  |
| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106  |
| 50 | 51 | 52 | 53  | 100 | 102      | 104 | 106  |
|    |    |    |     |     |          |     |      |
|    |    |    | 1 7 |     | 1.9 ILS. |     |      |

 $\begin{array}{ll} |D_c^2 \pmb{x}| &=& 45 > \tau, \\ |D_{c-1}^2 \pmb{x}| &=& 46 > \tau, \\ |D_{c+1}^2 \pmb{x}| &=& 0 < \tau. \end{array}$ 



| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106  |
|----|----|----|-----|--------|--------------|-----|------|
| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106  |
| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106  |
| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106. |
| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106  |
| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106  |
| 50 | 51 | 52 | 53  | 100    | 102          | 104 | 106  |
|    |    |    |     |        |              |     |      |
|    |    |    | 1 7 | r = 10 | 1. 🖗 . LEB., |     |      |

Taking '

 $\begin{array}{ll} |D_c^2 \mathbf{x}| &=& 45 > \tau, \\ |D_{c-1}^2 \mathbf{x}| &=& 46 > \tau, \\ |D_{c+1}^2 \mathbf{x}| &=& 0 < \tau. \end{array}$ 

L'immagine presenta doppi bordi ma non tripli bordi.

Immagini Digitali a Colori



Ivan Gerace (Università di Perugia)

| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
|----|----|----|----|-----|-----|-----|------|
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120. |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
|    |    |    |    |     |     |     |      |

 $\tau = 10$ 

 $|D_c^2 \mathbf{x}| = 100 > \tau,$ 

Adr



| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
|----|----|----|----|-----|-----|-----|------|
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120. |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
|    |    |    |    |     |     |     |      |

 $\tau = 10$ 

 $\begin{array}{lll} |D_c^2 \pmb{x}| &=& 100 > \tau, \\ |D_{c-1}^2 \pmb{x}| &=& 70 > \tau, \end{array}$ 



With These

| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
|----|----|----|----|-----|-----|-----|------|
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120. |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120 | 120 | 120  |
|    |    |    |    |     |     |     |      |

au = 10

 $\begin{aligned} |D_c^2 \mathbf{x}| &= 100 > \tau, \\ |D_{c-1}^2 \mathbf{x}| &= 70 > \tau, \\ |D_{c+1}^2 \mathbf{x}| &= 20 > \tau. \end{aligned}$ 



| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120  |
|----|----|----|----|-----|-------|-----|------|
| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120. |
| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120  |
| 50 | 50 | 50 | 80 | 100 | 120   | 120 | 120  |
|    |    |    |    |     | 1.1.1 |     |      |

 $\tau = 10$ 

 $\begin{array}{ll} |D_c^2 \mathbf{x}| &=& 100 > \tau, \\ |D_{c-1}^2 \mathbf{x}| &=& 70 > \tau, \\ |D_{c+1}^2 \mathbf{x}| &=& 20 > \tau. \end{array}$ 

L'immagine presenta tripli bordi.

## ACQUISIONE TRAMITE FOTOCAMERE DIGITALI

Nelle maggior parte delle fotocamere digitali attualmente in commercio, l'acquisizione del colore avviene del seguente modo:



## ACQUISIONE TRAMITE FOTOCAMERE DIGITALI

Nelle maggior parte delle fotocamere digitali attualmente in commercio, l'acquisizione del colore avviene del seguente modo: esiste un fotodiodo per pixel, davanti ad ognuno di essi viene posizionato un filtro colorato.



## PATTERN DI BAYER

#### La griglia di filtri più comunemente usata è quella proposta da Bayer:

| R  | 0  | G01         | R02         | Gos | R <sub>04</sub> | G05 | Ros         |
|----|----|-------------|-------------|-----|-----------------|-----|-------------|
| G  | 0  |             | <b>G</b> 12 |     | G14             |     | G16         |
| R2 | 0  | <b>G</b> 21 | R22         | G23 | <b>R</b> 24     | G25 | <b>R</b> 26 |
| G  | 10 |             | G32         |     | G34             |     | G36         |
| R₄ | 0  | G41         | <b>R</b> 42 | G43 | <b>R</b> 44     | G45 | <b>R</b> 46 |
| G  | 10 |             | G52         |     | G54             |     | G56         |
| Re | 0  | G61         | <b>R</b> 62 | G63 | <b>R</b> 64     | G65 | <b>R66</b>  |







Ivan Gerace (Università di Perugia)



Ivan Gerace (Università di Perugia)

Perugia, 17 febbraio 2009 28/52



Ivan Gerace (Università di Perugia)

Perugia, 17 febbraio 2009 29/52

Il processo di mosaicizzazione di una immagine può essere così modellizzato

 $\mathbf{y} = M \ (\mathbf{x} + \mathbf{n}),$ 




#### MOSAICIZZAZIONE

Il processo di mosaicizzazione di una immagine può essere così modellizzato

y = M (x + n),

#### dove

 $\boldsymbol{x} \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;



Il processo di mosaicizzazione di una immagine può essere così modellizzato

 $\mathbf{y}=M\ (\mathbf{x}+\mathbf{n}),$ 

dove

 $\boldsymbol{x} \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;

 $n \in \mathbb{R}^{3n \cdot m}$  è il rumore su ogni componente che viene assunto essere Gaussiano, bianco indipendente con media nulla e varianza data  $\sigma^2$ ;



Il processo di mosaicizzazione di una immagine può essere così modellizzato

 $\boldsymbol{y}=\boldsymbol{M}\;(\boldsymbol{x}+\boldsymbol{n}),$ 

dove

 $\boldsymbol{x} \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;

 $n \in \mathbb{R}^{3n \cdot m}$  è il rumore su ogni componente che viene assunto essere Gaussiano, bianco indipendente con media nulla e varianza data  $\sigma^2$ ;

 $y \in \mathbb{R}^{3n \cdot m}$  l'immagine mosaicizzata;



Il processo di mosaicizzazione di una immagine può essere così modellizzato

$$y = M (x + n),$$

dove

- $x \in \mathbb{R}^{3n \cdot m}$  è l'immagine a colori ideale;
- $n \in \mathbb{R}^{3n \cdot m}$  è il rumore su ogni componente che viene assunto essere Gaussiano, bianco indipendente con media nulla e varianza data  $\sigma^2$ ;
- $y \in \mathbb{R}^{3n \cdot m}$  l'immagine mosaicizzata;
- $M \in \mathbb{R}^{(3n \cdot m) \times (3n \cdot m)}$  è un operatore lineare che è strutturato come segue:



And S

## MOSAICIZZAZIONE

$$M = \begin{pmatrix} M^{(r)} & O & O \\ O & M^{(g)} & O \\ O & O & M^{(b)} \end{pmatrix}$$

•

dove  $O \in \mathbb{R}^{(n \cdot m) \times (n \cdot m)}$  è la matrice nulla,  $M^{(r)}$ ,  $M^{(g)}$  e  $M^{(b)}$  sono matrici diagonali con

$$m_{(i,j)(i,j)}^{(r)} = \begin{cases} 1 & i \equiv_2 j \equiv_2 0 \\ 0 & \text{altrimenti,} \end{cases}$$
$$m_{(i,j)(i,j)}^{(g)} = \begin{cases} 1 & i \neq_2 j \\ 0 & \text{altrimenti,} \end{cases}$$
$$m_{(i,j)(i,j)}^{(b)} = \begin{cases} 1 & i \equiv_2 j \equiv_2 1 \\ 0 & \text{altrimenti.} \end{cases}$$



#### DEMOSAICIZZAZIONE

L'operazione di interpolazione dei valori mancanti viene chiamata demosaicizzazione.



# FILTRO BILINEARE



# FILTRO BILINEARE



# FILTRO BILINEARE



Ivan Gerace (Università di Perugia)

Bahadir K. Gunturk, Yucel Altunbasak e Russell M. Mersereau (2002) utilizzano filtri bidimensionali costruiti a partire da un filtro passa-basso,  $h_0 = (1 \ 2 \ 1)^T/4$ , e un filtro passa-alto,  $h_1 = (1 \ -2 \ 1)^T/4$ , per scomporre una immagine nelle seguenti sottobande:

Bahadir K. Gunturk, Yucel Altunbasak e Russell M. Mersereau (2002) utilizzano filtri bidimensionali costruiti a partire da un filtro passa-basso,  $h_0 = (1 \ 2 \ 1)^T/4$ , e un filtro passa-alto,  $h_1 = (1 \ -2 \ 1)^T/4$ , per scomporre una immagine nelle seguenti sottobande:

•  $F^{(1)}x$ , le righe sono filtrate mediate un filtro passa-basso mentre le colonne sono filtrate passa-alto;



Bahadir K. Gunturk, Yucel Altunbasak e Russell M. Mersereau (2002) utilizzano filtri bidimensionali costruiti a partire da un filtro passa-basso,  $h_0 = (1 \ 2 \ 1)^T/4$ , e un filtro passa-alto,  $h_1 = (1 \ -2 \ 1)^T/4$ , per scomporre una immagine nelle seguenti sottobande:

- $F^{(1)}x$ , le righe sono filtrate mediate un filtro passa-basso mentre le colonne sono filtrate passa-alto;
- $F^{(2)}x$ , le righe sono filtrate mediate un filtro passa-alto mentre le colonne sono filtrate passa-basso;



Bahadir K. Gunturk, Yucel Altunbasak e Russell M. Mersereau (2002) utilizzano filtri bidimensionali costruiti a partire da un filtro passa-basso,  $h_0 = (1 \ 2 \ 1)^T/4$ , e un filtro passa-alto,  $h_1 = (1 \ -2 \ 1)^T/4$ , per scomporre una immagine nelle seguenti sottobande:

- $F^{(1)}x$ , le righe sono filtrate mediate un filtro passa-basso mentre le colonne sono filtrate passa-alto;
- **2**  $F^{(2)}x$ , le righe sono filtrate mediate un filtro passa-alto mentre le colonne sono filtrate passa-basso;
- $F^{(3)}x$ , sia righe che colonne sono filtrate mediate un filtro passa-alto.



Gunturk et al. utilizzano due tipi vincoli:

- uno relativo ai dati osservati,
- I'altro basato sulla conoscenza della correlazione intercanale.



Siano  $\Lambda^{(r)}$ ,  $\Lambda^{(g)}$  e  $\Lambda^{(b)}$  gli insiemi delle coordinate dove sono campionati rispettivamente i canali rosso, verde e blu.

Siano  $\Lambda^{(r)}$ ,  $\Lambda^{(g)}$  e  $\Lambda^{(b)}$  gli insiemi delle coordinate dove sono campionati rispettivamente i canali rosso, verde e blu.

L'insieme delle immagini che rispetta il vincolo della consistenza con i dati è dato da

$$V_c = \{x : x^{(s)}(i,j) = y^{(s)}(i,j) \quad \forall (i,j) \in \Lambda^{(s)}, s = r, g, b\}.$$



L'insieme delle immagini che rispetta i vincoli di dettaglio è dato da

 $V_d = \left\{ x : |(F^{(k)} \boldsymbol{x}^{(s)})(i,j) - (F^{(k)} \boldsymbol{x}^{(g)})(i,j)| \le \tau \,\forall (i,j) \, \text{per} \, k = 1, 2, 3 \, \text{e} \, s = r, b \right\}$ 

dove  $\tau$  è la soglia positiva.



L'insieme delle immagini che rispetta i vincoli di dettaglio è dato da

$$V_d = \left\{ x : |(F^{(k)} \mathbf{x}^{(s)})(i,j) - (F^{(k)} \mathbf{x}^{(g)})(i,j)| \le \tau \,\forall (i,j) \text{ per } k = 1, 2, 3 \text{ e } s = r, b \right\}$$

dove  $\tau$  è la soglia positiva.

#### ALGORITMO

L'algoritmo delle proiezioni alternate è dato dalla proiezione alternata della stima x nei due insiemi  $V_c$  e  $V_d$  fino a convergenza della soluzione.



## Metodi dei Minimi Quadrati Totali

Kiego Hirakawa e Thomas W. Parks (2006) propongono di determinare un filtro che si tale che utilizzato per determinare dei dati esistenti dia il risultato corretto.

## Metodi dei Minimi Quadrati Totali

Kiego Hirakawa e Thomas W. Parks (2006) propongono di determinare un filtro che si tale che utilizzato per determinare dei dati esistenti dia il risultato corretto.

Questo può essere fatto tramite un metodo dei minimi quadrati dove i vettori di base sono composti da sottocampionamenti dei dati  $\{y_1, \ldots, y_m\}$ .



## Metodi dei Minimi Quadrati Totali

Kiego Hirakawa e Thomas W. Parks (2006) propongono di determinare un filtro che si tale che utilizzato per determinare dei dati esistenti dia il risultato corretto.

Questo può essere fatto tramite un metodo dei minimi quadrati dove i vettori di base sono composti da sottocampionamenti dei dati  $\{y_1, \ldots, y_m\}$ .

Hirakwa e Parks propongono invece di utilizzare un metodo dei minimi quadrati totali capace di gestire errori presenti anche sui vettori di base.



Julien Mairal, Micheal Elad e Guillermo Sapiro (2008) propongono di utilizzare un metodo a rappresentazione sparsa della soluzione.



Julien Mairal, Micheal Elad e Guillermo Sapiro (2008) propongono di utilizzare un metodo a rappresentazione sparsa della soluzione.

In particolare la soluzione viene definita come il minimo della seguente funzione energia

 $E_{s}(\mathbf{x}, \mathbf{v}, D) = \|M(\mathbf{x} - \mathbf{y})\| + \sum_{i,j} \lambda_{i,j}^{2} \|\mathbf{v}_{i,j}\|_{0} + \sum_{i,j} \lambda_{0}^{2} \|D\mathbf{v}_{i,j} - R_{i,j}\mathbf{x}\|_{2}^{2},$ 



Julien Mairal, Micheal Elad e Guillermo Sapiro (2008) propongono di utilizzare un metodo a rappresentazione sparsa della soluzione.

In particolare la soluzione viene definita come il minimo della seguente funzione energia

 $E_{s}(\mathbf{x}, \mathbf{v}, D) = \|M(\mathbf{x} - \mathbf{y})\| + \sum_{i,j} \lambda_{i,j}^{2} \|\mathbf{v}_{i,j}\|_{0} + \sum_{i,j} \lambda_{0}^{2} \|D\mathbf{v}_{i,j} - R_{i,j}\mathbf{x}\|_{2}^{2},$ 

dove  $D \in \mathbb{R}^{3t \times h}$  è il dizionario;



Julien Mairal, Micheal Elad e Guillermo Sapiro (2008) propongono di utilizzare un metodo a rappresentazione sparsa della soluzione.

In particolare la soluzione viene definita come il minimo della seguente funzione energia

$$E_{s}(\mathbf{x}, \mathbf{v}, D) = \|M(\mathbf{x} - \mathbf{y})\| + \sum_{i,j} \lambda_{i,j}^{2} \|\mathbf{v}_{i,j}\|_{0} + \sum_{i,j} \lambda_{0}^{2} \|D\mathbf{v}_{i,j} - R_{i,j}\mathbf{x}\|_{2}^{2},$$

dove  $D \in \mathbb{R}^{3t \times h}$  è il dizionario;  $v_{i,j} \in \mathbb{R}^h$  sono i coefficienti lineari della rappresentazione della sottoimmagine che inizia dal pixel (i, j);



Julien Mairal, Micheal Elad e Guillermo Sapiro (2008) propongono di utilizzare un metodo a rappresentazione sparsa della soluzione.

In particolare la soluzione viene definita come il minimo della seguente funzione energia

$$E_{s}(\mathbf{x}, \mathbf{v}, D) = \|M(\mathbf{x} - \mathbf{y})\| + \sum_{i,j} \lambda_{i,j}^{2} \|\mathbf{v}_{i,j}\|_{0} + \sum_{i,j} \lambda_{0}^{2} \|D\mathbf{v}_{i,j} - R_{i,j}\mathbf{x}\|_{2}^{2},$$

dove  $D \in \mathbb{R}^{3t \times h}$  è il dizionario;  $v_{i,j} \in \mathbb{R}^h$  sono i coefficienti lineari della rappresentazione della sottoimmagine che inizia dal pixel (i,j);  $R_{i,j} \in \{0,1\}^{3t \times 3(n \cdot m)}$  è l'operatore di proiezione nella sottoimmagine che inizia

i Perugia, 17 febbraio 2009

dal pixel (i, j).

# VINCOLO SULLE DERIVATE



# VINCOLO SULLE DERIVATE



# VINCOLO SULLE DERIVATE

#### Operatore usato

$$V_c^k \boldsymbol{x} = \left\| \begin{pmatrix} D_c^k \boldsymbol{x}^{(r)} - D_c^k \boldsymbol{x}^{(g)} & D_c^k \boldsymbol{x}^{(r)} - D_c^k \boldsymbol{x}^{(b)} & D_c^k \boldsymbol{x}^{(g)} - D_c^k \boldsymbol{x}^{(b)} \end{pmatrix}^T \right\|$$

AND'S

## METODO PROPOSTO

Viene minimizzata la seguente funzione energia

$$E_d(\mathbf{x}) = \|M(\mathbf{x} - \mathbf{y})\|_2^2 + \sum_{k=1}^{J} \lambda_k^2 \sum_{c \in C_k} g^{(i)} \left(N_c^k \mathbf{x}\right) + \sum_{k=1}^{J} \bar{\lambda}_k^2 \sum_{c \in C_k} g^{(i)} \left(V_c^k \mathbf{x}\right).$$

## Algoritmo GNC

L'uso di algoritmo Graduated Non-Convex (GNC) prevede la costruzione di una famiglia di funzioni energia  $\{E_d^{(p)}\}_{p=2,...,\bar{p}}$ .



## ALGORITMO GNC

L'uso di algoritmo Graduated Non-Convex (GNC) prevede la costruzione di una famiglia di funzioni energia  $\{E_d^{(p)}\}_{p=2,...,\bar{p}}$ .

La funzione energia  $E_d^{(0)}$  corrisponde all'uso di variabili di linea booleane.

# A a A a

Una scelta  $\bar{p} > 0$  permette avere un effetto di anti-aliasing sulle discontinuità.










#### INSIEME CAMPIONE DELLA KODAK



#### INSIEME CAMPIONE DELLA KODAK



Ivan Gerace (Università di Perugia)

#### IMMAGINE REALE



#### RISULTATO



# Risultato con rumore ( $\sigma = 8$ )



# Risultato con rumore ( $\sigma = 16$ )





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Immagine | Bilineare  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01       | 157.106018 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
| Darris and Diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02       | 30.685131  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03       | 23.592515  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04       | 28.136531  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          | Y / 4 4 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05       | 145.381528 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06       | 110.227843 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07       | 31.228872  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08       | 286.249229 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09       | 37.85389   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 37.739314  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11       | 77.673620  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100        |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12       | 32.62827   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
| 1446 944 944 MIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13       | 261.113462 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14       | 77.388559  | and the second s |            |               | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |               |
| State last mat 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15       | 44.393178  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16       | 47.682909  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17       | 40.551081  | and the second s | THIS BOARD |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18       | 102.702519 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | THIT                                     | 3764          |
| Contraction of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19       | 101.627409 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          | A B           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       | 44.685173  | A SAN AND A SAN A SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |               |                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21       | 91.405136  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 0             | S AN                                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       | 58.038699  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                                          | ALECIA        |
| and the second s | 23       | 21.313678  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                          | 10 2 3 1 2 B  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24       | 139.0826   | And In The Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | with a series | 100                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | CAL Prove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | T. P. M.      | and the second second                    | Charles Child |

э

(ロ)、(型)、(型)、(型)

|            | Immagine | Bilineare  | Gunturk |       |
|------------|----------|------------|---------|-------|
|            | 01       | 157,106018 | 11.0390 |       |
|            | 02       | 30.685131  | 7.8127  |       |
|            | 03       | 23.592515  | 4.6355  |       |
|            | 04       | 28.136531  | 6.5894  |       |
|            | 05       | 145.381528 | 11.4887 |       |
|            | 06       | 110.227843 | 10.6874 |       |
|            | 07       | 31.228872  | 4.5422  |       |
|            | 08       | 286.249229 | 19.9887 |       |
|            | 09       | 37.85389   | 4.3044  |       |
|            | 10       | 37.739314  | 4.3415  |       |
|            | 11       | 77.673620  | 7.5903  |       |
|            | 12       | 32.62827   | 4.7973  |       |
| 1 1 2 3 2  | 13       | 261.113462 | 24.3807 |       |
|            | 14       | 77.388559  | 16.4151 | 1 111 |
| 1. 1344.35 | 15       | 44.393178  | 8.7229  |       |
|            | 16       | 47.682909  | 4.2336  |       |
|            | 17       | 40.551081  | 4.8974  |       |
|            | 18       | 102,702519 | 13.2394 |       |
|            | 19       | 101.627409 | 6.8327  | 1277  |
|            | 20       | 44.685173  | 5.7976  | THE P |
|            | 21       | 91.405136  | 8.3682  |       |
|            | 22       | 58.038699  | 10.3306 | WW    |
|            | 23       | 21.313678  | 4.0680  |       |
|            | 24       | 139.0826   | 22.8398 | Adr   |
|            |          |            |         |       |



Ivan Gerace (Università di Perugia)

| Immagine | Immagine Bilineare |         | Hirakawa               |  |
|----------|--------------------|---------|------------------------|--|
| 01       | 157.106018         | 11.0390 | 11644                  |  |
| 02       | 30.685131          | 7.8127  | 14482                  |  |
| 03       | 23.592515          | 4.6355  | 158.0610               |  |
| 04       | 28.136531          | 6.5894  | 34.5066                |  |
| 05       | 145.381528         | 11.4887 | 3344.4                 |  |
| 06       | 110.227843         | 10.6874 | 66.3163                |  |
| 07       | 31.228872          | 4.5422  | 18.6491                |  |
| 08       | 286.249229         | 19.9887 | 461.5054               |  |
| 09       | 37.85389           | 4.3044  | 23.8019                |  |
| 10       | 37.739314          | 4.3415  | 35.1371                |  |
| 11       | 77.673620          | 7.5903  | 74.0938                |  |
| 12       | 32.62827           | 4.7973  | 60.2488                |  |
| 13       | 261.113462         | 24.3807 | 101.3877               |  |
| 14       | 77.388559          | 16.4151 | 51.7379                |  |
| 15       | 44.393178          | 8.7229  | $1.3699 \cdot 10^{22}$ |  |
| 16       | 47.682909          | 4.2336  | 38.2178                |  |
| 17       | 40.551081          | 4.8974  | 20.1011                |  |
| 18       | 102.702519         | 13.2394 | 48.6763                |  |
| 19       | 101.627409         | 6.8327  | 40.9361                |  |
| 20       | 44.685173          | 5.7976  | 999.0677               |  |
| 21       | 91.405136          | 8.3682  | 70.2223                |  |
| 22       | 58.038699          | 10.3306 | 7989.6                 |  |
| 23       | 21.313678          | 4.0680  | 11.0043                |  |
| 24       | 139.0826           | 22.8398 | 45.3241                |  |



Ivan Gerace (Università di Perugia)

|    | Immagine | Bilineare  | Gunturk | Hirakawa               | Mairal  |
|----|----------|------------|---------|------------------------|---------|
|    | 01       | 157.106018 | 11.0390 | 11644                  | 7.5176  |
|    | 02       | 30.685131  | 7.8127  | 14482                  | 5.5218  |
|    | 03       | 23.592515  | 4.6355  | 158.0610               | 3.1195  |
|    | 04       | 28.136531  | 6.5894  | 34.5066                | 4.8315  |
|    | 05       | 145.381528 | 11.4887 | 3344.4                 | 8.7716  |
|    | 06       | 110.227843 | 10.6874 | 66.3163                | 6.4281  |
|    | 07       | 31.228872  | 4.5422  | 18.6491                | 3.38    |
|    | 08       | 286.249229 | 19.9887 | 461.5054               | 14.82   |
|    | 09       | 37.85389   | 4.3044  | 23.8019                | 3.0555  |
|    | 10       | 37.739314  | 4.3415  | 35.1371                | 3.4920  |
|    | 11       | 77.673620  | 7.5903  | 74.0938                | 6.1813  |
|    | 12       | 32.62827   | 4.7973  | 60.2488                | 2.8846  |
|    | 13       | 261.113462 | 24.3807 | 101.3877               | 19.2345 |
|    | 14       | 77.388559  | 16.4151 | 51.7379                | 10.4251 |
|    | 15       | 44.393178  | 8.7229  | $1.3699 \cdot 10^{22}$ | 6.1956  |
|    | 16       | 47.682909  | 4.2336  | 38.2178                | 2.8254  |
|    | 17       | 40.551081  | 4.8974  | 20.1011                | 4.0934  |
|    | 18       | 102.702519 | 13.2394 | 48.6763                | 11.6434 |
|    | 19       | 101.627409 | 6.8327  | 40.9361                | 4.8538  |
|    | 20       | 44.685173  | 5.7976  | 999.0677               | 5.1651  |
|    | 21       | 91.405136  | 8.3682  | 70.2223                | 6.9037  |
| 24 | 22       | 58.038699  | 10.3306 | 7989.6                 | 8.4349  |
|    | 23       | 21.313678  | 4.0680  | 11.0043                | 3.7332  |
|    | 24       | 139.0826   | 22.8398 | 45.3241                | 17.7861 |



Ivan Gerace (Università di Perugia)

Perugia, 17 febbraio 2009 49 / 52

|        | Immagine | Bilineare  | Gunturk | Hirakawa               | Mairal  | Regolarizzazione |
|--------|----------|------------|---------|------------------------|---------|------------------|
|        | 01       | 157 106018 | 11.0390 | 11644                  | 7 5176  | 5.4548           |
|        | 02       | 30.685131  | 7.8127  | 14482                  | 5.5218  | 5.2138           |
|        | 03       | 23.592515  | 4.6355  | 158.0610               | 3.1195  | 2.9665           |
|        | 04       | 28.136531  | 6.5894  | 34,5066                | 4.8315  | 4.1597           |
|        | 05       | 145.381528 | 11.4887 | 3344.4                 | 8.7716  | 8.1094           |
| 111.3  | 06       | 110.227843 | 10.6874 | 66.3163                | 6.4281  | 6.0692           |
|        | 07       | 31.228872  | 4.5422  | 18.6491                | 3.38    | 2.7626           |
|        | 08       | 286.249229 | 19.9887 | 461.5054               | 14.82   | 12.059           |
|        | 09       | 37.85389   | 4.3044  | 23.8019                | 3.0555  | 2.9818           |
|        | 10       | 37.739314  | 4.3415  | 35.1371                | 3.4920  | 3.4105           |
|        | 11       | 77.673620  | 7.5903  | 74.0938                | 6.1813  | 5.6544           |
|        | 12       | 32.62827   | 4.7973  | 60.2488                | 2.8846  | 2.3051           |
|        | 13       | 261.113462 | 24.3807 | 101.3877               | 19.2345 | 15.0997          |
|        | 14       | 77.388559  | 16.4151 | 51.7379                | 10.4251 | 9.4770           |
| 111.33 | 15       | 44.393178  | 8.7229  | $1.3699 \cdot 10^{22}$ | 6.1956  | 5.8636           |
|        | 16       | 47.682909  | 4.2336  | 38.2178                | 2.8254  | 2.6824           |
|        | 17       | 40.551081  | 4.8974  | 20.1011                | 4.0934  | 4.4585           |
|        | 18       | 102.702519 | 13.2394 | 48.6763                | 11.6434 | 11.4875          |
| (E))   | 19       | 101.627409 | 6.8327  | 40.9361                | 4.8538  | 4.9374           |
|        | 20       | 44.685173  | 5.7976  | 999.0677               | 5.1651  | 4.4028           |
| 1 1 1  | 21       | 91.405136  | 8.3682  | 70.2223                | 6.9037  | 6.0699           |
|        | 22       | 58.038699  | 10.3306 | 7989.6                 | 8.4349  | 9.0257           |
|        | 23       | 21.313678  | 4.0680  | 11.0043                | 3.7332  | 2.5948           |
|        | 24       | 139.0826   | 22.8398 | 45.3241                | 17.7861 | 21.1364          |



49 / 52

#### Risultati Sperimentali con rumore $\sigma=8$

|          | Immagine | Bilineare | Gunturk  | Hirakawa | Regolarizzazione |
|----------|----------|-----------|----------|----------|------------------|
|          | 01       | 192.0752  | 70.1323  | 1900.2   | 56.4352          |
|          | 02       | 65.8024   | 66.3323  | 97.2100  | 30.1425          |
|          | 03       | 58.8424   | 62.5676  | 79.1727  | 24.5673          |
|          | 04       | 63.0044   | 65.1244  | 92.5160  | 28.9303          |
|          | 05       | 175.2133  | 69.136   | 133.6806 | 49.3065          |
|          | 06       | 146.8450  | 66.6520  | 111.0670 | 45.4179          |
|          | 07       | 65.5241   | 62.9707  | 93.7552  | 24.4626          |
|          | 08       | 315.2942  | 77.3570  | 424.2114 | 59.8981          |
|          | 09       | 72.7290   | 63.1827  | 84.1960  | 25.9646          |
|          | 10       | 72.5008   | 62.8351  | 85.2882  | 26.2809          |
|          | 11       | 112.7873  | 65.9030  | 105.6042 | 38.5765          |
|          | 12       | 67.7498   | 61.8407  | 83.0594  | 26.5836          |
|          | 13       | 301.3486  | 81.2425  | 180.0687 | 76.0216          |
|          | 14       | 111.8682  | 75.0172  | 122,9026 | 53.0372          |
|          | 15       | 77.8791   | 62.8039  | 89.9631  | 29.8338          |
|          | 16       | 84.5402   | 63.5739  | 88.0577  | 33.3221          |
|          | 17       | 75.2069   | 61.8072  | 87.5196  | 27.6590          |
|          | 18       | 137,7670  | 70.2534  | 119.6165 | 46.5700          |
|          | 19       | 135.6519  | 65.6939  | 118,9659 | 37.2511          |
|          | 20       | 75.2994   | 52.8946  | 71.1301  | 28.4170          |
| 1955     | 21       | 127.6865  | 66.6655  | 114,1499 | 38,9636          |
| dial and | 22       | 92.8301   | 69.1720  | 108.6866 | 40.0437          |
|          | 23       | 55.6508   | 62.18887 | 74.9557  | 20.4881          |
|          | 24       | 51,2720   | 59,2745  | 65,7436  | 35,7430          |



#### Risultati Sperimentali con rumore $\sigma = 16$

| Immagine | Bilineare | Gunturk  | Hirakawa | Regolarizzazione |
|----------|-----------|----------|----------|------------------|
| 01       | 298.8264  | 244.7998 | 378.1123 | 133.032329       |
| 02       | 168.7641  | 230.5891 | 287.1973 | 84.434205        |
| 03       | 164.2436  | 232.2068 | 268.4808 | 85.083996        |
| 04       | 169.3755  | 237.0157 | 291.9594 | 84.095716        |
| 05       | 278.9205  | 235.0724 | 337.6051 | 118.961080       |
| 06       | 253.6741  | 235.8739 | 319.4615 | 115.236951       |
| 07       | 171.6520  | 234.5919 | 292.6410 | 81.698239        |
| 08       | 420.8498  | 248.5575 | 393.8394 | 152.198485       |
| 09       | 180.2516  | 238.3319 | 280.1942 | 84.759654        |
| 10       | 179.7413  | 237.1296 | 337.6051 | 83.891951        |
| 11       | 216.0796  | 233.2751 | 305.8112 | 100.336501       |
| 12       | 175.6196  | 234.1371 | 275.9865 | 83.076485        |
| 13       | 407.6366  | 251.5452 | 411.0613 | 164.666885       |
| 14       | 217.0885  | 244.5391 | 329.1412 | 110.555375       |
| 15       | 177.4617  | 216.0313 | 262.7383 | 82.726121        |
| 16       | 191.3162  | 238.3198 | 294.8009 | 94.495262        |
| 17       | 174.9292  | 221.4700 | 271.4415 | 81.050326        |
| 18       | 241.9690  | 236.6171 | 324.9663 | 110.712711       |
| 19       | 241.6391  | 238.6308 | 330.8231 | 103.511232       |
| 20       | 163.5093  | 185.7633 | 215.1850 | 79.921001        |
| 21       | 234.5010  | 240.2246 | 310.8051 | 105.566970       |
| 22       | 199.3652  | 242.6700 | 314.4196 | 98.97431833      |
| 23       | 160.7420  | 232.2523 | 261.0277 | 75.071598        |
| 24       | 130.3922  | 193.4792 | 183.4291 | 66.2115          |
|          |           |          |          |                  |



Ivan Gerace (Università di Perugia)

51/52 Perugia, 17 febbraio 2009

# **GRAZIE PER L'ATTENZIONE**