
Relating Process Algebras and Multiset

Rewriting for Security Protocol Analysis

Stefano Bistarelli1,2 ?, Iliano Cervesato3 ??,
Gabriele Lenzini4 ? ? ?, and Fabio Martinelli1 †

1 Istituto di Informatica e Telematica–CNR
Via G. Moruzzi, 1 - I-56100 PISA - Italy

{stefano.bistarelli,fabio.martinelli}@iit.cnr.it
2 Dipartimento di Scienze, Università “D’Annunzio” di Chieti-Pescara

Viale Pindaro 87, 65127 Pescara, Italy
bista@sci.unich.it

3 Advanced Engineering and Science Division, ITT Industries Inc.
Alexandria, VA 22303 - USA
iliano@itd.nrl.navy.mil

4 Istituto di Scienza e Tecnologie dell’Informazione–CNR
Via G. Moruzzi, 1 - I-56100 PISA - Italy

lenzini@iei.pi.cnr.it

Abstract. When formalizing security protocols, different specification
languages support very different reasoning methodologies, whose results
are not directly or easily comparable. Therefore, establishing clear rela-
tionships among different frameworks is highly desirable, as it permits
various methodologies to cooperate by interpreting theoretical and prac-
tical results of one system in another. In this paper, we examine the non-
trivial relationship between two general verification frameworks: multiset
rewriting (MSR) and a process algebra (PA) inspired to the CCS and
the π-calculus. We present two separate mappings, one from MSR to PA
and the other from PA to MSR. Although defining a simple and gen-
eral bijection between MSR and PA appears difficult, we show that in
the specific context of cryptographic protocols they do admit effective
translations that preserve traces

Keywords: Security Protocols, Multiset Rewriting, Process Algebras.

? Partially supported by MIUR project “Constraint Based Verification of Reactive
Systems” (COVER), and by the MIUR project “Network Aware Programming: Ob-
ject, Languages, Implementation” (NAPOLI)

?? Partially supported by NRL under contract N00173-00-C-2086.
? ? ? Supported by the MIUR-CNR Project SP4.

† Partially supported by MIUR project “Constraint Based Verification of Reactive
Systems” (COVER), by MIUR project “MEFISTO”, by Microsoft Research and by
the CSP project “SeTAPS II”

1 Introduction

In the last decade, security-related problems have attracted the attention of
many researchers from several different communities, especially formal methods
(e.g., [5, 18, 14, 24, 26, 3, 8, 6, 11, 13, 15, 17, 1]). These researchers have often let
their investigation be guided by the techniques and experiences specific to their
own areas of knowledge. This massive interest, while on the one hand furthers
research, on the other has determined a plethora of different results that often
are not directly comparable or integrable with one another. In the last few years,
attempts have been made to unify frameworks for specifying security properties
usually managed in different ways (e.g., [16]), and to study the relationships
between different models for representing security protocols (e.g., [7]).
In this paper we relate uses of process algebras (PA) and multiset-rewriting

(MSR) for the description and the analysis of security protocols by defining
encodings from one formalism to the other. A general comparison between PA
and MSR [4] yields results weaker than the specialized application to security
protocols analyzed here.
PA is a well-known formal framework and actually denote a family of calculi

which have been proposed for describing features of distributed and concurrent
systems. Here we use a process algebra that borrows concepts from different
calculi, in particular the π-calculus [21] and CCS [20]. It is not difficult to adapt
our results to other (value passing) process algebras used in security protocol
analysis, e.g., CSP [23] or the spi-calculus [2]. In fact, when applied to security
protocol analysis, most of them rely only on a well-identified subset of primitives,
that have been isolated in the language considered here.
MSR, with its roots in concurrency theory and rewriting logic, has proved to

be language of choice for studying foundational issues in security protocols [6].
It is also playing a practical role as the CIL intermediate language [11] of the
CASPL security protocol analysis system [10], in particular since translators
from several tools to CIL have been developed. For these reasons, MSR has
become a central point when comparing languages for protocol specification. In
particular, the ties between MSR and strand spaces [25], a popular specification
language for crypto-protocols, have been analyzed in [7].
The results of this paper are twofold. First, our encodings establish a firm

relationship between the specification methodologies underlying MSR and PA in
order to relate verification results obtainable in each model. Second, by bridg-
ing PA and MSR, we implicitly define a correspondence between PA and other
languages, in particular strand spaces [25] (in a setting with an interleaving se-
mantics), a worthy investigation as remarked in [9]. Interesting work about linear
logic and multiset rewriting appears in [19].
The rest of the paper is organized as follows. Section 2 recalls the multiset

rewriting and process algebra frameworks and in Section 3 their use in security
protocols specification. Section 4 presents the encodings from multiset rewriting
to process algebra (Section 4.1), and an inverse (Section 4.2). Section 5 provides
the notion of equivalence motivating the encodings. Finally, Section 6 gives some
concluding remarks.

2 Background

In this section, we recall the syntax and formal semantics of multiset rewriting
(MSR) and of process algebras (PA).

2.1 First Order Multiset Rewriting

The language of first-order MSR is defined by the following grammar:

Elements ã ::= · | a(t), ã

Rewriting Rules r ::= ã(x)→ ∃n.b̃(x,n)
Rule sets r̃ ::= · | r, r̃

Multiset elements are chosen as atomic formulas a(t) for terms t = (t1, . . . , tn)
over some first-order signature Σ. We will write ã(x) (resp., t(x)) when we want
to emphasize that variables, drawn from x, appear in a multiset ã (resp., a term
t). In the sequel, the comma “,” will denote multiset union and will implicitly
be considered commutative and associative, while “·”, the empty multiset, will
act as a neutral element (which will allow us to omit it when convenient). The
operational semantics of MSR is expressed by the following two judgments:

Single rule application r̃ : ã −→ b̃

Iterated rule application r̃ : ã −→∗ b̃

The multisets ã and b̃ are called states and are always ground formulas. The
arrow represents a transition. These judgments are defined as follows:

(r̃, ã(x)→ ∃n.b̃(x,n)) : (c̃, ã[t/x]) −→ (c̃, b̃[t/x,k/n])

r̃ : ã −→∗ ã

r̃ : ã −→ b̃ r̃ : b̃ −→∗ c̃

r̃ : ã −→∗ c̃

The first inference shows how a rewrite rule r = ã(x) → ∃n.b̃(x,n) is used
to transform a state into a successor state: it identifies a ground instance ã(t) of
its antecedent and replaces it with the ground instance b̃(t,k) of its consequent,
where k are fresh constants. Here [t/x] denotes the substitution (also written θ)
replacing every occurrence of a variable x among x with the corresponding term
t in t. These rules implement a non-deterministic (in general several rules are
applicable at any step) but sequential computation model (one rule at a time).
Concurrency is captured as the permutability of (some) rule applications. The
remaining rules define −→∗ as the reflexive and transitive closure of −→.

2.2 Process Algebras

The language of PA is defined by the following grammar:

Parallel processes Q ::= 0 | Q ‖ P | Q ‖ !P
Sequential processes P ::= 0 | a(t).P | a(t).P | [t = t′] P | νn.P

Parallel processes are defined as a parallel composition of, possibly repli-
cated, sequential processes. Sequential processes communicate messages t along
channels1:an output process a(t).P is ready to send a tuple of terms t along
the channel a; an input process a(t).P is ready to receive a tuple of messages
matching the patterns t. The process [t = t′]P requires terms t and t′ to match
in order to continue as P . Finally, the creation of a new object in P (as in the
π-calculus [22]) is written as νn.P . The set c(t) is the constants occurring in a
term t is defined as usual, and similary we write c(Q) for the set of constants of
a process Q. Free names and free variables are defined as usual. The operational
semantics of PA is given by the following judgments:

Single interaction Q⇒ Q′; Iterated interaction Q⇒∗ Q′

They are defined as follows2:

t
′ = t[θ]

(Q ‖ a(t).P ‖ a(t′).P ′)⇒ (Q ‖ P ‖ P ′[θ])

(Q ‖ !P)⇒ (Q ‖ !P ‖ P)

Q ≡ Q′′ Q⇒ Q′

Q⇒ Q′ Q⇒∗ Q

c(k) ∩ (c(Q) ∪ c(P)) = ∅

(Q ‖ νn.P)⇒ (Q ‖ P [k/n])

t = t
′[θ]

(Q ‖ [t = t
′] P)⇒ (Q ‖ P [θ])

Q⇒ Q′ Q′ ⇒∗ Q′′

Q⇒∗ Q′′

The first inference (reaction) shows how two sequential processes, respectively
one ready to perform an output of ground terms t, and one ready to perform an
input over terms t′ react if unification is possible between t and t′. The second
inference (replication), says that !P is essentially a factory of P ’s. The next
inferences describe, respectively, reflexivity of the transition, the generation of a
new name, the semantics of match and the transitivity of the transition relation.

3 Security Protocols

We now consider sublanguages of MSR and PA (here referred as MSRP and
PAP) that have gained recent popularity for the specification of cryptographic
protocols (see for example [2, 16]). Narrowing our investigation to a specific do-
main will allow us to directly compare these restricted versions of MSR and PA.
The two specifications will rely on a common first-order signature ΣP . In both
formalisms terms in ΣP stand for messages. Predicate symbols are interpreted
as such in MSRP , and as channel names in PAP . Variables will also be allowed
in rules and processes.

1 Here we assume that messages t = (t1, . . . , tk) and channel names a are, resp., as
atomic formulas and predicate symbols over some signature Σ.

2 In the semantics we assume a reasonable structural equivalence relation, ≡, among
processes, omitted for saving space.

3.1 Protocols as Multiset Rewriting

MSRP relies on the following predicate symbols [7]:

Network Messages (Ñ): are the predicates used to model the network, where
N(t) means that the term t is lying on the network.

Role States (Ã): are the predicates used to model roles. Assuming a set of
role identifiers R = {ρ1, . . . , ρn}, the family of role state predicates {Aρi(t) :
i = 0 . . . lρ}, is intended to hold the internal state, t, of a principal in role
ρ ∈ R during the sequence of protocol steps. The behavior of each role ρ is
described through a finite number of rules, indexed from 0 to lρ.

Intruder (Ĩ): are the predicates used to model the intruder I, where I(t),
means that the intruder knows the message t.

Persistent Predicates (π̃): are ground predicates holding data that does not
change during the unfolding of the protocol (e.g., Kp(K,K ′) indicates that
K and K ′ form a pair of public/private keys). Rules use these predicates to
access the value of persistent data.

A security protocol is expressed in MSRP as a set of rewrite rules r̃ of a spe-
cific format called a security protocol theory. Given roles R, it can be partitioned
as r̃ = ∪ρ∈R(r̃ρ), r̃I , where r̃ρ and r̃I describe the behavior of a role ρ ∈ R and
of the intruder I. For each role ρ, the rules in r̃ρ consist of:

– one instantiation rule rρ0
: π̃(x)∃n.Aρ0

(n,x), π̃(x)

– zero or more (i = 1 . . . lρ) message exchange rules:

send rρi : Aρi−1
(x) → Aρi(x), N(t(x))

receive rρi : Aρi−1
(x), N(t(x,y)) → Aρi(x,y)

Rules in r̃I are the standard rules describing the intruder in the style of
Dolev-Yao [12], whose capabilities consist in intercepting, analyzing, synthesizing
and constructing messages, with the possibility to access to permanent data.
Formally:

rI1 : π(x)→I(x), π(x)
rI3 : I(x)→N(x)
rI5 : I(〈x1, x2〉)→I(x1), I(x2)
rI7 : I({x}k), I(k), Kp(k, k

′)→I(x), Kp(k, k′)
rI9 : I(x)→·

rI2 : ·→∃n.I(n)
rI4 : N(x)→I(x)
rI6 : I(x1), I(x2)→I(〈x1, x2〉)
rI8 : I(x), I(k)→I({x}k)
rI10 : I(x)→I(x), I(x)

where x and k are variables. In MSRP , a state is a multiset of the form
s̃ = (Ã, Ñ , Ĩ, π̃), where the components collect ground facts of the form N(t),
Aρi(t), I(t) and π(t), respectively. An initial state s̃0 = (π̃, Ĩ0) contains only

persistent predicates (π̃) and initial intruder knowledge (Ĩ0). A pair (r̃ : s̃)
consisting of an protocol theory r̃ and a state s̃ is called a configuration. The
initial configuration is (r̃ : s̃0).

3.2 Protocols as Processes

A security protocol may be described in a fragment of PA where: (a) every
communications happen through the net (here Pnet is the process that manages
the net as a public channel where each Pρ sends and receives messages); (b) there
is an intruder, with some initial knowledge able to intercept and forge messages
passing through the net (here Q!I , with initial knowledge QI0); each principal
starts a protocol interpreting a certain role ρ.
A security protocol, involving a collection of roles ρ, is expressed in PAP

as a security protocol process Q0, defined by as the parallel composition of five
components: Pnet ‖

∏

ρ !Pρ ‖ Q!I ‖ QI0 ‖ Q!π where
∏

P denotes the parallel
composition of all the processes in P. Precisely:

Pnet = !(Ni(x).No(x).0). describes the behavior of the network. It simply copies
messages from channel Ni (input of the net) to No (output of the net),
implementing an asynchronous form of message transmission.

Pρ. Each of these processes represents the sequence of actions that constitute
a role, in the sense defined for MSRP . These processes have the following
form3: Pρ = π̃(x).νn.P ′

ρ where P ′
ρ is a sequential process that does input

and output only on net’s channels or does some terms matching. Formally,
P ′
ρ ::= 0 | No(t).P

′
ρ | Ni(t).P

′
ρ | [t = t′] P ′

ρ.
Q!I = !PI1 ‖ . . . ‖ !PI10 . This is the specification of the intruder model in a Dolev-

Yao style. Each PIi describes one capability of the intruder. The dedicated
channel I holds the information the intruder operates on (it can be either
initial, intercepted, or forged). They are defined as follows:

PI1 = π(x).I (x).0

PI3 = No(x).I (x).0

PI5 = I (〈x1, x2〉).I (x1).I (x2).0

PI7 = I ({y}k).I (k).Kp(〈k, k
′〉).I (y).0

PI9 = I (x).0

PI2 = νn.I (n).0

PI4 = I (x).Ni(x).0

PI6 = I (x1).I (x2).I (〈x1, x2〉).0
PI8 = I (x).I (k).I ({x}k).0
PI10= I (x).I (x).I (x).0

QI0 =
∏

I (t).0 for some terms t. QI0 represents the initial knowledge of the
intruder.

Q!π =
∏

!π(t).0 represents what we called “persistent information” in the case
of MSRP . We can assume the same predicate (here channel) names with
the same meaning. This information is made available to client processes on
each channel π (e.g., Kp). It is assumed that no other process performs an
output on π.

In PAP , a state is a process of the form Net ‖
∏

ρRoleρ ‖ Eve ‖ Init ‖ Q′ where
Net, Roleρ, Eve and Init are ground, un-replicated (i.e., without a bang as a
prefix) instances of sequential suffixes of processes Pnet,

∏

ρ!Pρ, (Q!I ‖ QI0) and
Q!π respectively, while Q

′ = (Pnet ‖
∏

ρ!Pρ ‖ Q!I ‖ Q!π) collects the parts of the
specification subject to replication.

3 Here we use π̃(x).P as a shortcut for π1 (t1(x1)) . . . πk (tk(xk)).P , and νn.P for
νn1. . . . νnh.P .

4 Encodings for Protocol Specifications

This section describes the encodings from MSRP to PAP and vice versa. As
above, we assume the same underlying signature ΣP . In particular, the predi-
cate symbols and terms in MSRP find their counterpart in channel names and
messages in PAP , respectively.
The first mapping, from MSRP to PAP , is based on the observation that role

state predicates force MSRP rules to be applied sequentially within a role (this is
not true for general MSR theories [4]). Minor technicalities are involved in dealing
with terms and with the presence of multiple instances of a same role (they are
addressed by unification and banged processes, respectively). At its core, the
inverse encoding, from PAP to MSRP , maps sequential agents to a set of MSRP

rules corresponding to roles: we generate appropriate role state predicates in
correspondence of the intermediate stages of each sequential process. The bang
operator is not directly involved in this mapping as it finds its counterpart in
the way rewriting rules are applied. The transformation of the intruder, whose
behavior is fixed a priori, is treated off-line in both directions. 0

4.1 From MSRP to PAP

Given an initial MSRP configuration (∪ρ(r̃ρ), r̃I : π̃, Ĩ0), we return an PAP se-
curity protocol process Pnet ‖

∏

ρ !Pρ ‖ Q!I ‖ QI0 ‖ Q!π. In particular (a) Pnet is
fixed a priori (see Section 3.2); (b)

∏

ρ !Pρ and Q!I , result from the transforma-
tion of respectively ∪ρ(r̃ρ) and r̃I ; (c) Q!π and QI0 result from transformation

of π̃, Ĩ0.
Processes Pρ, for each role ρ, are obtained via the transformation function d e

ranging over the set of role rules ∪ρ(r̃ρ). We define it depending on the structure
of the role rule rρi ∈ r̃ρ involved. Formally for i = 0:

drρ0e = π̃(x).νn.drρ1e if rρ0 : π̃(x)→ ∃n.Aρ0(x), π̃(x)

Informally role generation rules are mapped onto a process which first re-
ceives, in sequence, permanent terms via the channels π in π̃ and then generates
all the new names n used along the execution of the protocol. For 0 < i ≤ lρ−1:

drρi+1
e =







[t = t′′] Ni(t).drρi+2
e, if rρi+1

= Aρi(x)→ Aρi+1
(x), N(t)

[t = t′′] No(t)drρi+2
e , if rρi+1

= Aρi(x), N(t)→ Aρi+1
(t′)

where t′′ are the terms appearing in the consequent Aρi(t
′′) of the rule rρi . Here

we exploit the fact that we know in advance the next rule to be applied. In this
way we can produce the matching primitive following the receive that is sound
with the next rule selection. Finally we have, with a little abuse of notation,
drρlρ+1

e = 0. The final process defining the role ρ behavior is the following:

Pρ
def
= drρ0

e
The intruder is handled by simply mapping r̃I to Q!I . More precisely, we

define the transformation function d eI such that relates the intruder rewriting

rule rIj with the sequential agents PIj (see Section 3.2). Being the intruder
behavior fixed a priori, this transformation is effectively performed off-line once
and for all.
At this point the transformation is complete as soon as s̃0 = π̃, Ĩ0 is treated.

The multiset Ĩ0 guides the definition of the process QI0 , while the multiset

π̃ guides the definition of the process Q!π, that is: QI0

def
=

∏

I(t)∈Ĩ0
(I (t).0),

Q!π
def
=

∏

π(t)∈π̃(!π(t).0). Writing, with a little abuse of notation, d e the generic
function that, given a multiset rewriting MSRP security protocol theory returns
an PAP security protocol process, the encoding can be summarized as:

Pnet ‖
∏

ρ

!Pρ ‖ Q!I ‖ QI0 ‖ Q!π = d(∪ρ(r̃ρ), r̃I : π̃, Ĩ0)e

4.2 From PAP to MSRP

Given a PAP security protocol process Pnet ‖
∏

ρ !Pρ ‖ Q!I ‖ QI0 ‖ Q!π we show
how to construct an initial state in MSRP . The basic translation involves the
transformation function b c#(i;ε) (called as a subroutine by the top level trans-

formation b c) which, given a sequential agent representing a role ρ, returns the
multiset of rules r̃ρ. Here i is an non negative integer. Formally:

bπ̃(x).νn.P ′
ρc = {π̃(x)→ ∃n.Aρ0(n,x)} ∪ bP ′

ρc
#
(1;(x,n))

bNo(t(y)).P
′
ρc

#
(i;x) = {Aρi−1(x), N(t(y))→ Aρi(x,y)} ∪ bP ′

ρc
#
(i+1;(x,y))

bNi(t(y)).P
′′
ρ c

#
(i;x) = {Aρi−1(x)→ Aρi(x), N(t(y))} ∪ bP ′

ρc
#
(i+1;x)

b[t = t′] P ′
ρc

#
(i;x) = bP ′

ρ[θ]c
#
(i;x[θ]) where t = t′[θ]

b0c#(i;x) = ·

The intruder is handled by the inverse of the transformation d eI , which we
call b cI . The initial state s̃0 = π̃, Ĩ0 is defined so that π̃ = {π(t) : π(t) ∈
Pinit} and Ĩ0 = {I(t) : I (t) ∈ QI0},

4 that is s̃0 is the multiset of persistent
facts which are isomorphic to the predicates appearing in process Pinit, and the
multiset of intruder predicates corresponding of messages that appear in QI0 .
Writing, with a little abuse of notation, b c the generic function that given a
PAP security protocol process returns a MSRP security protocol theory, the
whole transformation can be summarized as:

(∪ρ(r̃ρ), r̃I : π̃, Ĩ0) = bPnet ‖
∏

ρ

!Pρ ‖ Q!I ‖ QI0 ‖ Q!πc

5 Correspondence

In this section, we will call an MSRP configuration and a PAP state correspond-
ing when they manifest the same network and intruder behavior, step by step.
We first formalize the notion of transition step in each formalism.

4 A formal definition of a(t) ∈ Q is given in the next Section.

Definition 1. Given a process Q, Q
α
→ says that α is the multiset of com-

munication events that the process Q may perform in a next step of execution.
Formally:

0
·
→

Q
α
→ P

α′

→

(Q ‖ P)
α,α′

→ νn.P
·
→

a(t).P
{a(t)}
→ a(t).P

{a(t)}
→

P
α
→ t = t′[θ]

([t = t′] P)
α[θ]
→

P
α′

→

!P
α,α′

→

We write (overloading the include symbol) α′ ∈ P if α′ ∈ {α : P
α
→} Let us

consider a MSRP state (r̃ : π̃, Ã, Ñ , Ĩ), and a PAP state Net ‖ Eve ‖
∏

ρRoleρ ‖
Init ‖ Q′. We want to define a correspondence between configurations such that,
if in MSRP is possible to perform an action (by applying a rule) then in PAP is
possible to proceed because of some transitions, and vice versa.

Definition 2. Given a MSRP configuration C = (r̃ : π̃, Ã, Ñ , Ĩ). We define:

H−

Ñ
(C) = {t : N(t) ∈ Ñ} and H−

Ĩ
(C) = {t : I(t) ∈ Ĩ} that is, resp., all the

messages lying on the net and all the messages known by the intruder in the

state in C.

Definition 3. Given a channel name c and a PAP state Q = Net ‖ Eve ‖
∏

ρRoleρ ‖ Init ‖ Q
′, we define: KN

Net(Q) = {t : N (t) ∈ Net} and KI
Eve(Q) =

{t : I (t) ∈ Eve}. that is the messages that processes, resp., Eve and Net may
sent in output over channel I and N , in a next transition from state Q.

Using Definitions 2 and 3, we could make precise what we intend for a MSRP

configuration and a PAP state to be correspondent.

Definition 4. Given a MSRP configuration C and a PAP state Q. We say that

C and Q are correspondent, written as C ./ Q if and only if the two conditions

hold:

1. H−

Ñ
(C) = KN

Net(Q)

2. H−

Ĩ
(C) = KI

Eve(Q)

Informally C ./ Q says that the messages that are lying on the net and
the intruder knowledge are the same in states C and Q. Now we can define an
equivalence relation between a MSRP and a PAP states.

Definition 5. A binary relation5 ∼ ⊆ C × Q is a strong correspondence if

(r̃ : s̃) ∼ Q implies that:

1. (r̃ : s̃) ./ Q;
2. r̃ : s̃ −→ s̃′ then Q⇒∗ Q′ and (r̃ : s̃′) ∼ Q′;
3. Q⇒ Q′ then r̃ : s̃ −→∗ s̃′ and (r̃ : s̃′) ∼ Q′.

5 C and Q are the set of all MSRP configurations and PAP states.

The following theorems informally affirm that security protocol specifica-
tions among MSRP and PAP , obtained via the encodings here presented, are
correspondent.

Theorem 1. Given an MSRP security protocol theory C0. Then C0 ∼ dC0e.

Theorem 2. Given an PAP security protocol process Q0. Then bQ0c ∼ Q0.

6 Conclusions

This paper shows how multiset rewriting theories (MSRP) and processes al-
gebras (PAP) used to describe security protocols may be related. Indeed we
show how to define transformations between MSRP to PAP specifications of
a security protocol, whose semantics (based on labeled transition systems) are
proved to be related. The paper introduces a correspondence relation based on
what messages appear on the net and on what messages the intruder knows.
A direct consequence of this results is that the given transformations preserve
confidentiality properties, i.e., the ability or inability of the intruder to discover
a message. Moreover, since several forms of authentication among protocol par-
ticipants may be formulated in terms of properties on what is sent to the net
or what is captured by the intruder, authentication is also preserved by our
encodings.

References

[1] M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types and
Logic Programs. ACM SIGPLAN Notices, 31(1):33–44, 2002. Proc. of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL’02).

[2] M. Abadi and A. D. Gordon. Reasoning about Cryptographic Protocols in the
Spi Calculus. In Proc. of CONCUR ’97: Concurrency Theory, 8th International
Conference, volume 1243 of Lecture Notes in Computer Science, pages 59–73.
Springer-Verlag, 1997.

[3] M. Abadi and A. D. Gordon. A Bisimulation Methods for Cryptographic Proto-
cols. In Proc. of ESOP’98, 1998.

[4] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating multiset rewrit-
ing and process algebras (for example for security protocol analysis). Technical
report, Naval Laboratory Research, 2003. to appear.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Proc. of
the Royal Society of London, volume 426 of Lecture Notes in Computer Science,
pages 233–271. Springer-Verlag, 1989.

[6] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A Meta-
Notation for Protocol Analysis. In Proc. of the 12th IEEE Computer Security
Foundations Workshop (CSFW’99). IEEE Computer Society Press, 1999.

[7] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Relating
strands and multiset rewriting for security protocol analysis. In Proc. of the 13th
IEEE Computer Security Foundations Workshop (CSFW ’00), pages 35–51. IEEE,
2000.

[8] E. M. Clarke, S. Jha, and W. Marrero. A Machine Checkable Logic of Knowledge
for Protocols. In Proc. of Workshop on Formal Methods and Security Protocols,
1998.

[9] F. Crazzolara and G. Winskel. Events in security protocols. In Proceedings of the
8th ACM conference on Computer and Communications Security, pages 96–105.
ACM Press, 2001.

[10] G. Denker and J. Millen. Capsl integrated protocol environment. In Proc. of
DARPA Information Survivability Conference (DISCEX 2000), pp 207-221, IEEE
Computer Society, 2000, 2000.

[11] G. Denker, J. K. Millen, A. Grau, and J. K. Filipe. Optimizing protocol rewrite
rules of CIL specifications. In CSFW, pages 52–62, 2000.

[12] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transaction
on Information Theory, 29(2):198–208, 1983.

[13] M. Fiore and M. Abadi. Computing Symbolic Models for Verifying Cryptographic
Protocols. In Proc. of the 14th Computer Security Foundation Workshop (CSFW-
14), pages 160–173. IEEE, Computer Society Press, 2001.

[14] R. Focardi and R. Gorrieri. The Compositional Security Checker: A tool for
the Verification of Information Flow Security Properties. IEEE Transactions on
Software Engineering, 23(9):550–571, 1997.

[15] R. Focardi, R. Gorrieri, and F. Martinelli. NonInterference for the Analysis of
Cryyptographic Protocols. In Proc. of the ICALP’00. Springer-Verlag, 2000.

[16] R. Focardi and F. Martinelli. A Uniform Approch for the Definition of Security
Properties. In Proc. of Congress on Formal Methods (FM’99), volume 1708 of
Lecture Notes in Computer Science, pages 794–813. Springer-Verlag, 1999.

[17] A. D. Gordon and A. Jeffrey. Authenticity by Typing for Security Protocols. In
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW 2001), pages
145–159. IEEE Computer Society, 2001.

[18] C. A. Meadows. The NRL protocol analyzer: an overview. In Proc. of the 2nd
International Conference on the Practical Application of PROLOG, 1994.

[19] D. Miller. Higher-order quantification and proof search. In Proceedings of the
AMAST confrerence, LNCS. Springer, 2002.

[20] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[21] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 2000.

[22] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II.
Information and Computation, 100(1):1–40, 1992.

[23] S. Schneider. Security properties and CSP. In Proc. of the IEEE Symposium on
Research in Security and Privacy, pages 174–187, 1996.

[24] S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transaction on
Sofware Engineering, 24(8):743–758, 1998.

[25] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In Proc.
of the 11th IEEE Computer Security Foundations Workshop (CSFW ’98), pages
66–78, Washington - Brussels - Tokyo, 1998. IEEE.

[26] J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Why is a security protocol
correct? In Proc. of the 19th IEEE Computer Society Symposium on Research in
Security and Privacy, 1998.

