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ABSTRACT
Establishing network security is based not just on the se-
curity of its component systems but also on how they are
configured to interoperate. In this paper we consider how
soft constraints provide an approach to detecting the cas-
cade vulnerability problem: whether system interoperation
provides circuitous or cascading routes across the network
that increase the risk of violation of multilevel security. Tak-
ing the constraints approach means that we are building on
techniques that have proven success in solving large-scale
problems from other domains.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Feature—Constraints; K.6.5 [Management of Com-
puting and Information Systems]: Security and Pro-
tection; D.4.6 [Operating Systems]: Security and Protec-
tion—Information flows control

General Terms
Security

Keywords
Constraints, Soft Constraints, Security, Multilevel Security

1. INTRODUCTION
In its most general case, determining the security (that

is, the safety problem) of a system is undecidable [18]. This
has led to the design of a wide range of decidable security
mechanisms that are based on more restrictive forms of secu-
rity, for example, [3, 6]. These mechanisms decide whether
an access by a subject is authorised according to the rules
set out in a security policy. A system is secure (upholds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04 March 14–17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

its security policy) if it is not possible for a subject to gain
unauthorised access.

The composition of secure systems is not necessarily se-
cure. A user may be able to gain unauthorised access to
an object by taking a circuitous access route across indi-
vidually secure but interoperating systems [16, 15]1. Deter-
mining security is based not just on the individual system
authorisation mechanisms but also on how the systems are
configured to interoperate. For example, if Alice is per-
mitted to have access to Bob’s files on the Administration
system, and Clare is permitted access Alice’s files on the
Sales system, then is it safe to support file sharing between
these systems? The extent of system inter-operation must
be limited if the administration security policy states that
Clare is not permitted access to Bob’s (administration) files.

The cascade vulnerability problem [2, 21] is also concerned
with secure inter-operation, and considers the assurance risk
of composing multilevel secure systems that are evaluated to
different levels of assurance according to the criteria [2]. The
transitivity of the multilevel security policy upheld across all
secure systems ensures that their multilevel composition is
secure; however, interoperability and data sharing between
systems may increase the risk of compromise beyond that
accepted by the assurance level. For example, it may be
an acceptable risk to store only secret and top-secret data
on a medium assurance system, and only classified and se-
cret data on another medium assurance system: classified
and top-secret data may be stored simultaneously only on
‘high’ assurance systems. However, if these medium assur-
ance systems interoperate at classification secret, then the
acceptable risk of compromise is no longer adequate as there
is an unacceptable cascading risk from topsecret across the
network to classified.

Existing research has considered schemes for detecting these
security vulnerabilities and for correcting them by re-configuring
system inter-operation. While detection of some security
vulnerability [21, 19, 14, 16] can be easily achieved, their
optimal correction is NP-complete [19, 17, 16] and simulated
annealing and integer linear programming are suggested for
possible practical approximations.

We are investigating the potential of using constraints [9,

1McCullough [20] demonstrates that a form of process com-
position does not necessarily preserve the noninterference
(security) property. This paper takes the more abstract
viewpoint and assumes that the underlying security prop-
erties of the systems are composable.
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22] for modelling secure inter-operation. Constraint Solving
is an emerging software technology for declarative descrip-
tion and effective solving of large problems. The constraint
programming process consists of the generation of require-
ments (constraints) and solution of these requirements, by
specialised constraint solvers. The advantages of expressing
secure inter-operation as a constraint satisfaction problem
is that there exists a wide body of existing research results
on solving this problem for large systems of constraints in
a fully mechanised manner [12, 24, 4]. Constraints have
been used in many practical analysis tools, such as Con-
current Engineering and Computer Aided Verification [10,
11]. Thus, the results in this paper provide a direction for
the development of practical configuration analysis tools for
secure inter-operation.

In this paper we describe how the cascade vulnerability
problem can be modelled using soft constraints [9], and con-
sider their potential for detecting cascades. These results are
applicable to secure inter-operation in general. The paper is
organised as follows. Section 2 provides background on the
cascade problem and soft constraints. Section 2.1 describes
our general model of the cascade problem and this is mod-
elled using soft constraints in Section 3. Section 4 codifies
an example within the proposed soft constraints model.

2. BACKGROUND

2.1 The Cascade Problem
Figure 1 gives an example of a MLS network configuration

with a cascade vulnerability problem [14]. The network is

Figure 1: Network configuration with a potential
cascade problem.

comprised of multilevel secure systems Sys.A, Sys.B, Sys.C
and Sys.D storing classified (C), secret (S) and top-secret
(T ) information as depicted in Figure 1. Each system is
accredited according to levels of assurance C2<B1<B2<B3
from [2, 1]. For example, Sys.B is used to simultaneously
store C, S and T information and, therefore, (according to
[2, 1]) must be evaluated at level B3 or higher, reflecting the
high level of confidence that must be placed in the secure
operation of the system. This is to counter the risk of an
attacker compromising the system and copying T informa-
tion to C. Sys.D, on the other hand, has been evaluated at
the lowest level of assurance C2 and, therefore, may be used
only to store single level data.

However, the security-level interoperability defined by the
system connections in Figure 1 results in a cascade vulner-

ability across the network. There is a risk that an attacker
who has the ability to compromise security on B2 or lower
assured systems can copy T to S on Sys.A, to S on Sys.D
to S to C on Sys.C. This is contrary to the criteria require-
ment that the level of assurance that T cannot be copied to
C should be B3 or higher. This requirement is met by the
individual systems but not as a result of their interoperation.

A generalised form of the cascade problem is defined as
follows.

2.1.1 MLS
A multilevel secure system enforces a lattice based secu-

rity policy L of security levels that has ordering relation ≤.
Given x, y : L then x ≤ y means that information may flow
from level x to level y, for example, C ≤ S ≤ T .

2.1.2 Assurance Levels
A security criteria defines a lattice2 A of assurance lev-

els with ordering ≤. Given x, y : A, then x ≤ y means
that a system evaluated at y is no less secure than a system
evaluated at x, or alternatively, that an attacker than can
compromise a system evaluated at y can compromise a sys-
tem evaluated at x. Let S define the set of all system names.
Define accred : S → A where accred(s) gives the assurance
level of system s : S, and is taken to represent the minimum
effort required by an attacker to compromise system s.

2.1.3 Acceptable Risk
Security evaluation criteria also define an acceptable risk

function risk : L × L → A, such that given l, l′ : L then
risk(l, l′) defines the minimum acceptable risk of compro-
mise from l to l′; it represents the minimum acceptable ef-
fort required to ‘compromise security’ and copy/downgrade
information from level l to level l′. Without any loss of
generalisation we assume that there is no security enforce-
ment at the lowest assurance level 0, and thus, if l ≤ l′

then risk(l, l′) = 0. For example, function risk encodes the
assurance matrix (for B levels) from [2, 1] as risk(C, S) =
risk(C, T ) = risk(S, T ) = 0, risk(S, C) = 1, risk(T, S) = 2,
and risk(T, C) = 3, and so forth.

2.1.4 Evaluated Systems
Individual systems must be assured higher than the min-

imum acceptable risk to compromise the data they store. If
a system s can hold information at levels l and l′ then

risk(l, l′) <= accred(s).

2.1.5 Network Model
A node is a pair (s, l) and represents the fact that sys-

tem s can hold information at level l. A system is a collec-
tion of nodes that represent the data it holds. For exam-
ple, in Figure 1, Sys.A is represented by nodes (Sys.A, S)
and (Sys.A, T ). A network of systems is a weighted graph
of these nodes according to how they are connected. An
w-weighted arc from (s, l) to (s′, l′) means that it requires
minimum w effort to directly copy information at level l held
on system s to level l′ on system s′.

2.1.6 Cascading Risks

2This generalises the total ordering of assurance levels de-
fined in [2, 1].
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Arcs are used to represent direct flows within a system and
interoperation links between systems. A flow l ≤ l′ that is
permitted on system s is represented as a (assurance) 0-
weighted arc from (s, l) to (s, l′); if a flow is not permitted
between levels l and l′ that are held on system s then it is
represented as an arc weighted as accred(s) from (s, l) to
(s, l′).

A link from system s to s′ that connects l-level informa-
tion is represented as a 0-weighted arc from (s, l) to (s′, l)—
all other pairs (s, l) to (s′, l) not related in this way are either
represented as having no arc, or an arc with the maximum
assurance value 1.

Given pairs (s, l) and (s, l′) we then define

effort((s, l), (s′, l′))

as the minimum effort required to compromise the network
and copy/downgrade level l information held on system s
to level l′ information on system s′. As an example, in
Figure 1, effort((Sys.A, T ), (Sys.C, C)) = B2 via the path
through Sys.D.

2.1.7 Cascade Freedom
We require that for any systems s,s′ and levels l,l′ then

risk(l, l′) <= effort((s, l), (s′, l′))

Given a path in the network from (s, l) to (s′, l′), then its
cascade weighting is the maximum weight that directly con-
nects any two nodes on the path. This reflects the minimum
effort that will be required by an attacker to copy informa-
tion from (s, l) to (s′, l′) by using this path. effort((s, l), (s′, l′))
is the minimum of the cascade weightings for all paths that
connect (s, l) to (s′, l′).

2.2 Soft Constraints
Several formalisations of the concept of soft constraints

are currently available. In the following, we refer to the one
based on c-semirings [9], which can be shown to generalise
and express many of the others [7].

A soft constraint may be seen as a constraint where each
instantiation of its variables has an associated value from a
partially ordered set that can be interpreted as a set of pref-
erence values. Combining constraints will then have to take
into account such additional values, and thus the formal-
ism has also to provide suitable operations for combination
(×) and comparison (+) of tuples of values and constraints.
This is why this formalisation is based on the concept of
c-semiring, which is just a set plus two operations.

2.2.1 Semirings.
A semiring is a tuple 〈A, +,×,0,1〉 such that: 1. A is a

set and 0,1 ∈ A; 2. + is commutative, associative and 0 is
its unit element; 3. × is associative, distributes over +, 1 is
its unit element and 0 is its absorbing element. A c-semiring
is a semiring 〈A, +,×,0,1〉 such that: + is idempotent, 1 is
its absorbing element and × is commutative. Let us consider
the relation ≤S over A such that a ≤S b iff a + b = b. Then
it is possible to prove that (see [9]): 1. ≤S is a partial order;
2. + and × are monotone on ≤S ; 3. 0 is its minimum and
1 its maximum; 4. 〈A,≤S〉 is a complete lattice and, for
all a, b ∈ A, a + b = lub(a, b) (where lub is the least upper
bound). Moreover, if × is idempotent, then: + distributes
over ×; 〈A,≤S〉 is a complete distributive lattice and × its
glb (greatest lower bound). Informally, the relation ≤S gives

us a way to compare semiring values and constraints. In
fact, when we have a ≤S b, we will say that b is better than
a. In the following, when the semiring will be clear from the
context, a ≤S b will be often indicated by a ≤ b.

2.2.2 Constraint Problems.
Given a semiring S = 〈A, +,×,0,1〉 and an ordered set of

variables V over a finite domain D, a constraint is a function
which, given an assignment η : V → D of the variables,
returns a value of the semiring. By using this notation we
define C = η → A as the set of all possible constraints that
can be built starting from S, D and V .

Note that in this functional formulation, each constraint
is a function. Such a function involves all the variables in
V , but it depends on the assignment of only a finite sub-
set of them. So, for instance, a binary constraint cx,y over
variables x and y, is a function cx,y : V → D → A, but
it depends only on the assignment of variables {x, y} ⊆ V .
We call this subset the support of the constraint. More for-
mally, consider a constraint c ∈ C. We define its support
as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]},
where

η[v := d]v′ =

{
d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with
the assignment v := d1 (that is the operator [ ] has prece-
dence over application). Note also that cη is the application
of a constraint function c : V → D → A to a function
η : V → D; what we obtain, is a semiring value cη = a.

A soft constraint satisfaction problem is a pair 〈C, con〉
where con ⊆ V and C is a set of constraints: con is the
set of variables of interest for the constraint set C, which
however may concern also variables not in con. Note that
a classical CSP is a SCSP where the chosen c-semiring is:
SCSP = 〈{false, true},∨,∧, false, true〉. Fuzzy CSPs [26]
can instead be modelled in the SCSP framework by choos-
ing the c-semiring SFCSP = 〈[0, 1], max, min, 0, 1〉. Many
other “soft” CSPs (Probabilistic, weighted, . . . ) can be
modelled by using a suitable semiring structure (Sprob =
〈[0, 1], max,×, 0, 1〉, Sweight = 〈R, min, +, +∞, 0〉, . . . ).

Figure 2 shows the graph representation of a fuzzy CSP.
Variables and constraints are represented respectively by
nodes and by undirected (unary for c1 and c3 and binary
for c2) arcs, and semiring values are written to the right of
the corresponding tuples. The variables of interest (that is
the set con) are represented with a double circle. Here we
assume that the domain D of the variables contains only
elements a and b and c.
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Figure 2: A fuzzy CSP.

385



2.2.3 Combining and projecting soft constraints.
Given the set C, the combination function ⊗ : C × C → C

is defined as (c1 ⊗ c2)η = c1η ×S c2η. In words, combin-
ing two constraints means building a new constraint whose
support involves all the variables of the original ones, and
which associates with each tuple of domain values for such
variables a semiring element which is obtained by multi-
plying the elements associated by the original constraints
to the appropriate sub-tuples. It is easy to verify that
supp(c1 ⊗ c2) ⊆ supp(c1) ∪ supp(c2).

Given a constraint c ∈ C and a variable v ∈ V , the projec-
tion of c over V − {v}, written c ⇓(V −{v}) is the constraint
c′ s.t. c′η =

∑
d∈D cη[v := d]. Informally, projecting means

eliminating some variables from the support. This is done
by associating with each tuple over the remaining variables
a semiring element which is the sum of the elements associ-
ated by the original constraint to all the extensions of this
tuple over the eliminated variables. In short, combination is
performed via the multiplicative operation of the semiring,
and projection via the additive one.

2.2.4 Solutions.
A solution of an SCSP P = 〈C, con〉 is the constraint

Sol(P ) = (
⊗

C) ⇓con. That is, we combine all constraints,
and then project over the variables in con. In this way
we get the constraint with support (not greater than) con
which is “induced” by the entire SCSP. Note that when all
the variables are of interest we do not need to perform any
projection.

For example, the solution of the fuzzy CSP of Figure 2
associates a semiring element to every domain value of vari-
able x. Such an element is obtained by first combining all
the constraints together. For instance, for the tuple 〈a, a〉
(that is, x = y = a), we have to compute the minimum be-
tween 0.9 (which is the value assigned to x = a in constraint
c1), 0.8 (which is the value assigned to 〈x = a, y = a〉 in c2)
and 0.9 (which is the value for y = a in c3). Hence, the re-
sulting value for this tuple is 0.8. We can do the same work
for tuple 〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0,
〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and 〈c, c〉 → 0.2. The
obtained tuples are then projected over variable x, obtaining
the solution 〈a〉 → 0.8, 〈b〉 → 0.1 and 〈c〉 → 0.8.

3. MODELLING MLS NETWORKS
Consider a network N = {A, B, C, . . .} of a finite arbitrary

number n of systems. In our constraint model, this network
of n nodes is represented using 2× n system-node variables.
Each system-node variable Ss

i and Sd
i , for i := 1 . . . n can

be instantiated to be one system of the network. Each of
the possible flows of information among the systems of the
network are represented by a specific instantiation of the
variables Ss

1 ,Sd
1 ,Ss

2 ,Sd
2 ,. . . ,Ss

n,Sd
n. In particular, the instan-

tiation of the pair of nodes Ss
i and Sd

i , for i := 1 . . . n, rep-
resents the flow from the source Ss

i to the destination Sd
i

inside the i-th System in the specific path. Similarly, in-
stantiation of Sd

i and Ss
i+1, for i := 1 . . . n − 1 represents

the flow among the the i-th and the i + 1-th System in the
specific instantiated path.

Consider for instance the network N = {A, B} repre-
sented in Figure 3 involving two systems, A and B, with
system A handling information at level Top-Secret (T ) and
Secret (S), and system B handling information at level Se-
cret (S) and Confidential (C). We can capture this instance

by using 4 system-node variables: Ss
1 ,Sd

1 ,Ss
2 ,Sd

2 .

Figure 3: A simple network.

3.1 System-Node Variable Domains
The domain of each system-node variable contains pieces

of information describing the possible security levels avail-
able on each system. In particular, each source variable Ss

i

contains domain elements marked with s, and each desti-
nation variable Sd

i contains domain elements marked with
d.

The network in Figure 3 has in our model 4 variables
Ss

1 , Sd
1 , Ss

2 , Sd
2 with domain D(Ss

i ) = {T s
A, Ss

A, Ss
B , Cs

B}, with
i := 1, 2, and D(Sd

i ) = {T d
A, Sd

A, Sd
B , Cd

B}, with i := 1, 2.
In general, when the network contains n > 2 systems, we

also need to be able to deal with paths of length k < n. To
do this, we need to extend the domain of each system-node
variable, S?

i (where ? stands alternatively for s and d), for
any i > 2, with some artificial elements. More precisely, we
extended the domain D(S?

i )′ = D(S?
i ) ∪ {∗?1, ∗?2, . . . , ∗?i−2}.

This ∗ elements are added to deal with paths shorter than
n. This is necessary because solving SCSP requires giving
an assignment to all the variable of the SCSP when we want
to represent path shorter than the number of nodes of the
network.

3.2 Modelling each System
The constraint on each system defines three classes of sys-

tem flows.

• Flowpermitted represents the flows permitted by the pol-
icy in each node;

• Flowrisk : represents the flows that are not permitted
by the policy, but for which there is a risk of flow if
the system became compromised;

• Flowinvalid : represent all the remaining flows and are
not valid.

Between each pair of system-node variables Ss
i and Sd

i for
each system i, we define a soft constraint, c(Ss

i ,Sd
i ), that gives

a weight to each possible (permitted or risk) flow within
system i. Various semirings could be used to represent the
network and the associated policy. We use the following
semiring in the paper, although our results are general and
are are not limited to this particular semiring.

Scascade = 〈IN, min, max, +∞, 0〉.

Given this semiring, the constraint c(Ss
i ,Sd

i ) representing the
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flow inside system i is defined as follows:

c(Ss
i ,Sd

i )(s, d) =



accred(Si) when(s, d) ∈ Flowrisk

(risk flows)

0 when(s, d) ∈ Flowpermitted

(permitted flows)

+∞ otherwise.

(invalid flows)

Recall that accred(Si) is the accreditation value of System
i. For example, given the MLS policy ordering C ≤ S ≤ T ,
then we have

Flowpermitted ={(T s
A, T d

A), (Ss
A, Sd

A), (Ss
A, T d

A), (Ss
B , Sd

B), (Cs
B , Cd

B),

(Cs
B , Sd

B)}

Flowrisk ={(T s
A, Sd

A), (Ss
B , Cd

B)}

and Flowinvalid set contains all the remaining tuples.
Since the domain of the variables S?

i (where ? stands for s
and d) has been extended with the elements {∗?1, ∗?2, . . . , ∗?i−2},
we have also to take care of these artificial elements. In par-
ticular, we extend the definition of each constraint c(Ss

i ,Sd
i )

as follows:

c(Ss
i ,Sd

i )(s, d) =


0 when(s, d) ∈ {(∗s

1, ∗d
1), . . . , (∗s

i−2, ∗d
i−2)}

(Artificial permitted flows)

+∞ otherwise

(Artificial invalid flows)

3.3 Modelling the Network
Flow constraints between systems result in two classes of

network flows.

• Networkpermitted represents flows permitted by the con-
nection policy between each system and represents di-
rect synchronisation flows between systems.

• Networkinvalid : this represents the absence of direct
connection between the systems.

Between each pair of systems, Si and Si+1, we define a soft
constraint, c(Sd

i ,Ss
i+1), that defines the possible synchronisa-

tion between systems i and i+1. Note that these constraints
are defined between the destination system-node variable of
the first system, Sd

i , and the source system-node variable
of the second system, Ss

i+1. The constraint c(Sd
i ,Ss

i+1) repre-

senting the synchronization flows between system i and i+1
can be defined as follows:

c(Sd
i ,Ss

i+1)(d, s) =


0 when(d, s) ∈ Networkpermitted

(Policy permitted synchronization)

+∞ otherwise.

(invalid synchronization)

For example, constraint Networkpermitted for Figure 3 is de-
fined as follows (note that Networkimpossible contains the re-
maining tuples).

Networkpermitted ={(Sd
A, Ss

B), (Sd
B , Ss

A)}

Note that the proposed model does not consider assurance
risks for connections: this can be achieved, if desired, by

explicitly modelling the connections by their components
(for example, a link encryption device) and corresponding
assurance levels.

When connecting systems Sd
i and Ss

i+1 it is also necessary
to consider the constraints imposed by the artificial elements
∗?i . The definition of each constraint c(Sd

i ,Ss
i+1) is extended

as follows:

c(Sd
i ,Ss

i+1)(d, s) =



0 when(d, s) ∈ {(∗d
1, ∗s

2), . . . , (∗d
i−3, ∗s

i−2)}
∪ {(], ∗s

1)s.t. ] ∈ D(Sd
i )}

(Artificial permitted synchronization)

+∞ otherwise

(Artificial invalid synchronization)

The extension of this constraint is slightly different to the
previous system-level constraints. In particular, it enables
us to model the connection between the last real domain
element in the path and the first ∗s

1-element.
In addition to ensuring that systems are configured in a

valid way, we also need to ensure that no two pairs of system-
node variables represent the same system. This ensures that
our model does not capture cyclic paths. Therefore, we need
to post an alldifferent [25] constraint among all the variables
of the model. An alldifferent constraint ensures that all
variables over which it is defined take on different values.

The solution of the defined Soft CSP (let us call this E),
that is all the solution with level lower than +∞, returns all
the possible cascade path of the system. The level associ-
ated to each path gives a measure of the effort required to
compromise the network for that specific path.

3.4 Detecting Cascade Vulnerabilities
To determine whether or not there exists a cascade vul-

nerability problem, we need to compare the effort required
to compromise the network with the risk of compromising
the system as a whole. Therefore, we introduce a set of risk
constraints, R = {r(Ss

1 ,Sd
i )|i ∈ {2, . . . , n}}. The weight of

each instance of r(Ss
1 ,Sd

i ) represents the risk associated with

the path from Ss
1 to Sd

i . The cost of each tuple in these
constraints is defined as follows:

r(Ss
1 ,Sd

i )(s, d) =

{
0 if d = ∗d

i ,

risk(s, d) otherwise.

The set of solutions of the soft CSP E (that is the cascade-
CSP defined in Sections 3.1, 3.2, 3.3)whose associated semir-
ing level is lower than +∞ provides the set of possible paths
of the network. Each solution-path of E gives the minimum
effort required to compromise the network, while the combi-
nation of the constraints in R (the Risk-CSP), gives the risk
for all the paths. Therefore, a cascading path can be iden-
tified as any path η where the risk associated with the path
exceeds the effort to compromise it, i.e. where the following
constraint is satisfied:⊗

Rη >
⊗

Eη

Therefore, by adding the above constraint to our constraint
model, the existence of a solution to that model indicates
that here exists a cascading path. Furthermore, the set of
solutions provides the set of cascading paths. This provides
us with a basis upon which we can set about removing the
cascade vulnerability problem from the network by elimi-
nating all solutions from the model.
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4. AN EXAMPLE
In this section we encode the network example described

in Section 2.1 within the proposed constraints model. Fig-
ure 4 depicts the structure of the constraint relationships in
this model. In Section 4.1 we present an example of how
our model identifies a cascade-free path. In Section 4.2 we
present an example of detecting a path with a cascade prob-
lem.

Figure 4: A constraint Model Structure.

For the purposes of the examples, the risk lattice is as-
sumed to be as follows: risk(C, S) = risk(C, T ) = risk(S, T ) =
0, risk(S, C) = 1, risk(T, S) = 2, risk(T, C) = 3.

Figure 4 presents the structure of the constraint model
for an example from [14]. Our model comprises 8 system-
node variables, Ss

1 , Sd
1 , Ss

2 , Sd
2 , Ss

3 , Sd
3 , Ss

4 , and Sd
4 , and 3 risk

variables, r(Ss
1 ,Sd

2 ), r(Ss
1 ,Sd

3 )and r(Ss
1 ,Sd

4 ). The domain of each

system-node variable, D(S?
i ), is: {T ?

A, S?
A, T ?

B , S?
B , C?

B , S?
C ,

C?
C , S?

D} (where ? stands alternatively for s and d) and
i := 1, . . . , 4.

4.1 A Cascade-free Path
Consider the following path through the network:

η = [Ss
1 := T s

A, Sd
1 := T d

A, Ss
2 := T s

B , Sd
2 := Sd

B ,

Ss
3 := Ss

C , Sd
3 := Cd

C , Ss
4 := ∗s

1, S
d
4 := ∗d

1]

This scenario is illustrated in Figure 6. Evaluating the
cascade detection constraint we get the following, and there-
fore, this path there is not a cascade.⊗

Rη >
⊗

Eη ≡ 3 > 3 ≡ False

4.2 A Cascading Path
Consider the following path through the network:

η = [Ss
1 := T s

A, Sd
1 := Sd

A, Ss
2 := Ss

D, Sd
2 := Sd

D,

Ss
3 := Ss

C , Sd
3 := Cd

C , Ss
4 := ∗s

1, S
d
4 := ∗d

1]

This is depicted in Figure 6. Evaluating the cascade de-
tection constraint we get the following, and therefore, this
path does exhibit a cascade problem.⊗

Rη >
⊗

Eη ≡ 3 > 2 ≡ True

TSs
A

TSd
A

TSs
B

Sd
B

Ss
C

Cd
C

R(TSs
A,Sd

B)

R(TSs
A,Cd

C)

R(TSS
A, *1

d)

0 1

2

3 00 0 0

0

3

Eŋ = max( {0,0,3,0,1,0,0} ) = 3

Rŋ = max( {3,2,0} ) = 3

*1
s

*1
d

Figure 5: Cascade Free Path.

TSs
A

Sd
A

Ss
D

Sd
D

Ss
C

Cd
C

R(TSs
A,Sd

D)

R(TSs
A,Cd

C)

R(TSs
A ,*1

d )

2 1

2

0 00 0 0

0

3

Eŋ = max( {2,0,0,0,1,0,0} ) = 2

Rŋ = max( {2,3,0} ) = 3

*1
s

*1
d

Figure 6: Cascading Path.

5. CONCLUSION
In this paper we have presented a new approach to de-

tecting the cascade vulnerability problem in multilevel se-
cure systems based on soft constraints. Soft constraints have
been successfully applied to other problems in computer se-
curity. The Role-Based Access Control policy model de-
scribed in [27] uses soft-constraints to define authorisation
but does not consider issue of secure/cascading authoriza-
tion . [8, 23] considers how soft constraints might be used to
specify noninterference-style security properties for systems.
In [5] soft constraints are used to represent confidentiality
and authentication properties of security protocols. These
results, and the results in this paper, demonstrate the useful-
ness of constraints as a general purpose modelling technique
for security.

While constraint solving is NP-complete in general, this
has not detracted from the uptake of constraint processing
as a practical approach to solving many real-world prob-
lems [28], and should not be regarded as a fatal disadvan-
tage – on the contrary, constraint solving is becoming the
paradigm of choice in many large-scale optimisation prob-
lems. Many tractable classes of constraint satisfaction prob-
lem have been identified, and there are also a number of pow-
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erful “global constraints” which have polynomial-time infer-
ence algorithms associated with them. For example, partic-
ular constraints which is of relevance here are the shortest
path constraint [13] and the “all different” constraint [25].

The approach we present in this paper represents a paradigm
shift in the modelling and detection of the cascade problem.
In particular, our constraint model provides a natural and
declarative description of an arbitrary multilevel secure sys-
tem. Any solution to the model represents a cascading path,
which provides significantly more information regarding the
vulnerabilities in the network than the existing approaches.
The set of solutions to the proposed constraint model pro-
vides a basis for removing the cascade vulnerability problem.
Previous approaches [14, 19] detect a single cascading path
in polynomial time, but correcting the cascade in an opti-
mal way is NP-complete. As discussed above, detecting all
paths in the constraint model is NP-complete, however we
conjecture that the correction of the cascade problem, in
this model, will be polynomial; this will be a focus of our
future work. We also plan to implement a software tool to
apply the theoretical results of the paper.
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